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Abstract
The plateau phenomenon, wherein the loss value stops decreasing during 
the process of learning, is troubling. Various studies suggest that the plateau 
phenomenon is frequently caused by the network being trapped in the singular 
region on the loss surface, a region that stems from the symmetrical structure 
of neural networks. However, these studies all deal with networks that have 
a one-dimensional output, and networks with a multidimensional output are 
overlooked. This paper uses a statistical mechanical formalization to analyze 
the dynamics of learning in a two-layer perceptron with multidimensional 
output. We derive order parameters that capture macroscopic characteristics 
of connection weights and the differential equations that they follow. We show 
that singular-region-driven plateaus diminish or vanish with multidimensional 
output, in a simple setting. We found that the more non-degenerative (i.e. far 
from one-dimensional output) the model is, the more plateaus are alleviated. 
Furthermore, we showed theoretically that singular-region-driven plateaus 
seldom occur in the learning process in the case of orthogonalized initializations.
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1. Introduction

Since deep learning was proposed in the late 2000s, neural networks have received much 
attention. That is because they enabled us to solve real-world tasks in various fields, including 
image recognition, speech recognition and machine translation tasks, with performance far 
exceeding conventional methods. However, there are some problems with the neural networks 
left behind. One of them is the ‘plateau phenomenon’, the main topic of this study, which we 
describe in detail below.

The perceptron is one representative of machine learning methods. Although it was first 
proposed in 1958 [1], there was no efficient learning algorithm at that time, and it became 
obsolete. In 1985, with discovery of the backpropagation method [2], which is a fundamental 
learning algorithm of neural networks, neural networks began to gain attention once again. 
However, another problem occurred; that is the ‘plateau phenomenon’, wherein the learning 
slows down partway through. In the learning process of neural networks, weight parameters of 
the neural network are updated iteratively so that the loss (gap between the network’s output 
and desired output) decreases. However, typically the loss does not decrease simply, but its 
decreasing speed slows down significantly partway through learning, and then it speeds up 
again after a long period of time (see the black line in figure 2(a) and figure S1 in the sup-
plemental material (stacks.iop.org/JPhysA/52/184002/mmedia) for example). This is what we 
call the ‘plateau phenomenon’. The phenomenon is observed ubiquitously in the learning of 
hierarchical models, including neural networks, radial basis function networks and a mixture 
of expert models [3–10]. However, in recent years, although many researchers and engineers 
train hierarchical neural networks, the plateau phenomenon is rarely observed in practical 
applications of deep learning. Why is that? 

With regard to theoretical studies of learning dynamics, that of linear neural networks have 
been studied analytically [11–13]. However, the plateau phenomenon is specific to nonlinear 
neural network, which has a nonlinear activation function. Although studying the learning 
dynamics of nonlinear neural networks is challenging, the underlying mechanism of the pla-
teau phenomenon has been widely studied. It is known empirically that neural networks get 
trapped into a plateau because they have symmetrical weights such that their input–output 
relationship is invariant under swapping two units of a hidden layer. The learning dynamics 
of neural networks have been studied in various settings. Some past studies, using statisti-
cal mechanical formalization, derived the learning dynamics of a two-layer soft committee 
machine [4] and a two-layer perceptron [3]; this research showed that the weight symmetry 
results in saddle points that cause plateauing. Furthermore, it has been recognized that such a 
plateau phenomenon stems from a singular structure in the parameter space (see [9, 14–16], 
or [17] for a review). In the parameter space, a Riemannian metric is naturally induced by a 
Fisher information matrix, which represents how two models identified by slightly different 
parameters differ as statistical models [18]. This metric is not necessarily regular, but there are 
regions in the parameter space in which the metric degenerates, called singular regions [14]. 
More specifically, when we consider a two-layer neural network, if it has two identical weight 
vectors projected from the input layer to two different hidden units, its input–output relation-
ship can be realized by another model which has one lesser hidden units than the original 
model. If this downsized model gives local minima of the loss in the downsized parameter 
space, the original model parameter is in the singular region (see also the section ‘Singular 
regions and plateaus’ for detailed explanation). The gradient of the loss is zero everywhere 
within the singular region. Although an isolated saddle point has the same property, the singu-
lar region and a saddle point is different to an isolated saddle point in two ways; the singular 
region has one-or-more dimensions, and it is a Milnor-like attractor [19], that is, it has a 
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region of attraction which has nonzero measure (see figure 5 in [14] for a schematic diagram 
of the singular region). However, all of this research assumes one-dimensional output; in other 
words, networks that have multiple output units are overlooked, and they may avoid the pla-
teau phenomena, which is a usual situation in modern deep learning and seems to be rational.

For these reasons, we analyze the learning dynamics of a two-layer nonlinear perceptron 
that has multiple output units, with statistical mechanical formulation. First, we introduce the 
student–teacher learning setting for ease of analysis [4, 20]. Second, we introduce several 
order parameters, which can capture macroscopic characteristics of network weights, and 
derive their evolution equations from that of microscopic variables (i.e. network weights). We 
solve derived equations numerically to obtain macroscopic learning dynamics, with which we 
can discuss plateau phenomenon quantitatively. Under a simple setting, we show that singular-
region-driven plateaus diminish or vanish with multidimensional output. We find that the less 
degenerative (i.e. like one-dimensional output) the model is, the less the model approaches the 
singular region, and then the more the plateau shortens. Further, we show theoretically that 
singular-region-driven plateaus seldom occur in the learning process if the student and teacher 
models are initialized orthogonally.

Note that the claim that having multiple output units might alleviate plateau phenomenon is 
hypothesized by intuitive insight in our previous work [21], but in the current work we exam-
ine the hypothesis by experiments and theoretical analyses and show that multiple output units 
can indeed prevent approaching the singular region and vanish plateaus.

2. Model

We considered a neural network with an input layer (size N), a hidden layer (size K), 
and an output layer (size O). The network receives input data ξ ∈ RN  and calculates out-
put s =

∑K
i=1 wig(Ji · ξ) ∈ RO, where g is the activation function. The parameters J  and 

w are optimized during learning depending on the difference between the output s and 
the teacher data t. We considered an ideal situation in which the teacher data t is deter-
mined as t =

∑M
n=1 vng(Bn · ξ) ∈ RO; in other words, the learning network (the ‘student 

network’) learns the input–output relationship of the ‘teacher network’, which is also a 
two-layer network and has N-M-O units and original fixed weights B and v (figure 1(a)). 
We assumed the squared loss function ε = 1

2‖s − t‖2, which is most commonly used for 
regression.

For the statistical mechanical formulation of online learning, we introduced further ide-
alization. We assumed that the dimension of input data N is very large and that each ele-
ment of input data ξ is generated in accordance with i.i.d. normal distribution, N (ξi|0, 1). 
We put xi := Ji · ξ and yn := Bn · ξ and define Qij := Ji · Jj = 〈xixj〉, Rin := Ji · Bn = 〈xiyn〉, 
Tnm := Bn · Bm = 〈ynym〉 and Dij := wi · wj, Ein := wi · vn, Fnm := vn · vm.

The parameters Qij, Rin, Tnm, Dij, Ein, and Fnm defined above capture the state of the system 
macroscopically; they are therefore called ‘order parameters’. The first three represent the 
state of the first layers of the two networks (student and teacher), and the latter three repre-
sent their second layers’ state (figure 1(b)). Roughly speaking, Q represents the norm of the 
student’s first layer and T represents that of the teacher’s first layer. R is related to similar-
ity between the student and teacher’s first layer. D, E, F  is the second layers’ counterpart of 
Q, R, T . Among these six order parameter matrices, the values of Qij, Rin, Dij, and Ein change 
during learning; their dynamics are what is to be determined, from the dynamics of micro-
scopic variables, i.e. connection weights.
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3. Dynamics of order parameters

In this paper, we adopt the stochastic gradient descent (SGD) learning algorithm, which 
underlies all conventional algorithms of neural networks used in practice. That is, every time 
an input sample is given, the output and sample loss is computed, the differentiation of the 
sample loss with respect to model parameters is computed, and finally, model parameters are 
moved against the gradient of the loss. The update rule of connection weights with SGD is 
written as

∆Ji = − η

N
dε
dJi

=
η

N
[(t − s) · wi]g′(xi)ξ

=
η

N






M∑
n=1

vng(yn)−
K∑

j=1

wjg(xj)


 · wi


 g′(xi)ξ,

∆wi = − η

N
dε
dwi

=
η

N
g(xi)(t − s)

=
η

N
g(xi)




M∑
n=1

vng(yn)−
K∑

j=1

wjg(xj)


 ,

 

(1)

in which we set the learning rate as η/N , in order to obtain an N-independent macroscopic 
system. The first equation of (1) gives the update rule of order parameters Qij and Rin in the 
form of difference equations:

Figure 1. (a) Student and teacher networks. (b) Geometrical interpretation of order 
parameters Qij, Rin, Tnm, Dij, Ein, and Fnm.
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∆Qij = (Ji +∆Ji) · (Jj +∆Jj)− Ji · Jj

= Ji ·∆Jj + Jj ·∆Ji +∆Ji ·∆Jj

=
η

N




M∑
p=1

Eipg′(xi)xjg(yp)−
K∑

p=1

Dipg′(xi)xjg(xp)

+
M∑

p=1

Ejpg′(xj)xig(yp)−
K∑

p=1

Djpg′(xj)xig(xp)




+
η2

N2 ‖ξ‖
2

[
K,K∑
p,q

DipDjqg′(xi)g′(xj)g(xp)g(xq)

+

M,M∑
p,q

EipEjqg′(xi)g′(xj)g(yp)g(yq)

−
K,M∑
p,q

DipEjqg′(xi)g′(xj)g(xp)g(yq)−
M,K∑
p,q

EipDjqg′(xi)g′(xj)g(yp)g(xq)

]
,

∆Rin = (Ji +∆Ji) · Bn − Ji · Bn

= ∆Ji · Bn

=
η

N




M∑
p=1

Eipg′(xi)yng(yp)−
K∑

p=1

Dipg′(xi)yng(xp)


 .

 

(2)

Since ‖ξ‖2 ≈ N and the right hand sizes of these equations are O(N−1), we can replace these 
difference equations with differential ones with N → ∞, by taking the expectation over all 
input vectors ξ:

dQij

dα̃
= η




M∑
p=1

EipI3(xi, xj, yp)−
K∑

p=1

DipI3(xi, xj, xp)

+
M∑

p=1

EjpI3(xj, xi, yp)−
K∑

p=1

DjpI3(xj, xi, xp)




+ η2

[
K,K∑
p,q

DipDjqI4(xi, xj, xp, xq) +

M,M∑
p,q

EipEjqI4(xi, xj, yp, yq)

−
K,M∑
p,q

DipEjqI4(xi, xj, xp, yq)−
M,K∑
p,q

EipDjqI4(xi, xj, yp, xq)

]
,

dRin

dα̃
= η




M∑
p=1

EipI3(xi, yn, yp)−
K∑

p=1

DipI3(xi, yn, xp)




 
(3)

where I3(z1, z2, z3) := 〈g′(z1)z2g(z3)〉,
I4(z1, z2, z3, z4) := 〈g′(z1)g′(z2)g(z3)g(z4)〉.

 (4)

In these equations, α̃ := α/N  represents time (normalized number of steps), and the 
brackets 〈·〉 represent the expectation when the input ξ follows N (ξi|0, 1), that is, when 
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(x1, . . . , xK , y1, . . . , yM) follows N (0,
(

Q R
RT T

)
). Likewise, the difference equations of the 

second layers’ order parameters Dij and Ein are obtained by the second equation of (1) as

∆Dij = (wi +∆wi) · (wj +∆wj)− wi · wj

= wi ·∆wj + wj ·∆wi +∆wi ·∆wj

=
η

N




M∑
p=1

Eipg(xj)g(yp)−
K∑

p=1

Dipg(xj)g(xp)

+
M∑

p=1

Ejpg(xi)g(yp)−
K∑

p=1

Djpg(xi)g(xp)




+
η2

N2

[
K,K∑
p,q

Dpqg(xi)g(xj)g(xp)g(xq) +

M,M∑
p,q

Fpqg(xi)g(xj)g(yp)g(yq)

−2
K,M∑
p,q

Epqg(xi)g(xj)g(xp)g(yq)

]
,

∆Ein = (wi +∆wi) · vn − wi · vn

= ∆wi · vn

=
η

N




M∑
p=1

Fpng(xi)g(yp)−
K∑

p=1

Epng(xi)g(xp)


 .

 

(5)

Again, the right hand sides are O(N−1), therefore these difference equations can be rewritten to 
differential versions with N → ∞, by taking the expectation over all input vectors ξ:

dDij

dα̃
= η




M∑
p=1

EipI2(xj, yp)−
K∑

p=1

DipI2(xj, xp)

+
M∑

p=1

EjpI2(xi, yp)−
K∑

p=1

DjpI2(xi, xp)


 ,

dEin

dα̃
= η




M∑
p=1

FpnI2(xi, yp)−
K∑

p=1

EpnI2(xi, xp)




 (6)

where I2(z1, z2) := 〈g(z1)g(z2)〉. (7)

These differential equations govern the macroscopic dynamics. Note that the generalization 
loss εg, the expectation of loss value ε(ξ) = 1

2‖s − t‖2 over all input vectors ξ, is represented 
as

εg = 〈1
2
‖s − t‖2〉

=
1
2

[
M,M∑
p,q

FpqI2(yp, yq) +

K,K∑
p,q

DpqI2(xp, xq)− 2
K,M∑
p,q

EpqI2(xp, yq)

]
.

 

(8)

Y Yoshida et alJ. Phys. A: Math. Theor. 52 (2019) 184002
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Expectation terms I2, I3 and I4 can be analytically determined for some activation functions 
g, including sigmoid-like g(x) = erf(x/

√
2) [4], and g(x) = ReLU(x) =: max{0, x} which is 

commonly used in deep learning [22, 23].

4. Singular regions and plateaus

In this section we review the concept of singular regions as the cause of the plateau phenom-
enon [14].

In general, the input–output relationship (i.e. mapping) of a neural network is determined 
by the parameter values (i.e. connection weights) of the network. However, this correspond-
ence is not one-to-one; in other words, there could be multiple settings of parameter values 
that result in one specific model (i.e. input–output mapping). For example, consider two-layer 
networks that have two hidden units (i.e. K  =  2) and one output unit (i.e. O  =  1) as

s = w1g(J1 · ξ) + w2g(J2 · ξ) (9)

where the parameter is (J1, J2, w1, w2). Then, all of the parameter settings in the parameter 
regions

R1(J∗, w∗) := {J1 = J2 = J∗ and w1 + w2 = w∗ | (J1, J2, w1, w2)},
R2(J∗, w∗) := {(J1 = J∗ and w1 = w∗ and w2 = 0)

or (J2 = J∗ and w1 = 0 and w2 = w∗) | (J1, J2, w1, w2)}
 

(10)

correspond to the same model (i.e. input–output mapping):

s = w∗g(J∗ · ξ). (11)

These parameter regions Ri are called the singular region.
The model (11) can be regarded as a K  =  1 model, parameterized by J∗ and w*. Now sup-

pose that

∂εg

∂w∗ = 0 and
∂εg

∂J∗ = 0; (12)

note that this occurs when the K  =  1 model (11) gives a local minima of the generalization 
loss εg in the K  =  1 parameter space. Then, one can show that the gradient of the generaliza-
tion loss is also zero throughout the singular regions R1 and R2 in the original K  =  2 param-
eter space; that is, ∂εg/∂wi = 0 and ∂εg/∂Ji = 0 if (J1, J2, w1, w2) ∈ R1 ∪R2, provided that 
(12) holds. Moreover, the singular region R1 has the following properties [24]:

 •  The region R1 is partially stable. When the parameter value is in the stable part of R1, it 
undergoes a long period of random walk, by fluctuations due to the random sampling of 
ξ. Once the parameter value has reached the unstable part of the region, it starts moving 
away from the region.

 •  The region R1 is a Milnor-like attractor [19] in the sense that it has a positive measure 
of basin of attraction. This means that a randomly chosen initial parameter value will get 
trapped in the region with nonzero probability.

From these points, the singular region is completely different from a saddle point. When 
trapped in the singular region, the learning process inevitably slows down. That is why the 
singular region is considered to be the cause of plateaus.

However, the concept of problematic plateaus described above may not be true when a 
network has multiple outputs (O  >  1); the loss gradient does not necessarily vanish at the 
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singular region, and the network might not be attracted to the singular region [21]. Thus, we 
analyzed the learning dynamics of networks that have multiple output units and examined 
whether or not the networks were trapped in the singular region and plateaus during learning.

5. Numerical results

We discuss the dynamics of learning in a two-layer perceptron by numerically solving the 
differential equations of the order parameters (3) and (6). For simplicity, we focus on the case 
with K  =  M  =  2 units in the hidden layers and O  =  2 units in the output layers. In the numer-
ical experiments described below, we initialize the weights of the first layers of the student and 
teacher networks with (Ji)j, (Bi)j ∼ N (0, 1/N) (i.i.d.). This initialization makes the initial 
values of the first layers’ order parameters

Q =

(
1 0
0 1

)
, R =

(
0 0
0 0

)
, T =

(
1 0
0 1

)
 (13)

on average. When N is finite, each component of the matrix Q, R and T has O(N−1) noise; it 
vanishes as N → ∞. It is critical how we initialize the weights of the second layers of the 
student and teacher networks, vi and wi. For example, consider the case

w1 = w1c, w2 = w2c; v1 = v1c, v2 = v2c (14)

where c is an arbitrary two-dimensional constant vector whose norm is 1. In this setting, the 
outputs of the teacher and student networks, s, t ∈ R2, are confined in the one-dimensional 
subspace along c. This makes the learning process equivalent to one with one output unit. In 
fact, when (14) holds,

t =

[
M∑

n=1

vng(Bn · ξ)

]
c = tc, s =

[
K∑

i=1

wig(Ji · ξ)

]
c = sc (15)

where we defined scalar t and s as 
∑M

n=1 vng(Bn · ξ) and 
∑K

i=1 wig(Ji · ξ), respectively. And 
from the update rule (1),

∆Ji =
η

N
[(t − s) · wi]g′(xi)ξ =

η

N
wi(t − s)g′(xi)ξ,

∆wi =
η

N
g(xi)(t − s) =

η

N
g(xi)(t − s)c

that is, ∆wi =
η

N
g(xi)(t − s)

 

(16)

which is simply the update rule when both networks have only one output unit.
Thus, how the student network with two-dimensional output learns the teacher network 

with two-dimensional output largely depends on the initial condition of the weight matrices of 
their second layers. To see this, we consider an initial condition parameterized by θ:

w1 = c, w2 = cθ; v1 = c, v2 = cθ (17)

where c is again an arbitrary two-dimensional constant vector whose norm is 1, and cθ  is a 
constant vector which is obtained by rotating c by θ. We refer to the parameter θ as non-degen-
eracy because it regulates the degeneracy of the weight matrices of the second layers of both 
networks. We can test various situations by changing θ continuously; θ = 0 makes both matri-
ces degenerate, and θ = π/2 makes both matrices orthogonal. The former situation, θ = 0, is 

Y Yoshida et alJ. Phys. A: Math. Theor. 52 (2019) 184002



9

equivalent to the one-dimensional output situation, as previously described. The initial condi-
tion of the second layers’ order parameters Dij, Ein, Fnm, corresponding to (17), is given by

D = E = F =

(
1 cos θ

cos θ 1

)
. (18)

Putting these initial conditions together, we examined the learning dynamics in two ways: by 
simulating the original microscopic system with finite N, i.e. conducting stochastic gradient 
descent in accordance with the update rule (1), and by solving the differential equations (3) 
and (6) of the order parameters numerically under initial conditions that match the initial 
weights used when simulating the original microscopic system. The black lines in figure 2 
show the time courses of the generalization loss εg in several typical situations: (a) θ = 0, 
(b) θ = π/8, (c) θ = π/4, and (d) θ = π/2. To evaluate quantitatively how near the student 
network is to the singular region R1 and R2, we calculated two measures: the overlap of vec-

tors J1 and J2, i.e. m(1)
12 := |J1 · J2|/‖J1‖‖J2‖ = |Q12|/

√
Q11Q22 , and the minimum norm of 

vectors w1 and w2, i.e. l(2)
min := min{‖w1‖, ‖w2‖} = min{

√
D11,

√
D22}. Note that m(1)

12  mea-
sures proximity to the region R1, and l(2)

min indicates the distance to the region R2. Figure 2 
also shows the time evolutions of these measures with blue and red lines, respectively. Results 
of microscopic simulations are also shown by dots. In every plot in figure 2, the solid lines 
and dots agree well, meaning that the macroscopic system of order parameters appropriately 
captures the microscopic system of connection weights. In figure 2(a), the generalization loss 

εg stops during the first  ∼1800 steps, along with high values of m(1)
12 , meaning that falling into 

the singular region R1 is derived from the network’s symmetry. In figure 2(b), the plateau 

shortens. An increase in m(1)
12  is still observed, although its peak is lower than figure 2(a). In 

figures 2(c) and (d), there is no apparent plateau. In particular, the overlap m(1)
12  is always 0 in 

figure 2(d), signifying that the student network does not approach the singular region R1 at all 
during learning. Note also that no approach to the singular region R2, indicated by high values 

of l(2)
min, is observed in any plot in figure 2 at any time. Figure 3 shows the times where the 

plateau begins and ends, depending on θ, calculated by the numerical solutions of the order 
parameters. Here we define plateaus as ‘where the logarithm of generalization loss decreases 
at a rate slower than a half of the typical rate’, where the typical rate is measured as the rate 
when εg < 10−10 is achieved. We found that the plateau is observed if and only if roughly 
|θ| < 0.1π holds. Note that our quantitative definition of plateaus above contains some arbi-
trariness, but it does not affect the main point; the plateau phenomenon get alleviated as |θ| 
increases, as is evident from figure 2.

6. Cases for orthogonal second layers

Up to this point, we considered cases in which the second layers of two networks have identi-
cal weights, as (17). However, this is not practical because it means that the student knows 
about the teacher in advance. Thus, we consider a slightly different situation:

w1 = c, w2 = cπ/2; v1 = cφ, v2 = cφ+π/2, (19)

wherein the student matrix and teacher matrix are not identical but are both orthogonal. The 
initial conditions of the order parameters Dij, Ein, Fnm, corresponding to (19), are given by

Y Yoshida et alJ. Phys. A: Math. Theor. 52 (2019) 184002
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D =

(
1 0
0 1

)
, E =

(
cosφ − sinφ
sinφ cosφ

)
, F =

(
1 0
0 1

)
. (20)

Under these initial conditions, we found that the orthogonality w1 ⊥ w2 remains true during 
learning at any time, as formally stated in the proposition below. In other words, we prove that 
the student network stays opposite the singular region R1.

Proposition. Assume K  =  M  =  2 and O � 2, and consider the situation in which N → ∞. 
Assume that the activation g is an odd function and that the right sides of the differential 
equations are Lipschitz continuous in the vicinity of the solution trajectory (Q, R, D, E) during 
learning. If both the teacher and student network have a pair of orthogonal column vectors in 
its second layer’s weight matrix, that is, v1 ⊥ v2 and w1 ⊥ w2 hold at the initial state, then the 
orthogonality w1 ⊥ w2 holds at any time during learning. �

We give the proof of the proposition in the appendix.
The numerical solution of the differential equations  of the order parameters, under the 

initial conditions described above, is shown in figure 4. These solutions tell us that there is no 
approach to the singular regions R1 and R2 and that no plateau is seen, except for the case of 

(a) (b)

(c) (d)

Figure 2. Dependence of time course of generalization loss εg (black solid line) 

on non-degeneracy parameter θ. Time course of student’s first layer’s overlap 

m(1)
12 := |Q12|/

√
Q11Q22  (blue dashed line) and minimum norm of student’s second 

norm l(2)
min := min{

√
D11,

√
D22} (red dot-dashed line) also shown. These lines indicate 

how student network is close to singular regions R1 and R2, respectively. (a) θ = 0, (b) 

θ = π/8, (c) θ = π/4, (d) θ = π/2. Simulation results of microscopic systems shown by 

dots (diamonds, circles, and triangles for εg, m
(1)
12  and l(2)

min, respectively). Generalization 

loss of simulation results approximated by averaged sample loss (ε) over 100 contiguous 
steps. Simulation parameters: N  =  1000, η = 0.1 (η/N = 0.0001). Activation function: 
g(x) = erf(x/

√
2).
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Figure 3. Dependence of when the plateau starts and ends and when generalization 
loss converges on non-degeneracy parameter θ. Blue solid line: start of the plateau, 
green dashed line: end of the plateau, red dot-dashed line: achieving εg < 10−10. See 
main text for definition of the plateau in this figure. Parameters: η = 0.02. Activation: 
g(x) = erf(x/

√
2).

(a) (b)

(c) (d)

Figure 4. Dependence of time course of generalization loss εg (black solid line) 

on rotation parameter φ. m(1)
12  (blue dashed line) and l(2)

min (red dot-dashed line) also 

shown; see caption of figure 2 for a detailed explanation. (a) φ = 0, (b) φ = π/8, (c) 

φ = 3π/16, (d) φ = π/4. Simulation results of microscopic systems shown by dots 

(diamonds, circles, and triangles for εg, m
(1)
12  and l(2)

min, respectively). Generalization loss 
of simulation results approximated by averaged sample loss (ε) over 100 contiguous 
steps. Simulation parameters: N  =  1000, η = 0.1 (η/N = 0.0001). Activation: 
g(x) = erf(x/

√
2).
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φ = π/4 (figure 4(d)); this plateau is not due to the singular regions but rather to being stuck 
at a saddle point where the weight vectors of the second layer of the student network are per-
turbed by the stochastic gradient and can easily escape.

7. Simulation results for more practical cases

By using order parameters we analyzed theoretically the case with two hidden units. However, 
networks with a greater number of hidden units are usually used in practice. Also, the setting 
above assumes an infinite number of samples which is not available in reality. Furthermore, 
various optimization techniques developed in recent years such as mini-batch, dropout and 
gradient descent with adaptive learning rate are widely used. In these practical cases the learn-
ing dynamics might not be tractable. We examined such cases by numerical simulations of 
microscopic systems.

(a) (b)

(c) (d)

Figure 5. Simulation results of time course of training loss (black line) and test loss 
(gray line), depending on the number of output units and choice of optimizers. Time 

course of student’s first layer’s maximum overlap m(1)
max := maxi<j |Qij|/

√
QiiQjj  (blue 

line) also shown. This maximum overlap indicates how the student network is close to 
the singular region. (a) and (b) Stochastic gradient descent (learning rate: 0.01), (c) and 
(d) Adam optimizer. (a) and (c) Networks with one output unit, (b) and (d) networks 
with ten output units. Mini-batch size: 1000. Activation function: g(x) = tanh(x).
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In our experiment, a student network and a teacher network both of which have 100 input 
units and ten hidden units are used. First we generated 4000 training samples and 1000 test 
samples by using the teacher network whose weights are randomly chosen. We then trained 
the student network whose weights are randomly initialized using training samples only, and 
computed the training loss and the test loss after every epoch.

In figure 5, the dynamics of the learning in the experiment is shown. (Although this dynam-
ics depends on the initial weights, the qualitative shapes of the plateaus do not; see supple-
mental material.) The output dimension is 1 in figures 5(a) and (c), and 10 in figures 5(b) and 
(d). These results apparently indicate that the plateau is alleviated by multiple output units.

We also examined the cases with an Adam optimizer, bias terms and dropout regulariza-
tion. All these results are consistent with the idea that multiple outputs mitigate the plateaus 
due to the singular regions (see the supplemental material).

8. Conclusion

We analyzed the learning dynamics of two-layer networks that have multiple output units 
by means of statistical mechanical formulation. By defining order parameters, deriving the 
differ ential equations they follow, and solving said equations, we clarified experimentally and 
theoretically that multiple-output networks are less likely to be trapped in plateaus because of 
singularity than single-output networks are.

Through this paper, we suggest reconsidering the established idea that singular structures 
cause plateaus and they interrupt learning. However, more general cases, such as cases with 
deeper neural networks, have yet to be researched.
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Appendix. Proof of continued orthogonality during learning

This section gives the proof of the proposition in the main text:

Proposition. Assume K  =  M  =  2 and O � 2, and consider the situation in which N → ∞. 
Assume that the activation g is an odd function and that the right sides of the differential 
equations are Lipschitz continuous in the vicinity of the solution trajectory (Q, R, D, E) during 
learning. If both the teacher and student network have a pair of orthogonal column vectors in 
its second layer’s weight matrix, that is, v1 ⊥ v2 and w1 ⊥ w2 hold at the initial state, then the 
orthogonality w1 ⊥ w2 holds at any time during learning. �

Proof. We prove the following claim: suppose K  =  M  =  2 and O � 2, and the activation g 
is an odd function, then the differential equations (3) and (6) imply that

if Q ∝ I, R + RT ∝ I, D ∝ I, E + ET ∝ I, T ∝ I, F ∝ I (∗)
then Q̇ ∝ I, Ṙ + ṘT ∝ I, Ḋ ∝ I, Ė + ĖT ∝ I,
 

(A.1)

where I denotes the 2 × 2 identity matrix, and X ∝ I  means that there exists c ∈ R such that 
X  =  cI.
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Proving this claim (A.1) is sufficient for the proof of the proposition. Suppose that 
Θ̂(α) = (Q̂(α), R̂(α), D̂(α), Ê(α)) is one solution of the differential equation. What we have 
to show is that the solution always lies in the subspace

S := {(Q, R, D, E) | Q ∝ I, R + RT ∝ I, D ∝ I and E + ET ∝ I}. (A.2)

If we denote by PΘ̂ the vector from Θ̂ to the foot of its perpendicular to S (note that this map-
ping is linear), what we have to show is

f(α) := PΘ̂(α) = 0 (A.3)

for all time α. We have

f(0) = 0 (A.4)

by substituting the initial condition (13) and (20), and we have

f(α) = 0 =⇒ P
d

dα
Θ̂(α) = 0 (from claim (A.1))

=⇒ df
dα

(α) = P
d

dα
Θ̂(α) = 0

 
(A.5)

for given time α. These imply that f(α) ≡ 0 is one solution of the differential equation for f . 
Lipschitz continuity ensures that the uniqueness of the solution of the differential equation, 
therefore we have f(α) ≡ 0 for all α.

To prove the claim (A.1), we first show the following lemma.  �

Lemma A.1. If the condition (*) in the claim (A.1) holds, the following relations hold:

I2(ai1 , bi2) = (−1)δ(i1=1)δ(i2=1)I2(aj1 , bj2),

I3(ai1 , bi2 , ci3) = (−1)δ(i2=1)δ(i3=1)I3(aj1 , bj2 , cj3),

I4(ai1 , bi2 , ci3 , di4) = (−1)δ(i3=1)δ(i4=1)I4(aj1 , bj2 , cj3 , dj4),

 (A.6)

where each of a, b, c and d is either x or y , and {ie, je} = {1, 2} for e = 1, 2, 3, 4.

Proof of lemma 1. If the condition (*) holds, the covariance matrix of (x1, x2, y1, y2) is 
given by

Σ =




Q11 0 R11 R12

0 Q11 −R12 R11

R11 −R12 T11 0
R12 R11 0 T11


 . (A.7)

This matrix Σ has the following property:

N (z1, z2, z3, z4 | 0,Σ) = N (−z2, z1,−z4, z3 | 0,Σ). (A.8)
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Therefore, for arbitrary functions f ,

〈 f (x1, x2, y1, y2)〉 =
∫

f (x1, x2, y1, y2)N (x1, x2, y1, y2 | 0,Σ) dx1dx2dy1dy2

=

∫
f (−x2, x1,−y2, y1)N (−x2, x1,−y2, y1 | 0,Σ) dx1dx2dy1dy2

=

∫
f (−x2, x1,−y2, y1)N (x1, x2, y1, y2 | 0,Σ) dx1dx2dy1dy2

= 〈 f (−x2, x1,−y2, y1)〉,
 

(A.9)

and since g is an odd function,

I2(ai1 , bi2) = 〈g(ai1)g(bi2)〉
= 〈g((−1)δ(i1=1)aj1)g((−1)δ(i2=1)bj2)〉
= (−1)δ(i1=1)δ(i2=1)〈g(aj1)g(bj2)〉
= (−1)δ(i1=1)δ(i2=1)I2(aj1 , bj2),

I3(ai1 , bi2 , ci3) = 〈g′(ai1)bi2 g(ci3)〉
= 〈g′((−1)δ(i1=1)ai1)(−1)δ(i2=1)bi2 g((−1)δ(i3=1)ci3)〉
= (−1)δ(i2=1)δ(i3=1)〈g′(aj1)g(bj2)〉
= (−1)δ(i2=1)δ(i3=1)I3(aj1 , bj2 , cj3),

I4(ai1 , bi2 , ci3 , di4) = 〈g′(ai1)g
′(bi2)g(ci3)g(di4)〉

= 〈g′((−1)δ(i1=1)aj1)g
′((−1)δ(i2=1)bj2)

· g((−1)δ(i3=1)cj3)g((−1)δ(i4=1)dj4)〉
= (−1)δ(i3=1)δ(i4=1)〈g′(aj1)g

′(bj2)g(cj3)g(dj4)〉
= (−1)δ(i3=1)δ(i4=1)I4(aj1 , bj2 , cj3 , dj4),

 (A.10)

which is the statement of the lemma. �

Lemma A.2. I4(z1, z2, z3, z4) = I4(z2, z1, z3, z4) = I4(z1, z2, z4, z3).

Proof of lemma 2. The proof is clear from the definition of I4. �

Proof of proposition. Since the matrices Q, T, D, and F are symmetric, what we have to 
show is

Q̇11 = Q̇22, Q̇12 = 0,

Ṙ11 = Ṙ22, Ṙ12 + Ṙ21 = 0,

Ḋ11 = Ḋ22, Ḋ12 = 0,

Ė11 = Ė22, Ė12 + Ė21 = 0.

 
(A.11)
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First, for Q̇, we have

NQ̇11 = 2η [E11I3(x1, x1, y1) + E12I3(x1, x1, y2)− D11I3(x1, x1, x1)]

+ η2 [D2
11I4(x1, x1, x1, x1) + E2

11I4(x1, x1, y1, y1)

+E11E12[I4(x1, x1, y1, y2) + I4(x2, x2, y2, y1)] + E2
12I4(x1, x1, y2, y2)

−D11E11[I4(x1, x1, x1, y1) + I4(x1, x1, y1, x1)]

−D11E12[I4(x1, x1, x1, y2) + I4(x1, x1, y2, x1)]] ,

NQ̇22 = 2η [E11I3(x2, x2, y2)− E12I3(x2, x2, y1)− D11I3(x2, x2, x2)]

+ η2 [D2
11I4(x2, x2, x2, x2) + E2

11I4(x2, x2, y2, y2)

−E11E12[I4(x2, x2, y2, y1) + I4(x1, x1, y1, y2)] + E2
12I4(x2, x2, y1, y1)

−D11E11[I4(x2, x2, x2, y2) + I4(x2, x2, y2, x2)]

+D11E12[I4(x2, x2, x2, y1) + I4(x2, x2, y1, x2)]] ,

NQ̇12 = η [E11[I3(x1, x2, y1) + I3(x2, x1, y2)] + E12[I3(x1, x2, y2)− I3(x2, x1, y1)]

−D11[I3(x1, x2, x1) + I3(x2, x1, x2)]]

+ η2 [D2
11I4(x1, x2, x1, x2) + E2

11I4(x1, x2, y1, y2)

+E11E12[−I4(x1, x2, y1, y1) + I4(x1, x2, y2, y2)]− E2
12I4(x1, x2, y2, y1)

−D11E11[I4(x1, x2, x1, y2) + I4(x1, x2, y1, x2)]

−D11E12[−I4(x1, x2, x1, y1) + I4(x1, x2, y2, x2)]]
 

(A.12)

from the equation (3) and the assumption of the proposition. Applying the lemmas to each I-
term, we can confirm Q̇11 = Q̇22 and Q̇12 = 0.

With respect to R, we find

NṘ11 = η [E11I3(x1, y1, y1) + E12I3(x1, y1, y2)− D11I3(x1, y1, x1)] ,

NṘ22 = η [E11I3(x2, y2, y2)− E12I3(x2, y2, y1)− D11I3(x2, y2, x2)] ,

NṘ12 = η [E11I3(x1, y2, y1) + E12I3(x1, y2, y2)− D11I3(x1, y2, x1)] ,

NṘ21 = η [E11I3(x2, y1, y2)− E12I3(x2, y1, y1)− D11I3(x2, y1, x2)] ,

 
(A.13)

and by applying the lemmas to the I-terms, Ṙ11 = Ṙ22 and Ṙ12 + Ṙ21 = 0 are implied.
In the same way, we have

NḊ11 = 2η [E11I2(x1, y1) + E12I2(x1, y2)− D11I2(x1, x1)] ,

NḊ22 = 2η [E11I2(x2, y2)− E12I2(x2, y1)− D11I2(x2, x2)] ,

NḊ12 = η[E11[I2(x2, y1) + I2(x1, y2)] + E12[I2(x2, y2)− I2(x1, y1)]

− D11[I2(x2, x1) + I2(x1, x2)]],

 (A.14)

and

NĖ11 = η [F11I2(x1, y1)− E11I2(x1, x1) + E12I2(x1, x2)] ,

NĖ22 = η [F11I2(x2, y2)− E11I2(x2, x2)− E12I2(x2, x1)] ,

NĖ12 = η [F11I2(x1, y2)− E11I2(x1, x2)− E12I2(x1, x1)] ,

NĖ21 = η [F11I2(x2, y1)− E11I2(x2, x1) + E12I2(x2, x2)] ,

 
(A.15)

and by using the lemmas we can confirm Ḋ11 = Ḋ22, Ḋ12 = 0, Ė11 = Ė22, and Ė12 + Ė21 = 0, 
the statements of the proposition. �
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