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Abstract

This review presents the effective temperature notion as defined from the
deviations from the equilibrium fluctuation—dissipation theorem in out-of-
equilibrium systems with slow dynamics. The thermodynamic meaning of
this quantity is discussed in detail. Analytic, numeric and experimental
measurements are surveyed. Open issues are mentioned.

PACS numbers: 05.20.—y, 05.40.—a, 05.70.—a

1. Introduction

One of the core ideas of statistical mechanics is that equilibrium states can be accurately
described in terms of a small number of thermodynamic variables, such as temperature
and pressure. At present there is no equivalent framework for generic out-of-equilibrium
macroscopic systems, and one is forced to solve their dynamics on a case-by-case basis.

Out-of-equilibrium macroscopic systems are of many different kinds. An interesting class
is the one in which the relaxation is slow—with observables decaying, say, as power laws
instead of exponentially. Typical instances are coarsening phenomena and generic glasses,
realized as molecular, polymeric or magnetic materials, among others. Another intriguing
group is the one of non-equilibrium steady states in the weak drive limit. Examples are gently
vibrated granular matter and weakly sheared super-cooled liquids.

The quest for an approximate thermodynamic description of such systems or, to start with,
the identification of effective parameters acting as the equilibrium ones, has a long history that
we will not review in detail here. In contrast, we will focus on the development of the effective
temperature notion that has proven to be a successful concept at least within certain limits that
we will discuss.

About 20 years ago, in the context of weak turbulence, Hohenberg and Shraiman [1]
proposed to define an effective temperature through the departure from the fluctuation—
dissipation theorem (FDT). However, neither a detailed analysis of this quantity nor the
conditions under which such a notion could have a thermodynamic meaning were given
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in this reference. Later, Edwards mentioned the same possibility in the context of granular
matter [2]. Again, the proposal did not catch the attention of the community. In none of the
ensuing studies was the importance of distinguishing different dynamic regimes sufficiently
stressed and the few numerical checks performed at the time gave, consequently, confusing
results. More recently, similar ideas appeared in the glassy literature [3, 4]. In this field, the
possibility of solving exactly a number of schematic models [5, 6] put the definition of the
effective temperature, Tgpr, on a much firmer ground. The solution to these models’ dynamics
established the importance of reaching an asymptotic limit with slow dynamics and attributing
a value of the effective temperature to each distinct dynamic regime. The solutions demonstrate
the relation with the phase space volume visited dynamically [7], they illustrate in many forms
the relevance of Tgpr to heat transfer and equilibration, and they set some limits to the extent
of applicability of the concept. These results opened the way to studies in a wealth of more
realistic cases. Beyond pure phenomenological descriptions of observed phenomena used
in the past that are of limited predictive power, see e.g. [8—10], the Tggr definition based on
fluctuation—dissipation relations (FDRs) is not ambiguous and allows for direct measurements.

In this review, we sift through the effective temperature notion trying to transmit
the full allure of the idea. The literature on fluctuation—dissipation violations is immense
and several reviews have already been published [11-14]. We refer to these reports when
appropriate. The rest of this review is structured in five sections. The next one introduces the
definition of a number of observables and the effective temperature. It follows a discussion
of the insight gained from the solution to mean-field glassy models in section 3. Section 4
presents the interpretation of the effective temperature definition as a bona fide temperature.
Section 5 is devoted to a (non-exhaustive) description of numeric and experimental
measurements performed so far with special emphasis on recent studies. Finally, in
section 6, we present the conclusions. The reader who wants to get a quick summary of
the outcome of almost 20 years of research on FDRs and effective temperatures with special
emphasis on open questions can jump to this section.

2. Definitions

2.1. Canonical setting

In this review, we focus on the dynamics of a classical or quantum system coupled to a classical
or quantum environment, typically in equilibrium at temperature T . In this sense, the setting is
canonical. The systems relax by transferring energy to the environment. Atypical dissipation,
as realized in granular matter, is referred to in section 4.9.2. Reference to some studies in
isolated systems (microcanonical setting) is made in the quantum context, see section 5.13.
All along this review kg = 1.

2.2. Time and length scales

In equilibrium studies, one rarely specifies the initial time or implicitly takes it to —oo. Out
of equilibrium, a reference moment has to be defined. Time zero is usually taken to be the
instant when the sample is prepared in some special conditions. In this review, we focus on
infinitely rapid quenches and we define + = 0 as the moment when the working temperature
is instantaneously reached.

We deal mainly with macroscopic systems in which the number of degrees of freedom is
assumed to be the most diverging quantity, N — oo. In most of the theoretical and numerical
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calculations discussed in this review, time is finite with respect to N. Some reference to time
that scales with the size of the system will be made.

2.3. Correlations and responses

The out-of-equilibrium dynamics are explored by measuring observables that depend on one
or several times after the preparation of the sample. Observables could be of two types: those
describing free evolution and those associated with responses to external perturbations. A
multi-time correlation is the average over histories or initial conditions of several observables
O that are functions of the system’s degrees of freedom, evaluated at different times:

C0,0..0,(t1, 12, ..., 1;) = (01(11)02(t2) . .. On(t0)) - )

O;(t) is any observable with, without loss of generality, zero mean (otherwise one simply
substitutes O; — O; — (0;)).

In systems with an energy function, the impulse response functions are the averaged
reaction of an observable to a perturbation that modifies the potential energy asV — V —hO,
at a given instant #,. One such response, at linear order in the perturbation, reads

8(01(2‘1)...0,171(["71))
Ro,0,..0,t1,t2, ..., ty) = .
0,0,...0,\!1, 12 (Sl’l(l,,) o

Others in which the perturbation(s) is (are) applied at intermediate time(s) can also be
defined [15]. In dynamical systems in which the time evolution of the degrees of freedom
is not related to the gradient of an energy function, one can similarly compute the response
to an instantaneous kick that translates the degrees of freedom at a chosen instant as
x(tp) = x(ty) + 8x(t,) [16]:

2

8(0 e Op_q (ty—
ROlOz...OU(Il’ t2v e 7111) = ( l(tl) (S_X([ ) l(t 1)) . (3)

Causality implies that both R’s vanish whent, > ¢; with j=1,...,n— 1.
In cases with quantum fluctuations, ones needs to distinguish the order in which operators
appear within the averages. The symmetric and anti-symmetric two-time correlations are

Ci0,,0,1. (11, 12) = (On1(t1)On2(t2)) £ (Onp2(2)Op (1)) 4

with (Op;(t;))On;(t;)) = Tr[Oni(t;)Onj(t;)00l/Troo, 0o the initial density operator, and
Oy (t;) in the Heisenberg representation. The linear response to H — H — hO, att, is
Ro,0,(t1, 1) = 8Om@)) Co,,0,1 (11, 12) (11 — 12) &)
Sh(ty) |-
and the last identity is the Kubo formula valid in and out of equilibrium at linear order in 4.
The search for a link between dissipation and fluctuations started with Einstein’s derivation
of a relation between the mobility and diffusion coefficient of a Brownian particle. The
former is induced by an external force, and it is a response, while the latter is due to the
spontaneous mean-square displacement of the particle’s position, thus a correlation. Onsager’s
regression hypothesis and Kubo’s linear response theory elaborated upon the idea of an existing
relation between the two types of fluctuations near equilibrium. In the rest of this section, we
present some relations between induced and spontaneous fluctuations that hold in and out of
equilibrium.
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2.4. Fluctuation—dissipation relations

Several FDRs between responses and correlations computed over unperturbed trajectories
have been derived in recent years. We mention just two of these FDRs that hold in and out of
equilibrium.

In generic Langevin dynamics with white [17] or coloured [18] equilibrium noise, and
Markov processes described by a master equation with detailed balance [13], the linear
response is related to a correlation function of the unperturbed system which, however, is
more complex than the overlap between the two observables involved in the response. A
simple example is the 1d white-noise Langevin equation

mi(t) + yx(t) = Fx(0)] +§ () (6)
that using the fact that 2y TR, (¢, ') = (x(t)&(¢')) implies [17]
13C(¢,)  13C.(t,1) 1

TR (1) = 53— Ty 5 HOF ()] = xC)FLx@)]). )

F[x] is any deterministic force—not necessarily conservative. The generalization to other
observables or field theories is straightforward. The extension to the non-Markovian case is
more easily performed in the path integral formalism, by exploiting the transformation of the
generating functional under time reversal [18]. This formulation allows one to prove that this
relation holds for Hamiltonian dynamics as well.

In the case of an Ising variable, s = %1, the equivalent relation reads [13]

10C,(t,7) 1
TR,(t,1') = leen S s@ D st — §"Twls(t') — "), (®)

2 ot

with w the transition probability with no perturbation applied. This expression can be recast in
the same form as equation (7) since (s) = (}_,, (s—s”)w(s — s”)) and the second factor in the
last term plays the role of a deterministic force. Extensions to multi-valued discrete variables
are simple. This type of FDR can also be generalized to intrinsically out-of-equilibrium systems
with transition rates that do not obey detailed balance.

Many relations of this kind have been derived in the literature. A number of authors
re-expressed them as a sum of two contributions: the ones that reduce to the FDT under
equilibrium conditions and the anomalous ones that allow for many intriguing interpretations
(dissipated energy flux, etc). We refer the reader to a recent review and a few articles that
summarize these ideas [19] that, although certainly very interesting, are not the main focus of
this review.

An FDR for dynamical systems characterized by a state variable x that reaches an invariant
stationary measure, say p(x), was proposed by Vulpiani et al [16]. Using the response to an
impulse perturbation of type (3), one finds

51 !
R.(t,1) = —(Mﬂ%};)]) ot —1). 9)

Once again the generalization to a multi-variable system or a field theory and to other
observables is immediate. Another relation of this kind was recently proposed by several
authors [20]:

mfhh—([t’f)(t)])h:o 0G—1). (10)
The average is computed at zero field. In order to go beyond this formal expression, one needs
to know the measure p;,. Different assumptions (e.g. Gaussian form [16], uniform [21]) lead
to different relations.

All these FDRs become the FDT under equilibrium conditions, as explained in
section 2.5.

R.(t,1") = —(x(t)
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2.5. Linear FDT

The FDT states that the decay of spontaneous fluctuations cannot be distinguished from the one
of forced fluctuations. Its classical and quantum formulations are explained in the following
sections.

2.5.1. Classical. The classical linear and self-FDT expresses the equilibrium thermal
fluctuations of an observable O in terms of the available thermal energy, T, and the linear
response of O to a vanishingly small applied field linearly coupled to itself. FDT is used, for
example, to infer mechanical properties of soft matter from the fluctuations in light scattering.
Importantly enough, there is no condition on the scale at which the observables are defined, so
it could range from the macroscopic to the microscopic. Indeed, if one monitors the dynamics
of a classical system, either Newtonian or stochastic with detailed balance, and assumes that
equilibrium with the bath has been reached, it follows easily that

’ 1 8 ’ !
Ro(t,t)zfgco(t,t)e(t—t). (an

(This equation can be inferred from equations (8) and (9). In equilibrium, the last term on
the right-hand side of equation (7) vanishes due to reciprocity and the two first ones are
equal. If p takes the canonical form, equation (11) follows immediately from equation (9). An
elegant proof for Langevin processes with generic multiplicative and coloured Gaussian noise
is detailed in [18].) The integral of the response function over a time interval running from z,,
tot,

Xo(t, ty) = f dt'Ro(t,1') , (12)

w

is a dc susceptibility that is easier to measure experimentally. The FDT implies a linear relation
between o and Co:

1
Xo(t:tw) = = [Cot.1) = Colt, tw)] - 13)

A parametric plot of o /Co(t, t) against Cp /Co (¢, t), constructed at fixed #,, and for increasing
t—ty, 1s a straight line with slope —1/T joining (1, 0) and (0, xgq = 1/7T'). The same result is
obtained by keeping ¢ fixed and letting #,, vary from O to 7. A departure from the straight line
(13) for any observable O signals a divergence from equilibrium.

A straightforward generalization is to the case in which the monitored observable, A, is
not the same that couples to the perturbation B:

/ 1 8 / /
Rap(t.1) = o Cap(t,1) 0 = 1), (14)

In the body of this review and without loss of generality, we focus on the self-correlation
and response, we take Co (¢, ¢) = 1, and we erase the sub-index O until discussing observable
dependences in section 5. Equation (13) is then more compactly written as x (C) = (1-C)/T.

2.5.2. Quantum. When quantum fluctuations are important, one needs to take into account
the statistics of the observables at hand. Let ¢ and ¢' be (bosonic or fermionic) annihilation
and creation operators, respectively. In the Schwinger—Keldysh closed time-contour formalism
apt to deal with real-time Green functions, these are defined as

IhG™ (2,1 = (¢ (B (1)) = TX[Te du (. @) ¢ (1" b) o0, B)],  (15)

where a, b = +. ¢ is either the complex conjugate (for bosons) or the Grassmann conjugate (for
fermions) of ¢. ¢y (¢, a) denotes the Heisenberg representation of the operator ¢ at time ¢ on
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the a-branch of the Keldysh contour. o (0, &) = 0(0) is the initial density matrix (normalized
to be of unit trace) and its location on the + or — branch is not important, thanks to the cyclic
property of the trace. In the grand-canonical ensemble, an equilibrium initial density operator
reads 0(0) o exp (—B(H — uN)), where N is the number operator commuting with H (in
non-relativistic quantum mechanics) and w is the chemical potential fixing the average number
of particles. T¢ is the time-ordering operator acting with respect to the relative position of
(t, a) and (¢, b) on the Keldysh contour [22, 23]. A linear transformation of the fields allows
one to define Keldysh, retarded and advanced Green functions:

G, 1) = %[G*‘(n H+G @, )],
GRt, i)Y =[G (t,/) =G T, )10 — 1), (16)
GAt,t) =[G, ) =G 1, )]0F —1),

respectively.
The quantum FDT reads

-
GXw)="h |:tanh <§(h¢o — u))} Im G (w), (17)

where Fourier transforms with respect to 7—" have been taken and ¢ = = in the bosonic and
fermionic case, respectively. One can formally recover the canonical ensemble result by setting
w = 0. In particular, associating G® with R and GX with C in the notation of the previous
classical paragraphs and setting ;. = 0, in the bosonic case one has

i [>d I I

Rt —1) = l/ 49 ioe) tan (P12 c(wy o - 1) (18)
h) s 2

that in the B2 — O limit reduces to the classical expression (14).

2.6. Eulerian and Lagrangian formalisms

A class of over-damped Markov diffusion processes take an equilibrium form—with detailed
balance—in the Lagrangian (co-moving) frame of the mean local velocity. The resulting
stochastic process does not contain information about the non-vanishing probability current of
the original Eulerian (laboratory) frame dynamics. In practice, though, it is difficult to compute
the local velocity and the passage to the co-moving frame is difficult to implement. Still, this
observation allows one to derive a modified FDT in the Eulerian frame that includes the effect
of the mean local velocity v as an additional term [24]:

TRup(t,1') = 0t — )[8,Cap(t, 1) — ([T(£') - VB()IA®))). (19)

In equilibrium, the second term vanishes and the FDT is recovered.

2.7. Fluctuation—dissipation ratio

Consider the following adimensional object:
TR(,t") _
9,C(t, 1)’ X, t)
where we assumed ¢t > ¢'. When equilibrium is reached, Tggr = T. Out of equilibrium, this
ratio can be used to define a, possibly two-time-dependent, effective temperature although the
thermodynamic meaning of this quantity is not ensured a priori. Note the asymmetry between
t and ¢’ in the denominator when the dynamics is not stationary. Alternatively, experiments
are usually performed in the frequency domain in which x (¢, w) = fot dt” et R(t,t — 1)

Xt t) = Tere(t, 1)

, (20)
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and C(t, w) = fot dt €T C(t,t — t) and a time—frequency-dependent effective temperature
is defined as

X @) = X @) .

wReC(w,t) X(t, w)
The time-domain and frequency-domain definitions of Tgpr are not necessarily equivalent. If
this quantity is to have a physical meaning they must coincide under reasonable conditions.
We will come back to this point in section 4.3.
The asymptotic values

X® = lim lim Xz, 7)), TS5 = T/X™ (22)
t'—>o00t—>00

Tere(t, ) = 2D

(or lim,,_, ¢ lim;_, o X (¢, @) in the frequency domain) turn out to be useful in the description
of critical quenches, see section 5.3.

Itis clear that X can be computed under any circumstances but its interpretation as leading
to an effective temperature will not always be straightforward. In the rest of this section, we
will still use the name Tgpr; later in the review, we will discuss when this is justified and when
it is not.

2.8. Beyond linear response

Building upon the study of nonlinear responses in Langevin processes [15], Lippiello et al
presented a unified derivation of out-of-equilibrium FDRs to arbitrary order for discrete (Ising
or g-state) and continuous variables ruled by stochastic Markovian dynamics of quite generic
type—single flip, Kawasaki, Langevin, etc [25]. These relations are conceptually simple
although pretty lengthy to write down. They are derived from a rewriting of the multiple
variations of the evolution operator with respect to the perturbation strength. In short, one
ends up with a sum of an increasing number of terms that are time derivatives of higher order
correlations.

The generic FDRs can also be derived from a fluctuation principle that simply uses
the detailed balance property of the transition probabilities [15, 18, 25]. The proof goes
as follows. One first relates the probability of a path, {¢} = ¢(¢), under the effect of a
perturbation %(¢) and conditioned to the initial value ¢(#;) = ¢; to the probability of the
reversed path, {¢r} = ¢r(t) = ¢(tg), under the reversed perturbation and conditioned to

Or(t) = P(tr) = Pr:
P} dp. ()] e P U5 OO _ pligey: o (hg)] PIH@D=H @] (23)

From the average over all paths weighted with a generic distribution of initial conditions,
P(¢r), the expansion in powers of /(¢) yields all nonlinear FDRs. This route can be followed
for discrete and continuous variables as well.

These proofs do not use any equilibrium assumption and the FDRs hold in full generality
(for ageing systems, in non-equilibrium steady states, etc). In equilibrium, the use of the
Onsager relation and the stationary property allows one to simplify the FDRs considerably.
Still, as soon as the linear regime is left, the nonlinear impulse responses are linked to sums of
several derivatives of correlations. Interestingly enough, beyond linear order the FDRs depend
on the microscopic dynamic rule not only out but also in equilibrium.

The interest in the generalized nonlinear FDRs is at least threefold. First, they allow one to
develop efficient algorithms to compute linear and nonlinear responses without applying any
perturbation. Second, they can be used to search for growing dynamic correlation lengths in
glassy systems, a field of active research [26]. Third, and more importantly for the purposes of
this review, they provide a way to further test the consistency of the effective temperature notion
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that, in the nonlinear relations between responses and correlations, should play essentially the
same role as in the linear ones.
To our knowledge, quantum FDRs of this kind have not yet been derived.

3. Insight

Fully connected disordered spin models provide a mean-field description of glassy
phenomenology. They capture many features of glassy thermodynamics and dynamics, at
least in an approximate way. They have static and dynamic transitions at finite temperatures,
T, and Ty, that do not necessarily coincide. In a family of such models aimed to describe fragile
glasses with the random first order transition (RFOT) scenario [27-29] T, corresponds to an
entropy crisis realizing the Kauzmann paradox. Below Ty, an infinite system let evolve from a
high-T initial state does not come to equilibrium with the environment [5, 6] and relaxes out of
equilibrium. Replica tricks [30] and the Thouless—Anderson—Palmer approach [31] give us a
handle to understand equilibrium and metastable states as well as thermodynamic properties.
A dynamic treatment completes the picture explaining their relaxation and the relation with
the free-energy landscape. Importantly enough, a quasi-complete analytic solution exists and a
clear definition of many concepts that are not as sharply grasped in finite-dimensional cases—
such as metastable states—can be given. We do not intend to give here a full account of the
behaviour of these models; several reviews exist [32, 33] already. We simply highlight some
of their properties and their relevance to the effective temperature notion.

3.1. Slow relaxation and convergence

The energy density, as well as any other intensive observable that depends on just one time,
approach a finite value:
—00 < Oy = lim lim (O(2)) < +o00 . 24)
t

—00N—o0
With this order of limits, the intensive quantity O« is not necessarily equal to the equilibrium
value Ogq. Below T, the approach is achieved slowly, typically with a power law. If time is
allowed to scale with N a different dynamic mechanism sets in and equilibrium is eventually
reached, limy_, o lim,—, oo (O (1)) = Ogq.

3.2. Separation of time scales

Below their dynamic critical temperature, T;, mean-field glassy models relax in several
time scales (see [6] for a precise definition). The correlation and linear response admit a
decomposition:

ct,!)y=COu¢, )+, )Y+CPwu, i)y +--- (25)

R(t,!)=RO, ) +RVt, 1Y +RPt, ') +---. (26)

The first of these scales, usually labelled ST, remains finite as#’ — oo, while the others diverge
with #. In mean-field models, these time scales become infinitely separated as ¢’ — oo due to
their different functional dependences on ¢'. This means that when one of the terms varies, the
other ones are either constant or have already decayed to zero. In particular, in the ST scale,
the correlation function decays from its equal-times constant value to the Edwards—Anderson
parameter gga that depends on bath temperature and all coupling constants. In this scale, the
system follows the rules dictated by the bath and the dynamics are stationary, while in the

8
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other scales, interactions are more relevant and the relaxation is more complex. Each term
contributing to the correlation scales as

: RO (1)
(@) N o~ £O
V@, ) > fe (h(i>(ﬂ))’ 27

and KO () = /™ = BST(¢) with 7@ finite and fc(o)(oo) = gga. Loosely, one can define a
time scale ¥ from
@) t—t
h® (") - D)
In practice, one can probe the different time scales by increasing the times ¢ and ¢’ along
different directions in the ¢~ plane.
One of the main ingredients in the solution to mean-field glassy models in relaxation
[5, 6] is the fact that equation (13) does not hold below T;. This does not come as a surprise
since the equilibrium condition under which the FDT is proven does not apply. What really
comes as a surprise is that the modification of the spontaneous/induced fluctuations relation
takes a rather simple form:

with @) = [dInh® (') /dr'17". (28)

) 1 9 .
(@) N — (@) / / P
RY (1) = (i>8ﬂc @, )o@ —1) i=0,1,..., 29)

in the #’ — oo limit. The temperature of the external bath is the one of the stationary regime
and the conventional FDT holds, 75T = T© = T. We discuss the reason for this in section 4.9.
In all other regimes, the T Dg are different from each other and from 7. If one keeps ¢ finite,
the crossover from one scale to another is smooth and a generic relation like (20) applies. The
mere existence of different T values implies, if the interpretation as a temperature is correct,
the fact that some degrees of freedom cannot thermalize with others evolving in a different
time scale.

So far we highlighted three characteristics: the slow relaxation, the fact that the energy
density is bounded from below, and the separation of time scales. They are all fundamental
for finding an effective temperature with a thermal significance. We will come back to these
properties in section 5.

3.3. The parametric construction

A very instructive way to study the deviations from FDT is to construct a parametric plot of the
integrated linear response against the correlation at fixed #,,, varying ¢ between t,, and infinity.
In the long #,, limit, such a function converges to a limiting curve:

. o1

Cé?)loic Kot '/C * Toer (€ .
where the effective temperature [3], Tgrr(C), is a function of the correlation C. The main aims
of this review are to justify the name of this function and to give a state of the art review of its
measurements in model systems, numerical studies and experiments (see [11] for a previous
survey of measurements of FDT violations with numerical methods and [14] for a recent
discussion on effective temperatures from a different perspective). The convenience of this
parametrization is that it makes it possible to compare to replica calculations and, on a more

physical level, it allows for a better interpretation of fluctuations.
Let us summarize the behaviour of the asymptotic x (C) function in different mean-field
glassy models relaxing slowly with bounded dynamics after a quench from the disordered into
the ordered phases. In all cases, there is a regime of short time differences ¢ —t,, in which y (C)

9
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is a straight line of slope —1/T, joining (1, 0) and (gga (T), [1 — qea(T)1/T).! A free-energy
interpretation of this regime will be given in section 4.9. At this point, the straight line breaks
and the subsequent behaviour depends on the model. Three families have been identified.

Models describing domain growth such as, for example, the ferromagnetic O (N) model
in d dimensions in the large N limit. There is only one additional time scale in which C decays
from gga to 0. The asymptotic parametric plot for C < gga(T) is flat. The susceptibility
x gets stuck at the value [1 — gga(T)]/T while the correlation C continues to decrease
towards zero. The same result holds for the Ohta—Jasnow—Kawasaki approximation to the
A¢* model of phase separation. In agreement with the fact that temperature is basically an
irrelevant parameter in (at least clean) coarsening, the effective temperature diverges in the
full low-temperature phase, T — oo.

Models of RFOT type provide a mean-field-like description of fragile glasses. Examples
are the so-called F),_; or type B models of the mode-coupling approach and disordered spin
models with interactions among all possible p > 3-uples. These models also have only one
additional time scale. In these cases, the x versus C plot, for C < gga (T), is a straight line of
negative slope larger than —1/7 [5],i.e. T < TV < oo. The value of T" weakly depends
on the working temperature and continuously increases from 7; at the dynamic transition to a
slightly higher value at T = 0. Another interesting case in this group is a d-dimensional directed
manifold embedded in an (N — o0) + d-dimensional space under the effect of a quenched
random potential with short-range correlations. The susceptibility—correlation relations for
different wave-vector-dependent observables satisfy xi(Cr) = xi=0(Ci=0) = Xx=0(Cx=0)
when times are such that they all evolve in the ageing regime characterized by a single time
scale (note that qEA depends on k) and, thus, the effective temperature is k-independent [36].

Mean-field spin models with quenched disorder having a genuinely continuous second-
order phase transition, for example, the Sherrington—Kirkpatrick spin-glass or type A models
of the mode-coupling approach. The random manifold problem with long-range potential
correlations is of this type too. In these cases, the dynamics has a continuity of time scales,
ordered in an ultrametric fashion. For C < gga(T), the x (C) plot is a non-trivial curve with
local derivative larger than —1/T [6]. Each value of the effective temperature can be ascribed
to a dynamic scale. The lowest value appears discontinuously (T'") > T) as one crosses T}
and can be shown to decrease with decreasing temperature. The wave-vector independence
holds for the Tggr of the random manifold as well [36, 37].

Further support to the notion of effective temperatures comes from the study of the effect
of quantum fluctuations on the same family of mean-field models [38, 39]. The setting is one in
which the system is in contact with a quantum environment at temperature 7 and the dynamics
are dissipative. Below a critical surface (in the T, strength of quantum fluctuations, coupling
to the bath phase diagram) that separates glassy from equilibrium phases, and in the slow
dynamics regime, one finds a non-equilibrium relaxation with deviations from the quantum
FDT, equation (18). These are characterized by the replacement of the bath temperature by an
effective temperature Tggr. The effective temperature is again piecewise. It coincides with T
when the symmetric correlation C is larger than gga and Tgpr > T when C goes below gga.
x (C) recovers, in the slow regime, the structure of the classical limit. This is a signal of a
time-dependent decoherence effect. The slow modes’ Tgrr depends on the working parameters
and is higher than T even at T = 0.

! The actual scaling of t — t,, with 1, that marks the end of the regime in which the equilibrium FDT holds is difficult
to establish. A power law dependence was found in a few solvable models, see e.g. [34] for the mean-field spherical
ferromagnet. The more general scaling argument proposed in [35] also suggests such a dependence.
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Numerical simulations, with Monte Carlo techniques or molecular dynamics of classical
systems, have demonstrated that the classification can go beyond the mean-field limit at least
as a good approximation. We will discuss these tests in section 5.

3.4. Pre-asymptotic effects

Expression (30) is asymptotic in time, a limit in which it is immaterial to construct the
parametric plot by keeping t,, fixed and letting ¢ increase to infinity, or by keeping ¢ fixed
and letting t,, increase up to . However, in numerical and experimental measurements one
cannot reach this long-time limit and it is important to have the best possible control of pre-
asymptotic effects. The most appropriate construction at finite times is the second option above
[40]. Indeed, by using the fact that C(z, t,,) is monotonic with respect to t,,, one trades all #,,s
by Cs and keeps ¢ as an independent variable. Variations with respect to t,, become variations
with respect to C at ¢ fixed:

() @O o1 d 1

Oty aC Tere(t,C) dC Terr(t,C)

and the slope of the pre-asymptotic x (¢, C) plot at fixed ¢ yields the searched pre-asymptotic
Terr, as defined in equation (20). Had we worked at fixed #,,, we would have failed to obtain
Tepr from the slope of the x (C, t,,) plot. This is due to the asymmetry in the times involved
in definition (20). The difference disappears in the long t,, and ¢ limits with C varying in the
interval [0, 1] or for stationary systems. In cases in which a normalization is needed, the choice
of using C (¢, t) as the normalization factor does not affect the slope of the plot constructed
at ¢ fixed. The FDRs discussed in section 2.4 allow one to use this method with no extra
computational effort in numerical simulations.

3D

3.5. Cooling rate dependence and finite size effects

In the long-time dynamics of mean-field-like models, Tgrr does not depend permanently upon
the cooling procedure. The same models with finite number of degrees of freedom, and more
refined ones beyond the mean-field approximation, should capture a cooling rate dependence
that should also become manifest in Tggg.

The dynamics of models in the RFOT class approach, in the asymptotic limit t — oo
taken after N — oo, a region of phase space, named the threshold [5], that is higher than
equilibrium in the free-energy landscape. Further decay is not possible in finite times with
respect to N since diverging barriers separate the former from the latter. This is demonstrated
by the fact that the asymptotic values of averaged one-time intensive quantities, such as the
energy density, take higher values than in equilibrium. Moreover, in between threshold and
equilibrium, a continuous set of metastable states also separated by diverging barriers exist.
Subsequent decay is achieved through activated processes in time scales scaling with N, and
the relaxation of one-time quantities is expected to cross over from power law to logarithmic.

Although the full dynamic solution in the activated regime has not been derived yet (it
is too difficult!), it is reasonable to imagine that the Tggr values should be ordered with the
higher on the threshold and the lower, T, in equilibrium. The effective temperature should
relax, in logarithmic time scales, from the threshold value to the bath temperature. Coming
back to cooling rate dependences, a slower cooling rate takes a finite size system below the
threshold level and the deeper it is, the slower the rate. Tgpr should follow this variation. These
claims found some support in numerical simulations, see section 5.
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3.5.1. An equilibrium interlude. The replica theory of the statics of mean-field spin-glasses
[30] necessitates the definition of a symmetric disorder-averaged functional order parameter,
P(g), that measures the probability distribution of overlaps, Ng = va: | 8i0;, between
equilibrium configurations, {s;} and {o;}. The cumulative distribution and a further integral are

q 1 q
X(q)=/ dq' P(¢), TN(C)=/ dq/ dg' P(q). (32)
0 C 0

The out-of-equilibrium dynamics take place in a region of phase space that is different from
the one where equilibrium states lie. Still the classification of mean-field models according
to Tgpp(C) (or X (C)) and x (C) coincides with the one arising from the replica analysis [30]
of the number and organization of equilibrium states and their implications on x(g) and X(C)
defined in equation (32). Indeed, mean-field coarsening problems have two equilibrium states
related by symmetry, 2P(q) = §(|q| — gga) implying x(q) = 0if |¢| < gga and x(q) = 1 if
lg] > qea With gga the square of the order parameter (replica symmetric—RS—case). Models
with a RFOT are solved by a one-step replica symmetry breaking (1RSB) ansatz implying a
proliferation of equilibrium states with special properties. Two possibilities exist for any two
equilibrium configurations {s;} and {o;}: they may fall in the same or the reversed state and
q = £qga, respectively; or else they may fall in different states that turn out to be orthogonal
and ¢ = 0. The probability distribution is hence P(q) = x16(q) + (1 —x1)/25(|q| — gea) and
its integral yields x(q) = x; if |¢] < gga and x(q) = 1 if |g| > gga. Finally, models of the
SK type are solved by a full RSB ansatz, have states with all kinds of overlaps, the P(g) has
two delta contributions at +gga and a symmetric continuous part in between. This functional
form leads to an x(g) taking the value 1 for |g| > gra and a continuous function of ¢ for |g]
below gga. In all mean-field cases, the functional forms of equilibrium and out-of-equilibrium
objects are similar:

x(q) < X(C), R < x(©O). (33)

By this we mean that R has an FDT part in all cases and it is linear, with zero, constant and
finite, and variable slope, in RS, 1RSB-RFOT and full RSB cases, respectively. In models
of RFOT type, the value of the breaking point gga and the parameter x; (the slope) are
not the same dynamically and statically while in models of full RSB kind, the coincidence is
complete (up to a factor 2 due to the global symmetry). The same applies to all higher moments
of the equilibrium overlap ¢ and out-of-equilibrium C distribution functions [5, 6, 37]. The
coincidence for full RSB models was argued to apply beyond mean-field, in finite-dimensional
disordered spin systems, when the long-time limit is taken after the thermodynamic limit.
Details of the reasoning that is based on the assumptions of stochastic stability and the
convergence of the out-of-equilibrium susceptibilities to the equilibrium ones found in [41].

These ideas were developed in spin models and one would like to extend them to atomic
and molecular systems. However, overlaps in continuous particle models are difficult to define
in a direct measurable way. Attempts based on weakly coupled real replicas were developed in
[42]. This may allow one to extend the equilibrium <> out-of-equilibrium connection to these
systems as well.

The relation between static X (C) and asymptotic out-of-equilibrium dynamic x (C) could
apply in much more generality than previously suspected at the price of identifying finite-
time non-equilibrium, x (C, t,,), and finite-size equilibrium, R(C, £(#,,)), with the help of a
time-dependent coherence length & (¢,,) [43].
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4. Requirements

In this section, we list a number of conditions that the functional parameter Tgpr must satisfy
to act as a temperature.

4.1. Thermometer

Any quantity to be defined as a non-equilibrium effective temperature must conform to the
folklore. The first requirement is to be measurable with a thermometer weakly and statistically
coupled to the system [3, 4]. This fact can be proven by studying the time evolution of
the thermometer coupled to M identical copies of the system, all of age #, and evolving
independently. The thermometer is ruled by a Langevin equation with a non-Markovian bath
with statistics given by the system’s correlation and response. It thus feels the system as a
complex bath with its time scales, ) (¢'), and temperatures, T®). The T to be recorded is
selected by tuning the internal time scale of the thermometer to 7 (¢).

Such an experiment can be relatively easily realized in systems of particles in interaction,
be them colloidal suspensions or powders. The thermometer can be a probe particle, the free
and perturbed dynamics of which is followed in time. Diffusion is measured in free relaxation
and mobility in the perturbed case. By comparing the two through an extended Einstein relation
Tgpr of the medium, that is to say, the system of interest, is measured. Another possibility
is to monitor the kinetic energy of the tracer (a quadratic variable) and associate it with the
effective temperature of the environment (via equipartition). In both cases, by playing with
the tracers’ parameters, namely their mass, different regimes of relaxation are accessed and
the T®s are measured. Consistency with the fact that the effective temperature should be
an intensive variable requires the result to be independent of the shape of the tracers. These
experiments have been performed numerically and experimentally yielding very good results
in the former and somehow conflicting in the latter. We will discuss them in section 5.

4.2. Role played by external baths

The fluctuation—dissipation ratio of an ‘easy to equilibrate’ system should acquire the
temperature of its external environment. A rather simple though particularly illuminating
problem that illustrates this idea is the non-Markov diffusion of a particle in a harmonic
potential, simultaneously coupled to two baths, a fast one in equilibrium at temperature
TB(O) = T© giving rise to white noise and instantaneous friction, and a slow one with an
exponentially decaying memory kernel in equilibrium at temperature TB(U = T, This
example can be taken as a schematic model for an internal degree of freedom in a slowly
driven system and, in particular, the dynamics of a (possibly confined) Brownian particle in
an out-of-equilibrium medium. If the slow bath is not stationary, it can also be taken as a
self-consistent equation for a variable in an ageing system—exact for mean-field disordered
spin models. The particle behaves as in equilibrium at T or T depending on which bath
it feels. The separation is made sharp by an adequate choice of the bath and potential energy
parameters that push apart their own time scales. Similarly, an ageing system with multiple
effective temperatures becomes stationary in all time scales with TB(') > Tgpr and goes on
ageing in time scales with TB(” < Tgrr [4].

4.3. Observable dependences

In cases allowing for a thermodynamic interpretation, the effective temperature should behave
as an intensive variable with the same value—partial equilibration—for all observables
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evolving in the same time scale and interacting strongly enough. A concrete check of this
feature was performed within solvable glassy models. Two glasses in contact with a bath in
equilibrium at temperature 7', each of them with a piecewise Tgpr(C) of the form

: (1,2)
TSYSTLY) () T if C > qgy
EFF - 1,2) (1,2)
T if C < gy

with T £ T®, were chosen. The experiment of setting two observables in contact is
reproduced by introducing a small linear coupling between microscopic variables of the two
systems. Above a critical (though small) value of the coupling strength, the systems arrange
their time scales so as to partially come to equilibrium and the effective temperatures below
qea equalize. Below the critical strength, T2 remain unaltered [4].

The observable independence of the fluctuation—dissipation ratio was investigated in a
variety of out-of-equilibrium situations but no clear rationale as to when this holds was found
yet. An intriguing proposal was put forward by Martens et al who argued that the observable
independence and hence the interpretation in terms of Tgpr is related to the uniformity of the
phase space probability distribution function (pdf) on the hyper-surface of constant energy
reached dynamically [21]. These authors validated this idea in a few simple toy models
relaxing in a single time scale (glassy systems excluded). Consistently, this proposal applies
in mean-field disordered models. Moreover, they proposed that the observable dependence is
proportional to the square root of the difference between the Shannon entropy of the dynamic
state and the equilibrium one, a conjecture that deserves further investigation.

4.4. Intuitive properties

One may wonder why in all studied undriven systems, there is a two-time regime in which
C decays from its equal times value to gga and FDT holds. This problem admits a physical
explanation—thermal fluctuations within domains, rapid vibrations within cages, etc—that we
will expose in section 5, a free-energy landscape explanation that we will discuss in section
4.9 but also a formal explanation: there exists a bound—on the difference between left- and
right-hand sides of equation (13)—that vanishes in the first regime of relaxation [44].

An intuitive property of Tgpp is that it loosely represents the disorder level of the system.
This idea translates into Tgrp being higher or lower than the working temperature 7 when
the initial state is taken from an equilibrium distribution in the disordered phase or at a lower
temperature than the quenching value in e.g. the 2d XY model [45] or elastic lines [46]. The
case of a quench to a critical point in the Ising universitality class is more subtle. Tggg is higher
than the critical temperature T for initial conditions in equilibrium above and below T, but it
takes a higher value in the former than in the latter case [47].

4.5. The fictive temperature

The latter slated property matches the “fictive temperature’, T¢, ideas that date back to the 40s
at least [8] and have developed ever since, as explained in [9]. T is usually introduced by
assuming that when a liquid falls out of equilibrium in the glass transition region its structure
gets ‘frozen’ at a T that is higher than T', depends upon the cooling rate and in particularon T,
and deep below the transition range approaches T,. Several definitions in terms of the enthalpy
or the thermal expansion coefficient have been given and they do not necessarily coincide.
The fictive temperature is hence a phenomenological convenience and acts essentially as a
parameter in an out-of-equilibrium ‘equation of state’. In contrast, the effective temperature is
defined in terms of fluctuations and responses, it can be measured directly, and plays a role that
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is closer to the thermodynamical one (although not in all possible out-of-equilibrium systems
but in a class yet to be defined precisely).

4.6. Fluctuation theorem

The fluctuation theorem concerns the fluctuations of the entropy production rate in the
stationary non-equilibrium state of a driven dynamical system [48]. It applies to systems
that approach equilibrium when the forcing is switched off. Of interest in the context of glassy
systems is to know the fate of the fluctuation theorem if the system evolves out of equilibrium
even in the absence of the external drive, and whether Tggr enters its modified version. These
questions were addressed by Sellitto who analysed the fluctuations of entropy production in a
3d lattice gas model of hard core particles following the Kob—Andersen kinetically constrained
rules and kept away from equilibrium by a chemical potential gradient [49], and by Crisanti and
Ritort who discussed the interplay between Tgpr and a fluctuation theorem on heat exchange
between the system and the environment in the random-orthogonal model (a case in the RFOT
class) [50]. From a different perspective, closer to the one in [15], the fluctuation theorem and
Terr were studied in [51] within two related problems: mean-field glassy models and a Langevin
process with a number of equilibrium thermal baths with different time scales and temperatures
as the one discussed in section 4.2. First, it was shown that the work done at frequency w
by conservative and non-conservative forces is weighted by the effective temperature (instead
of the temperature of the bath) at the same frequency. The work of the conservative forces
produces entropy if the bath is out of equilibrium since the nonlinear interaction couples
modes at different frequencies which are at different temperatures, thus producing an energy
flow between these modes. Second, it was proven that the entropy production rate satisfies a
fluctuation theorem. Third, extensions of the Green—Kubo relations for transport coefficients
were derived. Fourth, a feasible way to measure Tgpr by exploiting the modified fluctuation
theorem was discussed. There is no satisfactory numerical test of these ideas in non-mean-field
glassy systems yet but a preliminary study will be discussed in section 5.7 and a more recent
analysis on coarsening systems in section 5.2.

4.7. Nonlinear effects

In a series of papers, Hayashi, Sasa et al [52] investigated the notion of an effective temperature
in the classical non-equilibrium steady state (NESS) focusing on a strongly perturbed 1d white-
noise Langevin system in which a Brownian particle is subject to a spatially constant driving
force f and a periodic potential U (x). These authors extended the definition of Tgpr that
uses the Einstein relation between diffusion coefficient and differential mobility beyond the
linear response regime, Tgpp(f) = D(f)/u(f). They addressed the question of the physical
significance of Tgpp in at least three different ways: by showing that it plays the role of a
temperature in a large-scale description; by proving that such an out-of-equilibrium system,
used as a thermostat for a Hamiltonian system, is able to transfer its effective temperature as
kinetic energy; and by conducting a heat conduction experiment. The results of these tests are
consistent with a thermodynamic interpretation.

4.8. Local measurements

The FDT relates the averaged local response function and fluctuations measured in equilibrium
at any spatial scale. What should local measurements yield out of equilibrium?

4.8.1. Quenched disorder-induced fluctuations. In systems with quenched random
interactions, spatial fluctuations in noise-averaged quantities are dictated by the local disorder.
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This fact has been known for decades; for instance, the fast and slow characters of spins in
disordered magnets induced by their quenched environment give rise to Griffiths phenomena
(free-energy singularities, phases and slow relaxation). In the context of glassy dynamics
and Tgpp, Montanari and Ricci-Tersenghi [53] showed that in disordered spin models defined
on random graphs, spins of two types exist: paramagnetic and glassy ones with the former
following fast equilibrium dynamics and the latter having a non-trivial relaxation peculiar to
their environment. Strictly local deviations from FDT were characterized by an effective
temperature that can be obtained with a replica calculation along the lines discussed in
section 3.5.1. Pretty convincing arguments—although not completely rigorous—establish that
in these models the strictly local effective temperature must diffuse to become site independent:
1 i (Ch)

Terr (Ch) ac;
Numerical studies of this kind of (the absence of) Tggr fluctuations in the 3d EA model [54]
will be presented in section 5.

(34)

4.8.2. Noise-induced fluctuations. In a series of papers, Chamon et al proposed a theoretical
framework based on global time reparametrization invariance that explains the origin of
dynamic fluctuations in generic—not necessarily quenched disordered—glassy systems with
a separation of time scales of the kind explained in section 3.2 [55-57]. Such type of invariance
had been known to exist in the out-of-equilibrium dynamics of mean-field disordered models
and it was later shown to carry through to the causal asymptotic dynamics of finite d infinite-
size spin-glasses, under the assumption of slow dynamics with a separation of time scales. The
approach reviewed in [58] focuses on the fluctuations induced by the noise at coarse-grained
length scales. The invariance acquires a physical meaning and it implies that one can easily
change the clock A(¢) characterizing the scaling of the global correlation and linear response
by applying infinitely weak perturbations that couple to the zero mode, or with a noise-induced
fluctuation. An illustration of this property is the fact that the ageing relaxation dynamics of
glassy systems is rendered stationary by a weak perturbing force that does not derive from
a potential while the x (C) relation in the slow regime is not much modified [59]. The same
argument, applies to the fluctuations, as measured over coarse-grained regions of linear size £
with £ suitably chosen. It implies that easy fluctuations should be realized as local changes in
time, t — h,(t), with 4, (f) any monotonically growing function of time associated with the
coarse-graining volume centred on 7:
/ /

b ., =) a0

h(t) dyInh.(t) 7. (t)
that intervene in the local correlation and integrated linear response. Age measures fluctuate
from point to point with younger and older pieces coexisting at the same values of the two
laboratory times. The two-time coarse-grained observables, i.e. C, (¢, t,,) and x, (¢, t,,), have a
slow and a fast contribution, the former characterized by scaling functions fc and f, that act
as ‘massive variables’ in the sense that they are not expected to fluctuate in the scaling limit
8§ K £ K E(t,t") with § the microscopic length scale (lattice-spacing or inter-particle distance),
£ the coarse-graining length (to be chosen) and & the dynamically generated correlation length.
Within this picture, the parametric construction yx,(C,) falls on the master curve for the global
quantities but could be advanced or retarded with respect to the global value with a uniform
effective temperature at fixed C, value:

Tere, (Cr) = Terr(C)). (36)

This equality is non-trivial when the effective temperature is finite and it conforms to the
concept that the effective temperature for different observables (the different regions in the

(35)
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sample in this case) must equalize if they evolve in the same time scale (i.e. take the same
value of C,). Time-reparametrization invariance is not expected to hold in cases in which Tggg
diverges [60], notably, phase ordering kinetics (see section 5.2). (Subtleties on the measurement
of temperature in finite systems are reviewed in [61].)

Equation (36) with Tgrr(C,) finite implies that the two-time variances of composite fields,
the averages of which yield the local correlation and linear response, should have the same
scaling with times [62]. These objects are easier to measure than the joint pdf of x, and C,.
Numerical results will be discussed in section 5.

4.9. Landscapes and thermodynamics

Complex systems’ dynamics are sometimes interpreted as the wandering of a representative
point in a phase space endowed with a complicated free-energy density landscape. The
existence of an equilibrium-like relaxation at short-time differences suggests the distinction
between ‘transverse’ and ‘longitudinal’ directions in the landscape, with the former being
confining and close to, say, ‘harmonic’ and the latter giving rise to the slow out-of-equilibrium
structural relaxation. Questions are posed as to what are these directions, which is the dynamic
process taking the system along these directions—diffusive, activated, etc—which is their
volume in phase space, and so on.

The appearance of an effective temperature suggests some form of ergodicity and it
becomes tempting to relate Tggrr to some kind of microcanonic temperature defined from the
volume of phase space visited during the out-of-equilibrium excursion. The construction of
thermodynamics in which Tgpp played a role is the natural step to follow. In this section, we
describe the successful development of this program in models of the RFOT sort and how this
construction remains a suggestive picture in finite-dimensional cases.

4.9.1. Thermal systems. Describing super-cooled liquids and glasses in terms of potential
energy landscapes dates back to Goldstein who proposed to think of a system’s trajectory
in phase space as a succession of steps among potential energy basins [63]. This idea
developed into the inherent structure (IS) statistical mechanics framework of Stillinger and
collaborators [64]. In this approach, each configuration is mapped onto a local minimum of
the potential energy through a minimization process implemented, for example, by a quench
to T = 0 (steepest descent). The IS is, then, the configuration reached asymptotically and all
configurations flowing to it constitute its basin of attraction. Although a priori simple, this
proposal hides a number of ambiguities such as the fact that the ISs depend on the microscopic
dynamics (e.g. single spin flip versus cluster spin flip in a spin system), some decision making
is needed in cases in which the T = 0 dynamics could follow different directions, etc. The
proposal is to re-order and approximate the partition function as a sum over IS energy levels
(including their degeneracy) times a B-dependent factor with all contributions from the rest
of the configurations—associated with vibrations or the fast relaxation—basically describing
the free-energy of the liquid/glass constrained to one typical basin. The assumption is that the
IS partition function describes the thermodynamic properties of the state reached at very long
times.

Independently, Thouless, Anderson and Palmer (TAP) [31] and de Dominicis and Young
[65] showed that the equilibrium properties of fully connected spin disordered models
can be described with a local order-parameter-dependent free-energy landscape. Averaged
observables in equilibrium are expressed as weighted sums over the free energies of the TAP
free-energy saddle-points:

Za 0, e—BFa fdf o(f) e BNL/=TZ(H)]
{O)eq = > e P T Jdfe ANTTEDT

(37)
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in agreement with results from replica and cavity methods. The sums in the second member
run over all stationary points of the TAP free-energy landscape. They transform into integrals
over free energies at the price of introducing the number of stationary points at given f, with
NZ(f) = In N (f) the complexity, or configurational entropy at free-energy density f. This
construction is exact for mean-field models. In the N — oo limit, the integral is evaluated by
the saddle-point:

1L _aZn| (38)

T af fsp
In RFOT models, the disordered state dominates above 7, and fgq = fpwm; in between 7, and
T; states that are not minima of the TAP free-energy control the integral since their number
is sufficiently large, fgq = fsp — T X (fsp); finally, at T the configurational entropy vanishes
(entropy crisis) and the lowest lying, now glassy, states dominate.
The microcanonical vision of the effective temperature suggests us to check whether
below Ty

1 %)

Terr  Of .

where Tgrr is the value of the slow modes effective temperature and fry is the free energy at
the threshold, the level reached dynamically by an infinite system after a quench from high-T.
This is indeed the case in RFOT-type models in the thermodynamic limit. Systems with large
but finite size relax below the threshold and slowly approach equilibrium. Nieuwenhuizen
conjectured that in these cases both Tgpr and X (f) acquire time-dependence in such a way
that equation (39) remains valid with X (f, ¢) the complexity of the TAP states that are relevant
at time ¢ [66]. Moreover, in finite-dimensional systems with short-range interactions, barrier
heights and lifetimes are finite at finite temperature and metastability becomes a matter of time
scales. A recipe to compute X (f, ¢) in these cases was given in [67].

Once a separation of modes into fast (vibrational) and slow (structural) is made in either
an approximate (in finite-dimensional models with short-range interactions) or exact (in mean-
field cases) way, thermodynamic potentials that involve Tgpp can be easily constructed and
thermodynamic relations derived. This has been done in the IS formalism [64] and in a
framework that is closer to the TAP one [66].

The inadequacy of the IS approach to describe the dynamics of coarsening and kinetically
constrained models has been explained in [68]. Its limits of applicability in molecular glasses
were also discussed. Nevertheless, since it is not evident how to access a free-energy landscape
concretely, numerical efforts have focused on the characterization of the potential energy
landscape. While increased computational facilities gave access to an exhaustive enumeration
of ISs in small clusters and proteins, the calculations remain incomplete for macroscopic
systems. A connection between Tgpr and the IS complexity that has to be taken with the
caveats mentioned above, was discussed in [69], see section 5.

(39)

4.9.2. Athermal systems: Edwards’ ensemble. The constituents of thermal systems exchange
energy with the components of their environment and this exchange has an effect on
their motion. The constituents of athermal systems are much larger than the ones of their
surroundings and the energy received from the bath is irrelevant. Dissipation occurs via energy
flow from the particles to internal degrees of freedom that are excluded from the description.
Granular matter is the prototype.

In spite of the very different microscopic dynamics, the meso-/macroscopic dynamics of
gently perturbed dense granular matter share many points in common with the ones of more
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conventional glassy systems. A detailed description of the experiments demonstrating these
facts is given in [70].

In search for a statistical mechanics description of these systems, Edwards [2] proposed
to use the volume, V', as the macroscopic conserved quantity, and the blocked states—defined
as those in which every particle is unable to move—as the set of relevant equiprobable
configurations, P(C,V) = Q™1 (V)8(C)8(V(C) — V)), where #(C) is an indicator function
that equals 1 if the configuration is blocked and 0 otherwise, V(C) is the volume as a function
of the configuration, and (V) = [ dC P(C, V) is the volume in configuration space occupied

by the blocked states. Entropy and compactivity are next defined as
1 as(v)

==, (40)
XepW av

S(V)=— ZP(C, V)YInP(C,V) = InQ(V),
C

respectively. A strong hypothesis in this description is that all blocked configurations are
treated on equal footing and that any distinction of dynamic origin is disregarded. Moreover,
the number of conserved macroscopic variables needed to correctly describe the system is not
obvious a priori. If the grain configurations are also characterized by an energy, one should
then enlarge the description and define

P(C.V.E)=Q " (V.E)8(C)s(V(C) —V))S(H(C) — E)) ,
S(V.E)=—Y P(C.V.E)InP(C.V.E), I _sW.E)
C

41
Tepw oE *h

The similarity between the entropy of blocked states and the zero-temperature complexity
of glass theory is rather obvious. Indeed, the first successful check of Edwards’ hypothesis was
achieved in RFOT models at T >~ 0 [7]. In these cases, the energy is the relevant macroscopic
variable. One identifies all energy minima (the blocked configurations in a gradient descent
dynamics), calculates 1/Tgpw and shows that it coincides with Tgpr = TD in the slow ageing
regime (C < gga) [5]. Moreover, all intensive observables are given by their flat average over
the threshold level ety = lim,_, o, limy_, o e(¢). At finite T, the connection can be extended at
the expense of using the free energy instead of the energy, as explained in section 4.9.1.

Numerical tests in finite-dimensional kinetically constrained lattice gases [71],
microscopic models of sheared granular matter including some of the subtleties of frictional
forces [72], spin-glasses with athermal driving between blocked states [73] and a particle
deposition model [74] gave positive results. In all these cases, Edwards’ measure is able
to correctly reproduce the sampling of the phase space generated by the out-of-equilibrium
dynamics. Nevertheless, this description does not apply to every problem with some kind of
slow dynamics. In [71], the counterexample is the domain growth of a 3d random field Ising
model, a case in which the properties of a long-time configuration of (low) energy is not
well reproduced by the typical blocked, by domain-wall pinning by disorder, configuration
of the same energy. In [75], instead, the analytically solvable one-spin flip dynamics of
the 1d Ising chain is used to display quantitative and qualitative discrepancies between the
dynamic treatment and the averaging over an a priori probability measure of Edwards type
(and refinements). At the mean-field level, the SK model and the like do not admit a simple
relation between configurational entropy and Tgpp either [76].

A careful account of the experimental subtleties involved in trying to put Edwards’
hypothesis to the test, and eventually verifying whether Tgpw = Tgpr, is given in [70]. The
question remains open especially due to the difficulty in identifying the relevant extensive and
intensive thermodynamic parameters [77]. All in all, the approach, very close to the IS and
TAP constructions, is intriguing although not justified from first principles yet and its limits
of validity remain to be set.
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5. Measurements

In this section, we discuss measurements of FDT violations and tests of the effective
temperature notion in a variety of physical systems out of equilibrium. Since we cannot
make the description exhaustive, we simply select a number of representative cases that we
hope will give a correct idea of the level of development reached in the field.

5.1. Diffusion

The dynamics of a particle in a potential and subject to a complex environment (coloured
noise or baths with several time scales and temperatures) not only has a pedagogical interest
but also admits an experimental realization in the form of Brownian particles immersed in,
e.g., colloidal suspensions and controlled by optical tweezers.

A particle coupled to a bath in equilibrium at temperature 7 with noise—noise correlations
of type (E(1)E(t")) o< (t — )™ !, 0 < a < 2, and under no external forces, performs normal
or anomalous diffusion depending on a. The fluctuation—dissipation ratio, equation (20), for
t >t is[78]

TR (t,t") D@t —1)
WCu(t, ') D —t)+D()’
with the diffusion coefficient D(t) = 1/2 d(x?(¢))/dt ~ t* fora # 1 and D(t) = ctfora = 1.
In such coloured noise cases, X, is a non-trivial function of time and it does not seem to admit
a thermodynamic interpretation. Still, for later reference, we consider the long-time limit

X‘(X(tv t/) =

(42)

0 a<1 subohmic,
X® = lim lim X (¢,t) >~ 1/2 a=1 ohmic,
t'—00t—>00 .
1 a>1 superohmic.

Another illustrative example is the non-Markovian diffusion of a particle in a harmonic
potential and subject to different external baths [4, 51, 79]. As already explained in
section 4.2, this simple system allows one to show how different environments can impose
their temperatures on different dynamic regimes felt by the particle. Tests of other definitions
of out-of-equilibrium temperatures in this simple case confirmed that the one that appears to
have the most sensible behaviour is the one stemming from the long-time limit of the relations
between induced and spontaneous fluctuations [79]. All other definitions yield results that are
more difficult to rationalize: in most cases, one simply finds the temperature of the fast bath
and in some cases, as with the static limit in [80], one incorrectly mixes different time regimes
even when their time scales are well separated.

5.2. Coarsening

When a system is taken across a second order phase transition into an ordered phase with,
say, two equilibrium states related by symmetry, it tends to order locally in each of the two
but, globally, it remains disordered. As time elapses, the ordered regions grow and the system
reaches a scaling regime in which time dependences enter only through a typical growing
length, L(¢). Finite-dimensional coarsening systems have been studied in great detail from
the effective temperature perspective (see [13]). In this context, it is imperative to distinguish
cases with a finite temperature phase transition and spontaneous symmetry breaking from
those with ordered equilibrium at T = 0 only. Some representative examples of the former
are the clean or dirty 2d Ising model with conserved and non-conserved order parameter. An
instance of the latter is the Glauber—Ising chain and we postpone its discussion to section 5.4.
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Let us focus on scalar systems with discrete broken symmetry. When time differences
are short with respect to a function—typically algebraic—of the typical growing length L(t,,),
domain walls remain basically static and the only variation is due to thermal fluctuations on
the walls and, more importantly, within the domains. This regime is stationary, and induced
and spontaneous fluctuations are linked by the FDT. At longer time differences, domain walls
move and observables display the out-of-equilibrium character of the system.

The correlation and total susceptibility in the ,, — oo limit separate into two contributions
C(t,ty) = CST(t —t,) + CO(t,t,) and x (1, tn) = x5T(t — ty) + x (¢, t,). Numerical
studies of Tgpr focused on the parametric construction y (C, t,,) at fixed and finite #,, where the
chosen observable is the spin itself. The resulting plot has a linear piece with slope —1/T', as in
equation (13), that goes below C = gga = m? and, consistently, beyond x = [1 —m?*]/T. The
additional equilibrium contribution is due to the equilibrium response of the domain walls that
exist with finite density at any finite ¢,,. In the truly asymptotic limit, their density vanishes and
their contribution disappears. Consequently, lim;, o x (C,t,) = C ST > gga satisfies FDT
and it is entirely due to fluctuations within the domains. In cases with L(t) ~ /%, the slow
terms take the scaling forms

CV(t 1) 2 fe(t/ty) . XV tw) =0, /1), 43)
It would be natural to assume that x)(z,t,) is proportional to the density of defects

pa(t) >~ L(t)™ ~ t~"/% with n = 1 for scalar and n = 2 for vector order parameter.
Although this seems plausible, a, is instead d-dependent. Another conjecture is [13]

n(d—dy)/(dy —dp) d <dy,
zq dy = qn (with Incorrections) d =dy, (44)
n d>dy.
dy is the dimension at which a, vanishes and may coincide with the lower critical dimension.
One finds d; = 1 in the Ising model, d; = 1 in the Gaussian approximation of Ohta, Jasnow
and Kawasaki, and d; = 2 in the O(N) model in the large N limit. dy is the dimension at
which a, becomes d-independent and it does not necessarily coincide with the upper critical
dimension. One finds dy = 3 in the Ising model, dy = 2 in the Gaussian approximation,
and dy = 4 in the large N O(N) model. It was then suggested that diy might be the highest
d at which interfaces roughen. In all cases in which a, > 0, Tggg — o0. This result was
confirmed by studies of second order FDRs in the 2d Ising model that showed the existence
of stationary contributions verifying the nonlinear equilibrium relation and ageing terms that
satisfy scaling and yield Tgpr — 00 as in the linear case [25]. The approach by Henkel et al
based on the conjecture that the response function transforms covariantly under the group of
local scale transformations fixes the form of the scaling function f, but not the exponent a,
[81] and does not make predictions on Tgpg. The coincidence between statics and dynamics,
see section 3.5.1, holds in these cases [13].

Noise-induced spatial fluctuations in the effective temperature of clean coarsening systems
were analysed in the large N O(N) model with d > 2 [60] and with numerical simulations
[82]. The first study shows that time-reparametrization invariance is not realized and that
Tegr is trivially non-fluctuating in this quasi-quadratic model. The second analysis presents
a conjecture on the behaviour of the average over local (coarse-grained) susceptibility at
fixed local (coarse-grained) correlation that consistently vanishes in coarsening (but is more
interesting in critical dynamics as we will discuss in section 5.3).

Very recently, the analysis of heat exchanges between fast (bulk) and slow (interfacial)
degrees of freedom in a finite-dimensional coarsening Ising magnet [83] gave further support
to a scenario whereby the fast modes act as an equilibrium reservoir to which interfaces release
heat in a way that ensures their statistical independence.
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A driven phase separating model with N non-conserved order parameter (in the large N
limit) was analysed in [84]. In this model, ageing is not interrupted by the drive. In the fast
regime in which the relaxation is controlled by the bath temperature, the drive generates a
non-trivial x (C) curve. Instead, in the slow regime of domain wall motion, an infinite effective
temperature persists under the drive.

The results gathered so far and summarized in the conjecture (44) imply that the FD ratio
vanishes and thus Tgpr diverges in quenches into the ordered phase of systems above their
lower critical dimension.

5.3. Critical dynamics

The non-equilibrium dynamics following a quench from the disordered state to the critical
point consists in the growth of the dynamical correlation length, & (t) ~ ¢'/*s. This length
does not characterize the size of well-defined domains but the size of a self-similar structure
of domains within domains, typical of equilibrium at the critical point. A continuum of finite
time scales associated with different wave-vectors, T®) ~ k=%, exists with only the k — 0
diverging. At any finite time ¢, critical fluctuations of large wave-vectors, k& (t) > 1, are
in almost equilibrium, while those with small wave-vectors, k§(¢) < 1, retain the non-
equilibrium character of the initial condition. This finite-time separation, and the fact that the
order parameter vanishes, leads to the multiplicative scaling forms

C(t,ty) =& — 1) 2 felE(t) /& (tw), &0/ (tw)]
X(t 1) = B =& —1,)) T FIE@)/E (tw), E0/E (tw)]

with the microscopic length &, ensuring the normalization of the correlation and the fact that x
vanishes at equal times. These forms imply that beyond the initial equilibrium part, the x (C)
plot assumes a non-trivial shape that, however, progressively disappears and approaches the
equilibrium linear form at all C > 0. The limit C = 0 is distinct and the limiting parameter X *°
should be non-trivial and it was conjectured to be universal in the sense of the renormalization
group [85]. Whether this one can be interpreted as a temperature is a different issue that has
been only partially discussed. For this reason, we keep the notation X*° (instead of Tggg) in
most of this section.

The correct estimation of X > has to take into account that the number of out-of-equilibrium
modes decreases in the course of time (contrary to what happens in the random manifold
problem in the large N limit, for example). The best determination of X*° is achieved by
selecting the k¥ — 0 mode. A thorough review of the properties of X*° found with the
perturbative field-theoretical approach and some exact solutions to simple models, as well as
the comparison to numerical estimates, is given in [12]. At the Gaussian level, the X*° of
local operators (e.g. powers of the field, first derivatives of the field, etc) is independent of
the chosen pair—but recalls certain features of the initial condition [47] and the correlations
of the environment [86]. This is not the case for non-local operators as, e.g., the energy
or the tensor. Moreover, when fluctuations are taken into account with, e.g., a two-loop or
first order in € = 4 — d expansion, the X of local operators is found to depend upon the
observables [87].

In the scalar model, using the field itself as the observable, one finds the diffusive results,
equation (43), at the Gaussian level and corrections when higher orders are taken into account.
For example X*° = 0.30(5) ind = 2,X*° = 0.429(6) in d = 3 for a quench from a disordered
state, white noise and up to second order in 4 — d. The trend of X*° increasing with d was
found in other models too. Instead, X*° >~ 0.78 (d = 3) and X*° = 0.75 (d = 2) if the initial
state is magnetized. A larger X°° implies a lower T, = 7. /X and the comparison between
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these values conforms to the intuitive idea that an ordered initial state leads to a lower effective
temperature than a disordered one. However, note that as X*° < 1, TSz is higher than the
working temperature, T, even for the ordered initial state. X*° was found to increase with N
in vector models.

A different type of critical phenomena (infinite order) arise in the 2d XY model. The
magnetic order parameter vanishes at all T but there is a low-T critical phase with quasi-long-
range order (power-law decaying spatial correlations) that is destroyed at Tgt where vortices
proliferate and restore a finite correlation length. Out of equilibrium, the critical scaling
forms apply although with a temperature-dependent exponent, n(7), and a growing length
scale £(t) ~ (¢/Int)'/? (the logarithm is due to the effect of vortices). The role of the EA
order parameter is played by the asymptotically vanishing function (¢,,/Int,)~"")/? and the
crossover between equilibrium and out-of-equilibrium regimes takes place at a t,,-dependent
value of the correlation. The x (C, t,,) plot at finite #,, is curved, it does not reach a non-trivial
master curve for t,, — 00, but Tgpr(t, t,,) = fx[£(t)/&(t,)]. Quenches from the disordered
phase, Ty > Txr and heating from a Top = 0 ground state to T < Tgt demonstrate that the
slow modes’ Tgrr depends on the initial state and it is higher (lower) when To > T (T < T)
[45]. We allow ourselves to use the name Tgpr in this case since these results point in the
direction of justifying its thermodynamic meaning. Similar results were obtained for 1 + 1
elastic manifolds with and without quenched disorder (see [46] and references therein). As
the dynamic—static link is concerned, Berthier ef al evinced that the extension to finite-times
finite-sizes works, at least at not too high-T's where free vortices inherited from the initial
condition are still present.

The exact calculation of the joint probability distribution of the finite-size correlation
and linear response in the spherical ferromagnet quenched to its critical temperature was
given in [88]. The results prove that these fluctuations are not linked in a manner akin to the
relation between the averaged quantities, as proposed in [58], see section 4.8.2, for glassy
dynamics. The correlation-susceptibility fluctuations in non-disordered finite-dimensional
ferromagnets quenched to the critical point were examined in [82] where it was shown that
the restricted average of the susceptibility, at fixed value of the two-time overlap between
system configurations, obeys a scaling form. Within the numerical accuracy of the study, the
slope of the scaling function yields, in the asymptotic limit of mostly separated times, the
value X*°.

The first experiments testing fluctuation—dissipation deviations in a liquid crystal
quenched to its critical point appeared recently and the results are consistent with what
has been discussed above [89].

The coexistence of a single time scale in the ageing regime together with a smooth and
time-dependent yx (C, t,,) plot arises naturally in a critical regime and it is due to the lack of
sharp time-scale separation.

Although many evaluations of X in a myriad of models tend to confirm that it
mostly behaves as a critical property [12], the thermodynamic nature of this parameter has
not been explored in full extent yet. Measurements with thermometers and connections to
microcanonical definitions have not been performed at critical points.

5.4. Quenches to the lower critical dimension

The kinetic Glauber—Ising spin chain is the protoype of a dynamic model at its lower critical
dimension. Taking advantage of the fact that this is one of the very few exactly solvable models
of non-equilibrium statistical mechanics, several issues concerning the effective temperature
interpretation have been addressed in this case, notably the observable dependences.
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After a quench from Ty — oo to T = 0, the factor X(z,¢), associated with the spin
correlation and susceptibility, is smaller than or equal to 1 and its value X® in the limit
Cy; — 0 evolves smoothly from 1/2 (as in models characterized by simple diffusion such
as the random walk or the Gaussian model [17]) to 1 (equilibrium) as #/7.q grows from
0to 0o (1/7eq = 1 — tanh(2J/T') is the smallest eigenvalue of the master equation operator).
Moreover, X is an exclusive function of the auto-correlation Cy as in more complex instances
of glassy behaviour [91].

The value for the long-wavelength analogue, the fluctuating magnetization, X;°, is
identical to the local value X°. The physical origin of the local-global correspondence, which
can also be obtained by field-theoretic arguments [12], is that the long-wavelength Fourier
components dominate the long-time behaviour of both quantities. In contrast, observables that
are sensitive to the domain wall motion have X;° = 0 [90], the difference residing on the
interplay between criticality and coarsening, a peculiar feature of models with 7, = 0 [13, 90].

The dependence on the initial condition is also interesting. A non-zero initial
magnetization does not change the value of X at T = 0. Instead, demagnetized initial
conditions with strong correlations between spins so that only a finite number of domain walls
exist in the system yield X>° = O (the same result is found in the spherical ferromagnet) [40].
The deviations from nonlinear FDTs have not been fully analysed yet.

The static—dynamic connection [41] described in section 3.5.1 does not hold in the 1d Ising
chain [13] and the non-trivial x (C) cannot be used to infer the properties of the equilibrium
state. Indeed, the ageing part of the response is finite asymptotically while the equilibrium
P(q) has a double-delta (RS) structure as in higher dimensions. The reason for the failure is
that the hypotheses used to derive the connection are not fulfilled.

The large N O(N) model ind = 2 shares many common features with the phenomenology
described above [60] although it has not been studied in as much detail.

To sum up, a quench to T = 0 at the lower critical dimension does not seem to be the
dimensional continuation of a line of critical quenches in the (7', d) plane (as often implicitly
assumed), but the continuation of a line of T = 0 quenches: the system behaves as in the
coarsening regime, although X = 0 for observables that do not focus on the domain wall
dynamics [13].

5.5. Relaxation in structural glasses

In particle glassy systems, a separation of time scales exists although it is not as sharp as
in mean-field models or coarsening systems, at least within simulational and experimental
time scales. In atomic glasses, the existence of an FDT part implies that the rapid particle
vibrations within the cages occur in equilibrium while the structural relaxation is of a different
out-of-equilibrium kind, and it is not necessarily ruled by the temperature of the bath. Tests of
the thermodynamic origin of fluctuation—dissipation violations in the ageing regime of these
systems were carried through in much greater detail and we summarize them below.

5.5.1. Simulations of microscopic models. Mono-atomic and binary Lennard—Jones mixtures,
soft sphere systems and the BKS potential for silica are standard models for glass-forming
liquids. Both Monte Carlo and molecular dynamics simulations [92-95] suggest that the three
first cases belong to the RFOT class of systems defined in section 3.3 with Tgpp = T
constant in the ageing regime. T" depends weakly on the bath temperature and systems’
parameters but it does not on the preparation protocol as demonstrated by measurements after
quenches and crunches [93] or the microscopic dynamics [94]. Tests of partial equilibration
between fluctuations at different wave-vectors gave positive results [92]. Importantly enough,
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these models have a well-defined equilibrium behaviour and their energy density is naturally
bounded. Of special interest is the numerical method devised to compute linear responses
in molecular systems with high precision that allowed Berthier to resolve the paradoxical
behaviour previously reported for silica [95].

Numerical evidence for a slow decrease in time of the configurational temperature, as
defined in equation (39), although with the IS complexity, is in agreement with the idea
of the system’s representative point penetrating below the threshold in the (free)-energy
landscape [69].

The ratchet effect of an asymmetric intruder in an ageing glass was studied numerically
in [96]. The energy flowing from slow to fast modes is rectified to produce directed motion.
The (sub)velocity of the intruder grows monotonically with Tgpp/T and this current could be
used to measure Tggg.

5.5.2. Kinetically constrained models. Kinetically constrained models are toy models of
the glassy phenomenon [97, 98]. Their equilibrium measure is just the Boltzmann factor
of independent variables and correlations only reflect the hard core constraint. Still, many
dynamic properties of glass-forming liquids and glasses are captured by these models, due
to the sluggishness introduced by the constrained dynamic rules. The literature on kinetically
constrained models is vast; a recent review with tests of Tgpp is [98]. After the successful study
of Tgrp in the Kob—Andersen model [99], non-monotonic low-temperature response functions
found in various spin-facilitated models were taken as evidence against the existence of
effective temperatures in these systems. The confusion arose from the incorrect construction
of the x (C) plot by using #,, instead of  fixed (see section 3.4) that led to the incorrect treatment
of the transient regime. Still, even taking this into account, a large number of observables have
negative fluctuation—dissipation ratios; this might be related to the fact that these models do
not have a proper thermodynamics.

5.5.3. Experiments. Grigera and Israeloff were the first to measure FDT violations in glasses
by comparing dielectric susceptibility and polarization noise in glycerol at T = 179.8 K, i.e.
relatively close to T, >~ 196 K [100]. At fixed measuring frequency @ =~ 8 Hz, they found
an effective temperature that slowly diminishes from Tgpr 2~ 185 K to roughly 180 K in
10° s, that is to say in the order of days! This pioneering experiment in such a traditional glass
former has not had a sequel yet.

Particle-tracking experiments in a colloidal suspension of PMMA particles revealed an
effective temperature of the order of double the ambient one from the mobility—diffusivity
relation [101].

In the soft matter realm, an aqueous suspension of clay, Laponite RG, in its colloidal glass
phase is a favourite. During ageing, because of electrostatic attraction and repulsion, Laponite
particles form a house-of-cards-like structure. After a number of rather confusing reports, the
status of Tggr in this system can be summarized as follows. The surprisingly high-Tggr found
with dielectric spectroscopy combined with spontaneous polarization noise measurements was
later ascribed to violent and intermittent events possibly linked to the presence of ions in the
solution which may be the actual source of FDT violation. For the moment, dielectric degrees
of freedom are invalidated as a good test ground for Tgpr in this sample [102]. Using other
methods, several groups found that Tgpr detaches from the bath temperature. Strachan et al
[103] measured the diffusion of immersed probe particles of different sizes via dynamic light
scattering and simultaneous rheological experiments and found a slightly higher Tgpr than
T. With micro-rheology, Abou and Gallet observed that Tggr increases in time from 7T to a
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maximum and then decreases back to T [104]. Using a passive micro-rheology technique and
extracting Tgpr from the energy of the probe particle via equipartition, Greinert et al also
observed that Tggr increases in time [105]. In parallel, a series of global mechanical tests,
and passive and active micro-rheological measurements that monitor the displacement and
mobility of probe Brownian particles were performed by Ciliberto’s and Bonn’s groups, both
finding no violation of FDT over a relatively wide frequency range [102, 106, 107]. In a very
detailed article, Jop et al explain many subtleties in the experimental techniques employed
and, especially, the data analysis used to extract Tgpp that could have biased the results quoted
above. A plausible reason for the lack of out-of-equilibrium signal in some experiments using
Laponite as well as other colloidal glasses is that the range of frequency—time explored may
not enter the ageing regime. Moreover, none of these works studied the degrees of freedom
of the Laponite disks themselves but, instead, the properties of the solvent molecules or probe
particles. More recently, Maggi et al combined dynamic light scattering measurements of the
correlation function of the colloid rotations with those of the refringence response [108] and
a x (C, t,) plot that is rather constant as a function of C and slowly recovers the equilibrium
form as the arrested phase is approached (z,, ranges from 90 to 1200 min and the violations
are observed for time differences between 0.1 and 1 ms, i.e. frequencies between 10 and
1 kHz). Tgpp is at most a factor of 5 larger than T'. The actual behaviour of Laponite remains
mysterious—and not only where Tgpg is concerned!

Oukris and Israeloff measured local dielectric response and polarization noise in polyvinyl
acetate with electric-force microscopy [109]. They probed long-lived nanoscale fluctuations
just below Ty, achieved a good signal-to-noise ratio down to very low frequencies, constructed
a parametric plot by keeping f, fixed and found a non-trivial asymptotic form with no
t, dependence within the available accuracy. The data combine into the parametric plot
Terr(C) 2~ TC~%97 in the ageing regime.

5.6. Relaxation in frustrated magnetic systems

Disordered and frustrated magnets behave collectively at low temperatures and developed
ordered phases that although not fully understood are accepted to exist. As macroscopic
glassy systems, they present a separation of time scales in their low-temperature dynamics and
are good candidates to admit a thermodynamic interpretation of the FDT violations.

5.6.1. Remarks on model systems. The physics of spin-glasses is a controversial subject.
Some authors push an Ising domain-growth interpretation of their dynamics—slowed down
by domain wall pinning by disorder—also known as the droplet picture [110]. If the scheme
discussed in section 5.2 were reproduced under strong disorder, the asymptotic x (C) plot
would have a linear piece of slope —1/T and a sharp transition at ggs to a flat ageing
piece. The domain-growth interpretation is not accepted by other authors and more complex
scenarios based on the static [30] and dynamic [6] solutions to the SK model are envisaged,
with a non-trivial x (C) as a result. Much effort has been put in trying to interpret numerical
and experimental data as validating one description at the expense of the other. Unfortunately,
it is very difficult to distinguish between the two. A third possibility is that, in a loose sense,
the spin-glass be like the low-T phase in the 2d XY model, with quasi-long-range order. Yet
another proposal is that actual spin-glass samples are of Heisenberg-type and that chirality
might be decoupled from spin with a chiral-glass order arriving at a higher critical temperature
than the spin-glass ordering [111].

Trap models [112] were devised to describe slow dynamics in systems with weak
ergodicity breaking. The simplest version comprises an ensemble of uncoupled particles
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exploring a spatially unstructured landscape of (free) energy traps by thermal activation at a
given thermodynamic temperature. For the specific choice of an exponential prior distribution
of trap depths, the model shows a glass transition at the inverse decay constant T, below which
an equilibrium Boltzmann state cannot exist. This approach was applied, notably, to describe
experiments in spin-glasses. In trap models with energetic or even entropic barriers, the x (C)
was found to have a slope that varies continuously (with X*° = 0) even though there is a single
scaling of relaxation times with age, it depends non-trivially on the observable and one cannot
use it to define a meaningful Tggg [40]. The reason for this failure seems to be the unbounded
nature of the energy and the fact that an equilibrium distribution does not exist below 7. Still,
Fielding and Sollich showed that neutral observables, that is to say those uncorrelated with
the averaged energy, share the same non-trivial x (C) relation.

5.6.2. Simulations. Monte Carlo simulations of the 3d Edwards—Anderson (EA) model were
carried out by several groups. One of the hallmarks of the dynamics of the SK model, dynamic
ultrametricity [6], is absent from all numerical and experimental data analysed so far. Magnetic
correlation and susceptibility relax in two scales, the by now usual stationary one for finite
time differences and an ageing one in which the data are well described by a simple ¢/,
scaling. This ageing scaling does not conform with the droplet picture either, which predicts
an asymptotic In#/Int, form. In all studies so far, the parametric plot was constructed by
keeping ¢, fixed and the curves drift towards increasing values of x for longer #,s as in a
transient or critical system. In simple coarsening problems, the drift with increasing z,, goes in
the opposite direction of rendering the ageing part of the curves flatter; this remark suggests
us to discard a simple droplet picture. The outcome yx (C) found for the longest ¢,, reached was
interpreted as being non-constant [113]—as in the SK model—although this is, in our opinion,
not that clear from the data that could be described by a straight line. The simultaneous ¢ /1,
scaling, the lack of unambiguous evidence for a stable plateau at gga, and a curved x (C)
in the ageing regime are not what would be expected from an analogy with the SK model.
Instead, it would be consistent with critical dynamics and the 2d XY model similitude. A
number of caveats on the numerical analysis should, however, be lifted before reaching a firm
conclusion.

The finite-time finite-length relation between static RX(C, £(#,,)) and long-time out-of-
equilibrium dynamic y (C, t,,) (section 3.5.1) [43] was put to the test in the 2d and 3d EA
models at finite 7. The notable coincidence of the two functions found in the 2d case, in which
there is no complex equilibrium structure, suggests that the claimed coincidence of x (C) and
R(C) in 3d [113] might also be valid just in the transient regime.

Simulations of the 3d Heisenberg spin-glass model with weak anisotropy suggest that Tgpg
associated with the spin degrees of freedom is constant and about twice the critical temperature
for spin-glass ordering [114]. As far as we know, chiral degrees of freedom have not been used
to estimate Tggg.

As regards fluctuations, the two kinds discussed in section 4.8 were measured in the 3d
EA spin-glass. Disordered induced ones [54], in which one computes strictly local noise-
averaged correlations and linear responses, demonstrate the existence of two types of spins in
each sample: rapid paramagnetic ones and slow ones. The former satisfy FDT while the latter
evolve in two time regimes with a fast one satisfying FDT and a slow one in which y; (C;) looks
quite flat as in coarsening systems. The simulation suggests that the two ensembles behave
independently of each other and are strongly correlated with the backbone of the ground state
configurations. The average over all sites (at finite #,,) gives rise to a curve with a non-constant
slope. These results suggest a still different picture for the spin-glass dynamics in which a
rather compact set of spins undergoes coarsening of the backbone equilibrium configurations
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while the other ones behave paramagnetically. This intriguing idea needs to be put to further
test.

The analysis of noise-induced fluctuations suggests that equation (36) is valid although
better numerical data would be needed to have definitive evidence for this statement. A more
detailed discussion can be found in [58]. Very recent studies of nonlinear fluctuations that
take advantage of FDRs to compute higher order responses point in the direction of the TRI
scenario [62] with a finite Tggg.

5.6.3. Experiments. On the experimental side, the first attempt to quantify FDT violations
in spin-glasses was indirect [115]. Simultaneous measurements of global magnetic noise and
susceptibility in the thiospinel insulating spin-glass were later performed by Hérisson and Ocio
[116]. The data confirm deviations from the FDT with a x (C, t,,) plot of relatively curved
form although still evolving during the experimental time window. The authors interpreted it
as evidence for the full RSB scenario, via the association x (C) <> RX(C). However, as with
numerical data [113], dynamic ultrametricity fails to show off, the asymptotic limit of the
parametric construction is still far, and a clear-cut distinction between a curved and a linear
x (C) is difficult to assess.

More recent experiments exploit two novel techniques, Hall-sensor-based magnetometer
and giant magnetoresistance technology to detect signals from very small samples [117]. The
use of these probes opens the way to perform a systematic study of FDT violations in magnetic
systems of different kinds (spin-glasses, super-spin glasses, disordered ferromagnets, etc). The
first of these measurements appeared recently [118] in a super-spin glass, a system of magnetic
nanoparticles suspended in fluid glycerol with a single-domain magnetic structure that behaves
as one large spin, the orientation of which is the only degree of freedom. The large magnetic
moment facilitates the observation of magnetic noise. For ageing times of the order of 1 h,
the ratio of Tgpr to the bath temperature T grows from 1 to 6.5 when T is lowered from 7, to
0.3 T, regardless of the noise frequency.

Artificial spin ice is yet another material in which the Tgpr notion has been tested
[119].

5.7. Driven liquids and glasses

In [120], the molecular dynamics of a binary Lennard—Jones mixture under a steady and
homogeneous shear flow was studied. The deviation from FDT is similar to the one found
analytically in disordered spin models of RFOT type with asymmetric couplings that mimic
non-conservative forces [59, 121]. Moreover, it does not depend on the observable. The tracer
particle experiment was also realized. When the tracers’ Einstein frequency is smaller than
the inverse relaxation time of the fluid, a non-equilibrium equipartition theorem holds with
mrRr vz2 = Tgrr, Where v, is the velocity in the direction transverse to the flow. For increasing
mrr the effective temperature very slowly crosses over from 7 to the slow mode value, in
perfect agreement with the notion of a temperature measured by a thermometer sensible to the
scale. Tgpp also captures the essential phenomenological idea that when a system is sheared
more vigorously its effective temperature increases.

O’Hern et al also studied FDRs in shear fluids [80]. This group defined an effective
temperature through the ‘static limit’ lim,_, o, x (t —¢,)/C (¢, t), akind of average of the slope
of the x (C) plot over the full range of C (¢ — ¢,,) that mixes different time scales (in particular,
the high and low frequency ones). A more thorough discussion of the comparison between this
definition and the one described in this review was given by Ilg and Barrat [79] within a fully
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solvable model that demonstrates the importance of not mixing time scales to get physically
sensible results.

A first study of the fluctuations of entropy production in a Lennard—Jones fluid above
and below T, under a shear flow appeared in [122] and the need to take into account Tgpr,
as obtained from the modification of the FDT below T,, was signalled in this paper. A more
detailed analysis of the time-scale-dependent effective temperature would be needed to fully
test the proposal in [51].

Another prominent example is the current-driven motion of vortices in type II
superconductors. Disorder reduces dissipation and is responsible for non-equilibrium transport
and magnetic properties. The external force induces two dynamic phase transitions separating
plastic flow, smectic flow and a frozen transverse solid. A low-frequency Tggr that decreases
with increasing driving force and reaches the equilibrium melting temperature when the
dynamic transverse freezing occurs was computed from the transverse motion in the fluid
moving phase [123].

Sollich et al proposed an extension of the trap model [112] that includes strain degrees of
freedom to describe the rheological, i.e. deformation and flow, properties of soft materials, such
as foams, pastes and dense emulsions [124]. This is the so-called soft glass material model.
In the steadily driven regime, stationarity is restored. Interestingly enough, the same (curved)
FDRs for observables that are uncorrelated with the averaged energy (to within logarithmic
corrections) are found in the trap model with and without drive [125]. In other words, as in
mean-field disordered models [59], the relations between correlations and linear responses are
the same for aged and weakly driven glasses, as modelled by trap models and observed with
such neutral observables. The correspondence does not apply to observables that do not satisfy
this condition.

5.8. Granular matter

Several studies of the effective temperature of granular matter have been pursued theoretically,
numerically and experimentally. In the latter front, D’ Anna et al immersed a torsion oscillator
in a granular system fluidized by strong high frequency external vibrations to realize the
‘thermometer’ experiment. They found Tgpp I'2 with T the adimensional measure of
vibrational intensity, and quite independently of w [126]. Wang et al [127] visualized
the dynamics of tracer particles embedded in a 3d granular ensemble slowly sheared
by the rotating inner wall of a Couette cell. Tgpp, as obtained from the comparison between
the tracer’s diffusion and mobility perpendicular to the applied rate of strain, is independent
of the shear rate used and the tracer’s properties but does depend on the packing density of
the system. Tests of the thermodynamic properties of Tgrr have not been carried through in
this system yet. The dependence on the direction of the applied stress was studied by Twardos
and Dennin in a plastic bead raft close to jamming [128]. As expected, the correlations and
linear responses in the direction of flow do not decay slowly and y (C) does not have the same
properties as in the transverse direction (cf [129] and [72]). Gei and Behringer stressed the
fact that in a granular assembly, the outcome of a mobility measurement depends on whether
one imposes the velocity or the external force [130].

In the powders literature reference is often made to the ‘granular temperature’, a
measure of the temperature of the fast modes, as given by the kinetic energy of the grains
Tx = %EK = %(vz). Importantly enough, Tk is a high frequency measure that does not really
access the structural properties of the sample and, in a sense, plays the role of the environmental
temperature in thermal systems. Tk is generically smaller than Tgpp, as in thermal systems
where Ty = T, the temperature of the bath.
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5.9. Activated dynamics

Activated processes often occur in systems that are out of equilibrium, in the sense that their
response to an external drive is strongly nonlinear or that their phase space distribution is not
the Gibbs—Boltzmann one. The question as to whether an Arrhenius law governs the activation
rate, possibly with an effective temperature, and how the latter compares to the one defined
from the deviations from FDT has been addressed recently [131]. Ilg and Barrat studied the
effect of an out-of-equilibrium flowing environment, a weakly sheared super-cooled liquid,
on the activated dynamics between the two stable conformations of dumbbell particles. The
transition rate is well described by an Arrhenius law with a temperature that crosses over
from the one of the equilibrium bath to a higher value close to the Tgpr of the slow modes of
the driven fluid. The crossover roughly occurs at the value of the rate that corresponds to the
inverse of the « relaxation time of the fluid.

Three related studies are also worth mentioning. An effective temperature, also
consistent with the one stemming from fluctuation—dissipation measurements, appears in a
phenomenological Arrhenius law that describes transverse jumps between channels in the
driven motion of vortex lattices with random pinning [129]. Haxton and Liu showed that in
the shear-dominated regime, the stress of a 2d sheared fluid follows an Arrhenius law with the
effective temperature [132]. A study of activation and Tggr in a 2d granular system close to
jamming appeared in [133].

5.10. Biological systems

In biologically inspired problems, the relevance of Tgpr was stressed to reveal the active
process in hair bundles [135] and model cells [136]. Morozov et al [137] studied a model
of the cytoskeletal network made of semi-flexible polymers subject to thermal and motor-
induced fluctuations and found a Tgpr that exceeds the environmental temperature 7 only in
the low-frequency domain where motor agitation prevails over thermal fluctuations. Simple
gene network models were studied from the Tggr perspective in [134]. Fluctuation—dissipation
ratios were used to quantify the degree of frustration, due to the existence of many metastable
disordered states, in the formation of viral capsids and the crystallization of sticky discs,
two self-assembly processes [138]. Fluctuations and responses of blood cell membranes for
varying ATP concentration were measured very recently [139]. The measured Tgpr approaches
the bath temperature at high frequencies and increases at low frequencies reaching four to ten
times the ambient temperature.

Ratchets are simple models of molecular motors, out-of-equilibrium systems with directed
dissipative transport in the absence of any external bias. Harada and Sasa proposed to use
the violations of FDT in flashing ratchets as a means to measure the energy input per unit
time in molecular motors—an otherwise difficult quantity to access [140]. Kolton showed that
the rectified transverse velocity of a driven particle in a geometric ratchet is equivalent to the
response of a 1d flashing ratchet at a drive-dependent Tggp, as defined from the generalized
Einstein relation [141].

Active matter is driven out of equilibrium by internal or external energy sources. Its
constituents absorb energy from their environment or from internal fuel tanks and dissipate it
by carrying out internal movements that lead to translational or rotational motion. A typical
example are self-propelled particle assemblies in bacterial colonies. The role played by Tgpr in
the stability of dynamic phases of motorized particle systems was stressed by Shen and Wolynes
[142]. Multiple measurements of Tgpp were carried out with molecular dynamic simulations
of motorized spherical as well as linear molecules in interaction [143]. All measurements
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(from fluctuation—dissipation ratio and using tracers) yield a constant low-frequency Tgpp > T
when the effect of the motors is not correlated with the structural rearrangements they induce.
Instead, Tgpr takes a slightly lower value than T when susceptible motors are used, as argued in
[142]. Such an ‘inversion’ also occurs in relaxational systems in which the initial configuration
is chosen to be one of equilibrium at a lower T than the working one [45-47]. In the case of
uncorrelated motors, Tgrr/T was found to follow the empirical law Tgpg/T >~ 1 + y £ with f
the active force relative to the mean potential force and y ~ 15 a parameter. Palacci et al [144]
investigated Tgpr by following Perrin’s analysis of the density profile in the steady state of an
active colloidal suspension under gravity. The active particles used—JANUS particles—are
chemically powered colloids and the suspension was studied with optical microscopy. The
measurements show that the active colloids are hotter than in the passive limit with a Tgpg
that increases as the square of the parameter that controls activation, the Peclet number, a
dependence that is highly reminiscent of the f-dependence of the simulations mentioned
above. Other theoretical studies of Tgpr in active matter appeared in [145].

Joly et al [146] used numerical techniques to study the non-equilibrium steady state
dynamics of a heated crystalline nanoparticle suspended in a fluid. This problem models an
active colloid that acts as a local heat source and generates a temperature gradient around
it. By comparing the mobility to the velocity correlation function, they found that the FDT
approximately holds at short-time lags with a temperature value that coincides with the kinetic
one. In contrast, at long-time lags data are compatible with the temperature estimated by using
the Einstein relation.

Certainly, many more studies of effective temperatures will appear in this very active field
of research, essentially out of equilibrium, in the near future.

5.11. Plasticity

Langer et al extended the traditional phenomenological defect-flow theory to the shear
transformation zone (STZ) theory of large-scale plastic deformation in amorphous materials
[147]. The new theory incorporates effective temperature ideas. It is a picture of plastic
deformation in molecular glasses in which a ‘disorder temperature’ characterizes the steady
state of the system and controls the slow processes. The relation between the disorder
temperature and a configurational entropy, under the assumption of a sharp separation of time
scales between structural and vibrational processes, as well as other thermodynamic properties
of it—along the lines discussed in section 4.9—were addressed. As far as we know, there have
been no tests to compare the STZ disorder temperature and the effective temperature computed
from fluctuation—dissipation measurements; this is the reason why we keep distinct names for
the two quantities. The STZ theory suggests an explanation of shear-banding instabilities that
have been put to the numerical test in [148].

Another approach to plasticity consist in adapting the RFOT-replica approach to this
problem [149]. Numerical simulations of binary soft sphere mixtures at low temperature prove
that the stress relaxation and its response to a strain step are also linked by a modified FDT
with a single valued Tgpr in the ageing regime [150].

5.12. Turbulent fluids

Last but not least, the experimental quest for effective temperatures in the steady state of
turbulent flows has recently restarted. As far as we know, two experiments on turbulent flows
appeared in the literature after the role played by different time scales was stressed in the
investigation of effective temperatures in macroscopic systems with slow dynamics.
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The transverse fluctuations and the response of a string held at its ends and at constant
tension (a mechanical probe) in the inertial regime of a stationary turbulent air jet flow were
compared to obtain the effective temperature. The ranges of wave numbers, and Reynolds
number (7.4 x 10* < Re < 1.7 x 10%), accessed in this experiment are pretty wide [151]. All
measurements are compatible with Tgrr o k'3, The k dependence confirms that there is
no equilibrium between Fourier modes due to the energy flux between scales. The particular
exponent is explained in [151] with a simple model derived from Kolmogorov 1941.

In a more recent experiment focus was set on an anisotropic non-homogeneous
axisymmetric von Karman flow at large Reynolds number [152]. The measurements are,
though, somehow indirect and yield an effective temperature that depends on the observable.
This feature needs to be better characterized.

5.13. Quantum models

There is growing interest in the dynamics of quantum systems. Of particular importance in
this field is to distinguish cases in which the system of interest is isolated and the dynamics
occur at constant energy from those in which the system is coupled to an environment and the
dynamics are dissipative. The out-of-equilibrium dynamics are typically induced in two ways:
the system is driven out of equilibrium by, for instance, a coupling to electric or heat current
sources, or it is strongly perturbed by time-dependent external fields; the system evolves after
a quench meaning that a parameter in its Hamiltonian is changed with some protocol. All
these cases are easily realized in the laboratory nowadays and their potential applicability is
being explored. Theoretical searches for effective temperatures in these problems, defined in
different ways, are starting to appear in the literature.

As recalled in section 2, linear responses and correlation functions in equilibrium quantum
systems are related by FDTs that take a slightly different form depending on the bosonic or
fermionic character of the observables. In an out-of-equilibrium situation, one can compare
the linear response and the correlation and test whether, at least in some dynamic regime, a
parameter replacing the environmental temperature appears. This route was first taken within
mean-field quantum glassy models quenched from their disordered into their ordering phase
[38, 39, 153]. In these models, the quantum FDT holds within the rapid stationary scale.
Instead, when the dynamics gets slow and the ageing regime is attained, the relation between
linear response and correlation takes the classical form, with an effective temperature that is
higher than the one of the bath and different from zero. As in the classical case, the static
properties of these models can be solved with the replica and TAP approaches and a connection
with the dynamic solution can be established [154].

More recently, the analysis of mesoscopic quantum models commenced. A metallic
ring threaded by a time-dependent magnetic field and coupled to a lead in equilibrium at
temperature 7 and chemical potential x was studied in [155]. The numerical solution to the
Schwinger—Keldysh equations for the free but driven fermions, in the limit of small dissipation,
suggests that their Green functions satisfy an FDT with constant Tggg. More recently, Arrachea
et al attacked the problem of a wire connected to left and right reservoirs (in equilibrium at
the same chemical potential and temperature) and driven out of equilibrium by different ac
pumps locally connected to the wire [156]. The local effective temperature was computed
from the modified FDT and by requiring that there be no heat flow to nor from macroscopic
probes, i.e. thermometers, weakly coupled to chosen sites on the device. For weak driving
and environmental temperatures lower than the Fermi energy of the electrons, these two
measurements coincide on each site. Tgpr has spatial 2kg-Friedel-like oscillations (allowing
for local cooling) but its spatial average is higher than the temperature of the reservoirs when
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the pump is applied. Moreover, the direction of heat flow between the device and each one
of the leads is dictated by the temperature gradient at the contact, defined as the difference
between Tgpr at the contact and the temperature of the lead. For conveniently chosen pumps,
the device can extract energy from one lead and transport it to the opposite one.

The theory of isolated quantum models is a very active field of research, pushed by the large
number of experiments on cold-atom systems that are being realized worldwide. Questions on
thermalization after a quantum quench, in which a parameter in the Hamiltonian is suddenly
changed, are being posed, extending this very much investigated issue in classical statistical
mechanics to quantum systems. At present the belief is that non-integrable quantum systems
do reach equilibrium while integrable ones do not. Rigol et al proposed to use extended Gibbs—
Boltzmann measures in the latter case with as many constants of motion as necessary fixed by
the initial condition [157]. Currently, this proposal is being debated and studied in particular
cases. For instance, Rossini er al complemented it with the idea that non-local observables
(when expressed in terms of quasi-particles) should equilibrate in integrable systems while
local ones should not under general conditions [158]. They based this conjecture on their
mixed analytic/numeric solution of a quantum spin chain. Studies of effective temperatures
(as defined from deviations from FDT) in this context are underway [159]. Another quantum
setting in which an effective temperature was proposed is the entanglement entropy of a
sub-system [160].

6. Conclusions

In this review, we discussed the notion of an effective temperature [ 1-4] that stemmed from the
deviations from the fluctuation—dissipation theorem found in the analytic solution to simple
glass models [5, 6] and self-consistent approximations to more realistic glassy systems [32, 33].
Although phenomenological definitions of out-of-equilibrium temperatures were not lacking
in the literature, see e.g. [8, 10], the effective temperature discussed in this report lies, in our
opinion, on a firmer physical basis.

Fluctuation—dissipation violations can be searched for in all out-of-equilibrium systems.
Whether the outcome can be interpreted as giving origin to an effective temperature is a
different and more delicate issue. In this review, we tried to distinguish cases in which the
latter can be done from cases in which it is not possible. A necessary condition seems to be that
the system should evolve slowly, irrespectively of whether it relaxes or is in a NESS, in a small
entropy production regime [4]. Although not rigorously proven, it seems natural to require that
it approaches an approximately flat measure on a region of phase space, the entropy of which
(also called complexity) should give an alternative, microcanonic-like, access to the effective
temperature [2, 7, 21, 66]. A consequence of the last condition is that the energy density,
and more generally the averages of one-time-dependent observables converge to finite values.
All these features are satisfied exactly in some solvable mean-field-like glasses such as the
celebrated p-spin disordered model and the low-T mode-coupling approximations. Numerical
simulations suggest that they are also, at least within a given time regime, in a large number of
glassy systems with short-range interactions, including Lennard—Jones mixtures and others.
In all these cases, the systems have a rather complex collective behaviour with a separation of
time scales fast—slow that has an influence on the values that the effective temperature takes.

As far as it has been checked, in all the above-mentioned cases, the effective temperature
conforms to the common prejudices one has of a temperature and, more importantly, it has the
most welcome property of being measurable directly, hence being open to straightforward—
though difficult to implement—experimental tests. Central to the correct identification is the
realization that the relaxation time scales have to be correctly identified and that measurements
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have to focus on each of them separately. Simulations in atomic glasses are very complete
and yield pretty convincing support to the effective temperature ideas [92-96, 120-122].
Experimental subtleties prove to be difficult to keep under control, especially in colloidal
suspensions [101-108], but successful measurements of fluctuation—dissipation violations in
structural glasses [ 100, 109] have been surveyed. Very recent numerical [ 143] and experimental
[144] studies of active matter are also very promising. Simulations of spin-glass [113] clearly
demonstrate the violation of FDT but are not as precise as to determine beyond doubt the
actual functional form of the modified relation. In our opinion, pre-asymptotic effects are
still to be disentangled from the asymptotic regime in a satisfactory way. The same applies
to the first experiments in an insulator spin-glass [116], the outcome of which could be
greatly improved by the use of innovative techniques [117, 118]. A careful analysis of the
thermodynamic properties of the fluctuation—dissipation ratio remains to be done in such
frustrated and disordered magnets.

Quite naturally, the idea that effective temperatures could be relevant to other out-of-
equilibrium systems was explored in the last 15 years. Critical quenches in dissipative
classical systems [12], zero temperature dynamics at the lower critical dimension [13], granular
matter [71-77] and turbulent fluids [151, 152] are just some examples in which FDRs have
been studied. The question remains as to whether the outcome admits a thermodynamic
interpretation in, at least, some limits. In the case of critical quenches, this was proposed
to be the case when the long two-time limit prescription of Godréche and Luck is taken
[85] (although perturbative corrections yield undesired observable dependences yet to be
understood [87]). Simulations of weakly perturbed granular matter are very encouraging [72]
but experiments have turned out to be much harder to realize [70] (see, though, [127]). In
turbulent fluids, the question remains open experimentally.

Out-of-equilibrium quantum systems are receiving enormous attention nowadays, boosted
by experiments in cold atoms and nanotechnology. In this realm, fundamental questions of
thermalization arise, especially in isolated samples submitted to a quench. The effective
temperature has been studied in a few dissipative quantum systems out of equilibrium, both
mean-field [38, 39] and low-dimensional [155, 156]. The analysis of whether it also plays a
role in quantum quenches of isolated samples is underway [159].

This review presents a vast panorama of fluctuation—dissipation deviations in non-
equilibrium classical, and to a much smaller extent, quantum systems, and their interpretation,
in some cases, in terms of effective temperatures. Many questions of fundamental interest
remain open in this field. One of the main open challenges in the context of glassy systems is
to find the microscopic origin of these modifications. From a wider viewpoint, the validity of
the effective temperature concept should be more clearly delimited.
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