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Abstract
We consider general Darboux maps arising from intertwining relations on 
second order, linear partial differential operators, as deformations of the 
classical, Laplace case. We present Lax pairs for the corresponding relations 
on invariants and discuss the conditions for a lattice structure analogous to 2D 
Toda theory.
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1. Introduction

We study a situation close to that of the classical Laplace maps developed in [3] and used more 
recently in many applications to integrable systems. Current work is (partially) summarised 
in the [6, 7, 8, 14].

One approach [2, 4, 7] is via an intertwining relation of the form,

MσL = LσM.
The general solution to this relation is discussed in [9] when L and Lσ  are linear, second 

order, hyperbolic differential operators in two variables and M and Mσ are of first order and 
in [10] when they are of second order. For the case of arbitrary order see [11]. The case where 
the operators depend on more than two independent variables is unresolved but see [5].

Here we explore the point of view that the general solution (M and Mσ) to the intertwining 
relation above is a deformation of the classical Laplace case and extend to it the corre sponding 
derivation of the classical 2D Toda field theory. We will thus use the term ‘twisted Laplace 
maps’ for these Darboux maps and ‘twisted Toda’ for the consequent lattice equations. The 
twisted lattice is floppy, a functional deformation of the classical model to which it reduces in 
the untwisted Laplace limit.

The paper starts with a discussion of the classical case in order to establish notation and 
recall the Laplace map’s relation to a Lax pair and the Toda lattice. We then repeat the discus-
sion for the twisted case in which a modified Lax pair can be written down and the relations 
between transformed and untransformed variables (Laplace invariants) are more involved.  
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We finish with a discussion of the relations on the functional parameters that need to be satis-
fied in order that there be a lattice structure extending the 2D Toda lattice.

2. Classical Laplace maps and 2D Toda

In this section we recall the workings of the classical Laplace maps and formulate the deriva-
tion of the 2D Toda lattice using a purely operator based formalism borrowed from [2]. We 
close with a recapitulation of the Lax pair.

The classical Laplace invariants [3] were introduced in the context of second-order, linear 
hyperbolic partial differential equations

L12φ = φ,12 + a2φ,1 + a1φ,2 + a12φ = 0, (1)

where φ = φ(x1, x2) and L12 denotes the differential operator

L12 = ∂1∂2 + a2∂1 + a1∂2 + a12, (2)

in which the coefficients a1, a2 and a12 are arbitrary functions of x1 and x2 and ∂i denotes 
partial differentiation with respect to xi. The form of the differential operator (2) is unchanged 
under a gauge transformation

L12 → Lg
12 = g−1L12g, (3)

g being an arbitrary function of the independent variables.
The invariants in which we shall be interested throughout this paper are constructed by 

defining two first-order operators

L1 = ∂1 + a1, L2 = ∂2 + a2

and writing down the functions

I12 = L12 − L1L2, I21 = L12 − L2L1.

Thus, L12 can be written in two equivalent ways as

L12 = L1L2 + I12

= L2L1 + I21,

where I12 = a12 − a1a2 − a2,1 and I21 = a12 − a1a2 − a1,2 are the classical Laplace invariants 
preserved by the transformation (3).

Indeed, we can see that I12 and I21 are invariants because they are 0th order differential 
operators which commute with g. We define Θi(L) = [L, xi]. Then the invariance of I12 and 
I21 can be characterised [1] by the property that they are functions of L12, L1 and L2 satisfying

Θ1(L12 − L1L2) = Θ2(L12 − L1L2) = 0
Θ1(L12 − L2L1) = Θ2(L12 − L2L1) = 0.

Now suppose there is a function φ such that L12φ = 0. By defining the Laplace map as 
L1φ = φσ, we have the pair

L1φ = φσ

L2φ
σ + I21φ = 0.

 (4)

By eliminating φ from the above system, we will obtain the σ-Laplace transformed equation

Lσ
12φ

σ = 0

where Lσ
12 can be written as
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Lσ
12 = Lσ

1 Lσ
2 + Iσ12

and as

Lσ
12 = Lσ

2 Lσ
1 + Iσ21.

From (4) we have

Lσ
12φ

σ = I21L1I−1
21 L2φ

σ + I21φ
σ

= (Lσ
1 L2 + I21)φ

σ

= (L2Lσ
1 + I21 + [Lσ

1 , L2])φ
σ = 0,

so that Lσ
1 = I21L1I−1

21 , Lσ
2 = L2 and the Laplace transformations of the invariants are

Iσ12 = I21,
Iσ21 = I21 + [Lσ

1 , L2]

= 2I21 − I12 + (log I21),12 .

Similarly, if we define the Laplace map as L2φ = φΣ, we have the pair

L2φ = φΣ

L1φ
Σ + I12φ = 0.

By eliminating φ from the above pair, we obtain the Σ-Laplace transformed equation which 
is satisfied by φΣ as follows

(
LΣ

2 L1 + I12
)
φΣ =

(
L1LΣ

2 + I12 +
[
LΣ

2 , L1
])

φΣ = 0,

where LΣ
2 = I12L2I−1

12 . This implies LΣ
1 = L1 and the Σ-Laplace transformations of the 

invariants

IΣ21 = I12,

IΣ12 = I12 +
[
LΣ

2 , L1
]

= 2I12 − I21 + (log I12),12 .

These can be combined into the three term recurrence relations:

Iσ12 − 2I12 + IΣ12 = (log I12),12

Iσ21 − 2I21 + IΣ21 = (log I21),12 .
 (5)

Further, the σ and Σ are inverse in the sense that 
(
Iσij
)
Σ =

(
IΣij

)
σ = Iij .

For example,

(Iσ12)
Σ
= 2Iσ12 − Iσ21 + (log Iσ12),12

= 2I21 − 2I21 + I12 − (log I21),12 + (log I21),12

= I12.

Finally, it is possible to summarise the above relations in the simple intertwining relations

Lσ
1 L12 = Lσ

12L1

LΣ
2 L12 = LΣ

12L2
 (6)

which we can analyse using the Θ map to repeat the above derivation without introducing φσ 
[2].

C Athorne and H Yilmaz J. Phys. A: Math. Theor. 52 (2019) 225201
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To see this, for the σ case, apply Θ1 successively to the relation (6). We obtain the following 
additional formulae,

L12 + Lσ
1 L2 = Lσ

12 + Lσ
2 L1

L2 = Lσ
2 .

From the full set of relations we deduce, essentially by rearrangements, that

Iσ12 = I21

Lσ
1 I21 = Iσ12L1

Iσ21 − Iσ12 = I21 − I12 + (log I21),12 ,

so that

Lσ
1 = Iσ12L1I−1

21

= I21L1I−1
21

= L1 − (log I21),1 .

Likewise

LΣ
2 L12 = LΣ

12L2

implies identities:

L12 + LΣ
2 L1 = LΣ

12 + LΣ
1 L2

L1 = LΣ
1

from which we deduce

IΣ21 = I12

LΣ
2 I12 = IΣ21L2

IΣ12 − IΣ21 = I12 − I21 + (log I12),12 .

Because, as we have seen, σ and Σ act as inverses on the invariants it is possible to attach 
a superscript, i ∈ Z, labelling the successive applications of σ writing e.g. (Li

1)
σ = Li+1

1  etc. 
Hence the σ-Laplace map satisfies Li+1

1 Li
12 = Li+1

12 Li
1 and we obtain the 2D Toda lattice equa-

tions [13, 15],

Ii+1
12 − 2Ii

12 + Ii−1
12 = (log I12),12

Ii+1
21 − 2Ii

21 + Ii−1
21 = (log I21),12 .

In addition it is instructive, for the sake of later analogy, to write the Laplace maps we have 
described the above in system form,

(
L1 −1
I21 L2

)(
φ

φσ

)
=

(
0
0

)

(
L1 I12

−1 L2

)(
φΣ

φ

)
=

(
0
0

)
,

in which case the intertwining relations take matrix form

C Athorne and H Yilmaz J. Phys. A: Math. Theor. 52 (2019) 225201
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(
Lσ

1 0
[Lσ

1 , L2] Lσ
1

)(
L1 −1
I21 L2

)
=

(
Lσ

1 −1
Iσ21 Lσ

2

)(
L1 0
0 Lσ

1

)

and
(

LΣ
2

[
LΣ

2 , L1
]

0 LΣ
2

)(
L1 I12

−1 L2

)
=

(
LΣ

1 IΣ12

−1 LΣ
2

)(
LΣ

2 0
0 L2

)
.

In each instance off diagonal entries are precisely the intertwining relations.

2.1. Classical lax pair

We review the derivation of the Lax pair for the 2D Toda chain from the Laplace maps in this 
classical case. This treatment parallels [12].

Define a chain of Laplace maps: φi+1 = φσ with Li
12φ

i = 0. We can reframe these maps in 
terms of the Li

1 and Li
2 operators as

Li
1φ

i = φi+1

Li
2φ

i = −Ii−1
21 φi−1

where Li
1 = ∂1 + ai

1 and Li+1
2 = Li

2 = ∂2 + a2, the shift i → i + 1 denoting the σ map.
Then we have

(
Li+1

2 Li
1 − Li−1

1 Li
2

)
φi = Ii−1

21 φi − Ii
21φ

i −
(
log Ii−1

21

)
,1 Li

2φ
i.

Evaluating the left-hand side of the above equation, we obtain
(
ai

1,2 − a2,1
)
φi +

(
ai

1 − ai−1
1

)
Li

2φ
i =

(
Ii−1
21 − Ii

21

)
φi −

(
log Ii−1

21

)
,1 Li

2φ
i.

Equating the cofficients of φi and Li
2φ

i gives us the following pair

ai
1,2 − a2,1 = Ii−1

21 − Ii
21

ai
1 − ai−1

1 = −
(
log Ii−1

21

)
,1

and hence, since a1,2 −a2,1 = I12 − I21, we obtain the 2D-Toda lattice equations [13]

Ii+1
21 − 2Ii

21 + Ii−1
21 =

(
log Ii

21

)
,12

and

Ii+1
12 − 2Ii

12 + Ii−1
12 =

(
log Ii

12

)
,12 . (7)

3. Twisted Laplace maps

Here we allow deformation (called ‘twisted’) of the Laplace maps recovering the results of [9] 
and exploring the consequences for relations between the transformed invariants under these 
twisted maps.

We define twisted Laplace maps via the modified intertwining relations,

L′σ
1 L12 = Lσ

12L′
1 (8)

C Athorne and H Yilmaz J. Phys. A: Math. Theor. 52 (2019) 225201
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L′Σ
2 L12 = LΣ

12L′
2, (9)

where the primed operators are monic in ∂1 and ∂2 still but with coefficients distinct from the 
unprimed operators, L1 and L2 which appear in the expressions L12 = L1L2 + I12 etc.

As in the classical case in the previous section, we can use the Θi maps to analyse these 
twisted intertwining relations.

In the σ case, by successive application of Θ1 and Θ2 on the relation (8), we obtain the 
following additional relations

L′σ
1 L1 = Lσ

1 L′
1

L12 + L′σ
1 L2 = Lσ

12 + Lσ
2 L′

1

L1 + L′σ
1 = Lσ

1 + L′
1

L2 = Lσ
2

from which we deduce that there is a function α satisfying

L′
1 − L1 = α

L′σ
1 − Lσ

1 = α

Lσ
1 α = αL1

 (10)

Iσ12 = I21 − α,2 (11)

Iσ21 − Iσ12 = I21 − I12 + (logα),12 (12)

α,1Iσ12 − αIσ12,1 = α2 (I12 − I21) + α2α,2. (13)

In particular

Lσ
1 = αL1α

−1

= L1 − (logα),1 .
 (14)

Of these we can regard (11) and (12) as defining the Laplace transformed invariants in terms 
of the untransformed and (13) as a differential relation that α must satisfy. Written in terms of 
the untransformed invariants it is:

αα,12 − α,1α,2 − α2α,2 = αI21,1 − α,1I21 + α2(I12 − I21); (15)

or in terms of the transformed invariants:

αα,12 − α,1α,2 + α2α,2 = −αIσ12,1 + α,1Iσ12 + α2(Iσ21 − Iσ12). (16)

The equations (15) and (16) differ by the interchanges: α ↔ −α and Iij ↔ Iσji .
By rearranging the equation (15), we have

−(α+ a1),2 =

(
I21

α
− a2 −

α,2

α

)

,1
.

Let us choose α = −z−1z,1 − a1. Then

αz,2 = (I21 − a2α− α,2) z

and z satisfies the hyperbolic differential equation

z,12 + a2z,1 + a1z,2 + a12z = 0.

C Athorne and H Yilmaz J. Phys. A: Math. Theor. 52 (2019) 225201
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We can regard this element z ∈ ker L12 (or equivalently α) as a functional parameter relating 
the transformed to the untransformed invariants.

We may also eliminate α from (15) and (16). This is not a trivial identity but a relation 
between the transformed and untransformed invariants that is independent of α or z resulting 
in a possible analogue of the classical 2D Toda equation. To do this we rewrite the equa-
tions (15) and (16) in mixed terms as,

α,1Iσ12 − αIσ12,1 = α2 (I12 − Iσ12)

α,1I21 − αI21,1 = α2 (I21 − Iσ21) .

This pair can be linearised by the substitution α = 1
β

,

β,1Iσ12 + βIσ12,1 = Iσ12 − I12

β,1I21 + βI21,1 = Iσ21 − I21,

from which we obtain

∆β = I12I21 + Iσ12Iσ21 − 2I21Iσ12

∆β,1 = −I12I21,1 − Iσ21Iσ12,1 + (I21Iσ12),1 ,

where ∆ = I21,1Iσ12 − I21Iσ12,1. It is clear that the classical Laplace map Iσ12 = I21, corresponds 
to the case that ∆ = 0.

By eliminating β for ∆ �= 0 from the above system, we obtain the following relation

Iσ12

(
I 2
21(I

σ
12 − I12)

∆

)

,1
= I21

(
Iσ 2
12 (Iσ21 − I21)

∆

)

,1
. (17)

Correspondingly

α =
∆

I12I21 + Iσ12Iσ21 − 2I21Iσ12

α,1 =
∆

(
I12I21,1 + Iσ21Iσ12,1 − (I21Iσ12),1

)

(I12I21 + Iσ12Iσ21 − 2I21Iσ12)
2

and so the Laplace transformations (11) and (12) are

Iσ12 = I21 −
(

∆

I12I21 + Iσ12Iσ21 − 2I21Iσ12

)

,2
 (18)

Iσ21 − Iσ12 = I21 − I12 +

(
I12I21,1 + Iσ21Iσ12,1 − (I21Iσ12),1

I12I21 + Iσ12Iσ21 − 2I21Iσ12

)

,2
. (19)

We now repeat the calculation interchanging the roles of the indices for the Σ-Laplace map: 
L12 → LΣ

12. We will obtain a relation

IΣ21

(
I 2
12(I

Σ
21 − I21)

∆′

)

,2
= I12

(
IΣ 2
21 (IΣ12 − I12)

∆′

)

,2
, (20)

where ∆′ = I12,2IΣ21 − I12IΣ21,2, and the Laplace maps of the invariants I12 and I21 as follows

IΣ21 = I12 −
(

∆′

I12I21 + IΣ12IΣ21 − 2I12IΣ21

)

,1
 (21)

C Athorne and H Yilmaz J. Phys. A: Math. Theor. 52 (2019) 225201
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IΣ12 − IΣ21 = I12 − I21 +

(
I21I12,2 + IΣ12IΣ21,2 − (I12IΣ21),2

I12I21 + IΣ12IΣ21 − 2I12IΣ21

)

,1

. (22)

We can represent the twisted Laplace maps we have described above in system form as
(

L′
1 −1

I21 − L2α L2

)(
φ

φσ

)
=

(
0
0

)
.

Note that, unlike the classical case, we have an off-diagonal differential part. This system form 
allows us to motivate the Lax pair for the twisted relations below. The matrix forms of the 
intertwining relations are then written,

(
L′σ

1 0
[L′σ

1 , L2] L′σ
1

)(
L′

1 −1
I21 − L2α L2

)
=

(
L′σ

1 −1
Iσ21 − L2α Lσ

2

)(
L′

1 0
0 L′σ

1

)
,

where again an off-diagonal entry represents the scalar intertwining relation.
A point it is important to note is that the twisted maps are not simply gauge transformations 

of the classical ones. Were we to gauge transform L′
1 to L1, i.e. L1 = g−1L′

1g, the intertwining 
relations would force a compensating transformation of L12 to g−1L12g and hence the relations 
would still be twisted.

Indeed the form of α means that

L′
1 = ∂1 + a1 + α = ∂ − z−1z,1 = z∂1z−1

where L12(z)  =  0. This reduces the twisted relation to

(z−1L′σz)(z−1L12z) = (z−1Lσ
12z)∂1

amounting to a special choice of gauge: the invariants will have the same values.

4. The untwisted limit

We recover the classical Laplace map and the 2D Toda equations in the limit that α → 0 but 
the limit is somewhat singular as far as z is concerned.

If we suppose that α = εφ then equation (13) becomes

ε(φφ,12 −φ,1 φ,2 −φ2(Iσ21 − Iσ12)) + ε2(φ2φ,2 ) + φIσ12,1 −φ,1 Iσ12 = 0

and in the ε → 0 limit φ → λ(x2)Iσ12. Hence

L′
1 − L1 → 0

L′σ
1 − Lσ

1 → 0
Lσ

1 Iσ12 → Iσ12L1

Iσ12 → I21

Iσ1 − Iσ12 → I21 − I12 + (log Iσ12),12

which are the classical equations.
However we also have L1(z) + εφz = 0 and L12(z) = L2L1(z) + I21z = 0. Hence

L1(z) = −εφz

εL2(φz) = I21z

C Athorne and H Yilmaz J. Phys. A: Math. Theor. 52 (2019) 225201
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and it would appear that I21 → 0 also. To avoid this we need L2(z)/z ∼ O(1/ε) even as 
L1(z) ∼ O(ε).

Applied to the twisted Toda equations themselves, note that Iσ12 = I21 + O(ε) implies

∆ = O(ε)

I12I21 + Iσ12Iσ21 − 2Iσ12I21 = I21 (I12 + Iσ21 − 2I21) + O(ε)

I12I21,1 +Iσ12,1 Iσ21 − (Iσ12I21),1 = I21,1 (I12 + Iσ21 − 2I21) + O(ε).

In particular

Iσ21 − Iσ12 = I21 − I12 +

(
I21,1 (I12 + Iσ21 − 2I21)

I21 (I12 + Iσ21 − 2I21)

)
,2 +O(ε)

= I21 − I12 + (log I21) ,12 +O(ε).

5. The twisted lax pair

We now deform the classical Lax pair in order to accommodate the twisted lattice.
Let us consider the twisted σ−intertwining relation L′σ

1 L12 = Lσ
12L′

1, where L′
1 = L1 + α 

and L12φ = 0 such that

L12 = L2L1 + I21

= L2(L′
1 − α) + I21.

We can write the Laplace maps as a pair

L′
1φ = φσ

L2φ
σ = (L2α− I21)φ,

where Lσ
2 = L2.

We now define a chain of Laplace maps φi+1 = (φi)σ with Li
12φ

i = 0 so that the above pair 
becomes

L′i
1φ

i = φi+1

L2φ
i+1 = (L2α

i − Ii
21)φ

i

which can be written as a Lax pair

L′i
1φ

i = φi+1 (23)

L2φ
i = (L2α

i−1 − Ii−1
21 )φi−1, (24)

in which L′i
1 = Li

1 + αi and Li+1
2 = Li

2 = L2.
Thus, we have

(
L2L′i

1 − L′i−1
1 L2

)
φi = L2φ

i+1 − L′i−1
1

(
L2α

i−1 − Ii−1
21

)
φi−1, (25)

where L′i
1 = ∂1 + ai

1 + αi and L2 = ∂2 + a2.
The differential operator in the left hand side (LHS) of the equation (25) can be expanded 

as

L2L′i
1 − L′i−1

1 L2 = (∂2 + a2)(∂1 + ai
1 + αi)− (∂1 + ai−1

1 + αi−1)(∂2 + a2)

= (ai
1 − ai−1

1 + αi − αi−1)L2 + Ii
12 − Ii

21 + αi
,2.

C Athorne and H Yilmaz J. Phys. A: Math. Theor. 52 (2019) 225201
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Then, the left hand side of the above equation becomes

LHS = (ai
1 − ai−1

1 + αi − αi−1)L2φ
i +

(
Ii
12 − Ii

21 + αi
,2

)
φi.

The right hand side (RHS) of the equation (25) can be written as

RHS = L2φ
i+1 − L′i−1

1

(
L2α

i−1 − Ii−1
21

)
φi−1

=
(
Ii−1
21 − Ii

21 + αi
,2 − αi−1

,2

)
φi

+
(
αi − αi−1 −

(
αi−1)−1

αi−1
,1

)
L2φ

i

+
(
Ii−1
21,1 +

(
Ii−1
12 − Ii−1

21

)
αi−1 − αi−1

,12

αi−1αi−1
,2 −

(
αi−1)−1

αi−1
,1

(
Ii−1
21 − αi−1

,2

))
φi−1.

Setting the LHS equal to the RHS and equating the coefficients of L2φ
i we have

ai
1 = ai−1

1 −
(
αi−1)−1

αi−1
,1

which is

ai+1
1 = ai

1 −
(
αi)−1

αi
,1,

or

Li+1
1 = Li

1 −
αi

,1

αi

= Li
1 −

(
logαi)

,1

 (26)

which is equation (14).
By equating coefficients of φi we get

Ii
12 = Ii−1

21 − αi−1
,2

which is

Ii+1
12 = Ii

21 − αi
,2, (27)

namely (11)
Finally, equation of the coefficients of φi−1 gives

αi−1
,12 − αi−1αi−1

,2 +
(
Ii−1
21 − Ii−1

12

)
αi−1 +

(
αi−1)−1

αi−1
,1

(
Ii−1
21 − αi−1

,2

)
− Ii−1

21,1 = 0.

Multiplying both side of this equation by αi−1, we get

αi−1αi−1
,12 − αi−1

,1 αi−1
,2 −

(
αi−1)2

αi−1
,2 = αi−1Ii−1

21,1 − αi−1
,1 Ii−1

21 +
(
αi−1)2 (

Ii−1
12 − Ii−1

21

)

which is

αiαi
,12 − αi

,1α
i
,2 −

(
αi)2

αi
,2 = αiIi

21,1 − αi
,1Ii

21 +
(
αi)2 (

Ii
12 − Ii

21

)
. (28)

This equation, again equation (13), is equivalent to Li
12

(
zi
)
= 0, where αi = −ai

1 −
(
zi
)−1zi

,1.
We already know that Li+1

2 = L2 and Li+1
1 = Li

1 −
(
αi
)−1αi

,1. Then by using these, we get

C Athorne and H Yilmaz J. Phys. A: Math. Theor. 52 (2019) 225201
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Ii+1
21 − Ii+1

12 = Li+1
1 Li+1

2 − Li+1
2 Li+1

1

=

(
Li

1 −
αi

,1

αi

)
L2 − L2

(
Li

1 −
αi

,1

αi

)

= Ii
21 − Ii

12 +

(
αi

,1

αi

)

,2

.

Thus, we obtain

Ii+1
21 − Ii+1

12 = Ii
21 − Ii

12 +
(
logαi)

,12 . (29)

So the twisted maps do provide a Lax pair, the difference from the classical case being that 
the pair depends on a functional parameter, αi, related to an arbitrary element, zi, in the kernel 
of Li

12.

6. Twisted lattices

Because of this functional parameter (i.e. z or α) in the twisted transformation, there will not 
be a discrete ‘Toda’ like lattice on which the I12 and I21 live unless we impose some extra 
conditions.

We introduce parameters labelled γ  to play the role in the Σ maps corresponding to that 
played by those denoted α in the σ maps.

Natural choices to create a lattice structure would be either to require the diagram

(I12, I21)
α→ (Iσ12, Iσ21)

γ ↓ ↓ γσ

(IΣ12, IΣ21)
αΣ

→ (·, ·)

to commute, i.e. (IΣij )
σ = (Iσij )

Σ, or to require that particular choices of α and γσ (or γ  and αΣ) 
should lead to (Iσij )

Σ = (IΣij )
σ = Iij,

(I12, I21)
α→ (Iσ12, Iσ21)

γσ

→ (I12, I21).

The former will give a Z2 lattice; the latter a Z lattice.
From the maps,

Iσ12 = I21 − α,2
Iσ21 = 2I21 − I12 + (logα),12 −α,2
IΣ12 = 2I12 − I21 + (log γ),12 −γ,1
IΣ21 = I12 − γ,1

we get

(IΣ12)
σ = IΣ21 − αΣ,2
= I12 − γ1 − αΣ

2

(Iσ12)
Σ = 2Iσ12 − Iσ21 + (log γσ),12 −γσ ,1
= I12 + (log γσ),12 −(logα),12 −γσ ,1 −α,2

C Athorne and H Yilmaz J. Phys. A: Math. Theor. 52 (2019) 225201



12

and

(Iσ21)
Σ = Iσ12 − γσ ,1
= I21 − γσ

1 − α,2
(IΣ21)

σ = 2IΣ21 − IΣ12 + (logαΣ),12 −αΣ,2
= I21 + (logαΣ),12 −(log γ),12 −αΣ,2 −γ,1 .

Consistency requires

(log
αΣγσ

αγ
),12 = 0.

If we label the effect of σiΣ j by the pair (i, j) then the simplest way of satisfying this rela-
tion is to require

α(i,j)γ(i,j) = α(i,j+1)γ(i+1,j).

Existence of inverses, mirroring the classical case, requires the stronger conditions,

γ,1 +αΣ,2 = 0
γσ ,1 +α,2 = 0

(log
γσ

α
),12 = 0

(log
αΣ

γ
),12 = 0.

Equally these amount to conditions on the choices of elements belonging to the kernels of 
L12, Lσ

12 and LΣ
12.

7. Conclusions

We have studied the possibility of a redescription of Laplace and Darboux maps by consid-
ering the general map to be a deformation of the Laplace case. The general map is seen as 
arising from a ‘twisted’ intertwining relation and it provides relations between transformed 
invariants of a more complex character than the classical Laplace maps. It extends the clas-
sical relation, which persists in the ‘untwisted’ limit, and retains a Lax pair containing a 
functional parameter, e.g. z, which is an element of the kernel of the untransformed, linear 
operator. One may build families of lattices by requiring these parameters to satisfy relations 
which force the relevant diagrams to commute.

These relations should be seen as the fundamental description of the lattice.

ORCID iDs

Chris Athorne  https://orcid.org/0000-0002-9111-6249
Halis Yilmaz  https://orcid.org/0000-0002-9448-3968

References

	 [1]	 Athorne C and Yilmaz and H 2016 Invariants of hyperbolic partial differential operators J. Phys. A: 
Math. Theor: 49 135201–14

C Athorne and H Yilmaz J. Phys. A: Math. Theor. 52 (2019) 225201

https://orcid.org/0000-0002-9111-6249
https://orcid.org/0000-0002-9111-6249
https://orcid.org/0000-0002-9448-3968
https://orcid.org/0000-0002-9448-3968
https://doi.org/10.1088/1751-8113/49/13/135201
https://doi.org/10.1088/1751-8113/49/13/135201
https://doi.org/10.1088/1751-8113/49/13/135201


13

	 [2]	 Athorne C 2018 Laplace maps and constraints for a class of third-order partial differential operators 
J. Phys. A: Math. Theor: 51 085205

	 [3]	 Darboux  G 1887–96 Leçons Sur La Théorie Générale Des Surfaces Et Les Applications 
Géométriques Du Calcul Infinitésimal (Paris: Gauthier-Villars)

	 [4]	 Ganzha  E  I 2014 Intertwining Laplace transformations of linear partial differential equations 
Algebraic and Algorithmic Aspects of Differential and Integral Operators (Lecture 
Notes in Computer Science vol 8372) ed M  Barkatou et  al (Berlin: Springer) (https://doi.
org/10.1007/978-3-642-54479-8_4)

	 [5]	 Hobby D and Shemyakova E 2017 Classification of multidimensional Darboux transformations: 
first order and continued type SIGMA 13

	 [6]	 Juráš M and Anderson I M 1997 Generalized Laplace invariants and the method of Darboux Duke 
Math. J. 89 351–75

	 [7]	 Shemyakova E 2013 Invertible Darboux transformations SIGMA 9 002
	 [8]	 Shemyakova  E 2015 Invertible Darboux transformations of type I Program. Comput. Softw. 

41 119–25
	 [9]	 Shemyakova E 2012 Laplace transformations as the only degenerate Darboux transformations of 

first order Program. Comput. Softw. 38
	[10]	 Shemyakova E 2013 Proof of the completeness of Darboux Wronskian formulae for order two Can. 

J. Math. 65
	[11]	 Shemyakova  E 2013 Classification of Darboux transformations for operators of the form 

∂x∂y + a∂x + b∂y + c (arXiv:1304.7063)
	[12]	 Smirnov S V 2015 Darboux integrability of discrete two-dimensional Toda lattices Theor. Math. 

Phys. 182 189–210
	[13]	 Toda  M 1989 Theory of Nonlinear Lattices (New York: Springer) (https://doi.org/10.1002/

zamm.19820620841)
	[14]	 Tsarëv S P 2005 Generalized Laplace Transformations and Integration of Hyperbolic Systems of 

Linear Partial Differential Equations, ISSAC’05 (New York: ACM) pp 325–31
	[15]	 Weiss  J 1989 Bäcklund transformations, focal surfaces, the two-dimensional Toda lattice Phys. 

Lett. A 137 365–8

C Athorne and H Yilmaz J. Phys. A: Math. Theor. 52 (2019) 225201

https://doi.org/10.1088/1751-8121/aaa475
https://doi.org/10.1088/1751-8121/aaa475
https://doi.org/10.1007/978-3-642-54479-8_4
https://doi.org/10.1007/978-3-642-54479-8_4
https://doi.org/10.3842/SIGMA.2017.010
https://doi.org/10.1215/S0012-7094-97-08916-X
https://doi.org/10.1215/S0012-7094-97-08916-X
https://doi.org/10.1215/S0012-7094-97-08916-X
https://doi.org/10.3842/SIGMA.2013.002
https://doi.org/10.3842/SIGMA.2013.002
https://doi.org/10.1134/S0361768815020085
https://doi.org/10.1134/S0361768815020085
https://doi.org/10.1134/S0361768815020085
https://doi.org/10.1134/S0361768812020053
https://doi.org/10.4153/CJM-2012-026-7
http://arxiv.org/abs/1304.7063
https://doi.org/10.1007/s11232-015-0257-3
https://doi.org/10.1007/s11232-015-0257-3
https://doi.org/10.1007/s11232-015-0257-3
https://doi.org/10.1002/zamm.19820620841
https://doi.org/10.1002/zamm.19820620841
https://doi.org/10.1145/1073884.1073929
https://doi.org/10.1145/1073884.1073929
https://doi.org/10.1016/0375-9601(89)90906-7
https://doi.org/10.1016/0375-9601(89)90906-7
https://doi.org/10.1016/0375-9601(89)90906-7

	Twisted Laplace maps
	Abstract
	1. Introduction
	2. Classical Laplace maps and 2D Toda
	2.1. Classical lax pair

	3. Twisted Laplace maps
	4. The untwisted limit
	5. The twisted lax pair
	6. Twisted lattices
	7. Conclusions
	ORCID iDs
	References


