
Computational Science & Discovery

PAPER

SkData: data sets and algorithm evaluation
protocols in Python
To cite this article: James Bergstra et al 2015 Comput. Sci. Discov. 8 014007

View the article online for updates and enhancements.

You may also like
Detection of Radio Pulsars in Single-pulse
Searches Within and Across Surveys
Di Pang, Katerina Goseva-Popstojanova
and Maura McLaughlin

-

Photoplethysmogram signal quality
estimation using repeated Gaussian filters
and cross-correlation
W Karlen, K Kobayashi, J M Ansermino et
al.

-

How to Train Your Flare Prediction Model:
Revisiting Robust Sampling of Rare
Events
Azim Ahmadzadeh, Berkay Aydin, Manolis
K. Georgoulis et al.

-

This content was downloaded from IP address 3.147.205.154 on 04/05/2024 at 08:37

https://doi.org/10.1088/1749-4699/8/1/014007
/article/10.1088/1538-3873/ab9f20
/article/10.1088/1538-3873/ab9f20
/article/10.1088/0967-3334/33/10/1617
/article/10.1088/0967-3334/33/10/1617
/article/10.1088/0967-3334/33/10/1617
/article/10.3847/1538-4365/abec88
/article/10.3847/1538-4365/abec88
/article/10.3847/1538-4365/abec88

SkData: data sets and algorithm evaluation protocols
in Python

James Bergstra1, Nicolas Pinto2 and David D Cox3
1University of Waterloo, Canada
2Massachusetts Institute of Technology, USA
3Harvard University, USA
E-mail: james.bergstra@uwaterloo.ca

Received 16 March 2014, revised 7 August 2014
Accepted for publication 4 May 2015
Published 28 July 2015

Computational Science & Discovery 8 (2015) 014007

doi:10.1088/1749-4699/8/1/014007

Abstract
Machine learning benchmark data sets come in all shapes and sizes, whereas
classification algorithms assume sanitized input, such as (x, y) pairs with
vector-valued input x and integer class label y. Researchers and practitioners
know all too well how tedious it can be to get from the URL of a new data
set to a NumPy ndarray suitable for e.g. pandas or sklearn. The SkData
library handles that work for a growing number of benchmark data sets
(small and large) so that one-off in-house scripts for downloading and
parsing data sets can be replaced with library code that is reliable, com-
munity-tested, and documented. The SkData library also introduces an open-
ended formalization of training and testing protocols that facilitates direct
comparison with published research. This paper describes the usage and
architecture of the SkData library.

Keywords: Python, machine learning, data management, reproducible science

Introduction

There is nothing standard about data sets for machine learning. The nature of data sets
varies widely, from physical measurements of flower petals [Iris], to pixel values of tiny
public domain images [CIFAR-10], to the movie watching habits of NetFlix users
[Netflix]. Some data sets are tiny and others are vast databases that push the limits of
storage technology. Different data sets test different algorithms’ abilities to make different

Computational Science & Discovery 8 (2015) 014007
1749-4699/15/014007+16$33.00 © 2015 IOP Publishing Ltd

mailto:james.bergstra@uwaterloo.ca
http://dx.doi.org/10.1088/1749-4699/8/1/014007

kinds of statistical inference. Often a single data set may be used in several ways to
evaluate multiple kinds of algorithm. This flexibility and lack of definition makes it
challenging to design software abstractions for data sets.

In contrast to the great variety of data sets though, researchers have condensed the variety
of data sets to a much smaller set of machine learning problems. For example, a great deal of
machine learning research addresses the classification problem of assigning an integer-valued
label (y) to some vector of binary- or real-valued features (X). Many classification algorithms
have been developed, such as Support Vector Machines, Decision Trees, and Nearest
Neighbors. The reason that they are all called classification algorithms is that they provide a
common mathematical interface.

While the neatness of these mathematical abstractions is reflected in the organization
of machine learning libraries such as [sklearn], we believe there is a gap in Python’s
machine learning stack between raw data sets and such neat, abstract interfaces. Data, even
when it is provided specifically to test classification algorithms, is seldom provided as
(feature, label) pairs. Guidelines regarding standard experiment protocols (e.g. which data
to use for training) are expressed informally in webpage text if at all. The SkData library
consolidates myriad little details of idiosyncratic data processing required to run
experiments on standard data sets, and packages them as a library of reusable code. It
serves as both a gateway to access a growing list of standard public data sets and as a
framework for expressing precise evaluation protocols that correspond to standard ways of
using those data sets.

This paper introduces the SkData library [SkData] for accessing data sets in Python.
SkData provides two levels of interface:

1. It provides low-level idiosyncratic logic for acquiring, unpacking and parsing standard data
sets so that they can be loaded into sensible Python data structures.

2. It provides high-level logic for evaluating machine learning algorithms using strictly
controlled experiment protocols, so that it is easy to make direct, valid model
comparisons.

These interfaces are provided on a data-set-by-data-set basis. All data sets supported by
SkData provide a low-level interface. For a data set called foo the low-level interface would
normally be provided by a submodule called foo.dataset. SkData provides a high-level
interface for some, but not all supported data sets. This high-level interface would normally be
provided by a submodule foo.view. The high-level modules provide one or more views of
the low-level data which make the underlying data fit the form required by machine learning
algorithms.

Relative to language-agnostic repositories (such as the [UCI] database of machine
learning data sets, and [Lac12]), SkData provides Python code for downloading and
loading diverse data representations into more standardized in-memory formats. Anyone
using these data sets in a Python program would have to use something like the low-level
routines in SkData anyway to simply load the data. Relative to standardized repositories
such as [MLData], SkData provides convenient downloading and loading logic, as well as

2

Comput. Sci. Discov. 8 (2015) 014007 J Bergstra et al

formal protocols (in Python) for model selection and evaluation. Relative to the [Pandas]
Python library, SkData provides data-set-specific logic for downloading, parsing, and
model evaluation; Pandas provides useful data structures and statistical routines. It would
make sense to use SkData and Pandas together, and future data set modules in SkData may
use Pandas internally. The [PyTables] library provides a high-performance HDF5 wrapper.
It would make sense to use SkData and PyTables together, such as for example for low-
level SkData routines to store and manipulate downloaded data. [PyLearn2] is primarily a
Theano-powered library for deep learning, but it also includes code to support experiments
on a number of standard data sets (mostly of images). The focus on image data sets
motivated Pylearn2ʼs choice to provide a standard interface that is a great fit for image or
vector classification tasks, but can be more awkward for different sorts of tasks. Pylearn2
does support huge data sets by appealing to PyTables and HDF5. Beyond the Python
ecosystem, the torch-datasets package [TorDat] provides data sets for the popular [Torch]
machine learning library, that is Lua-based.

There is also a growing number of Python projects that provide data sets.
This paper is organized into the following sections:

1. Data set access (low-level).

2. Intro to experiment protocols (high-level).

3. Protocol case study: simple cross-validation.

4. The experiment protocol.

5. Command-line interface.

6. Current list of data sets.

Data set access (low-level interface)

There is nothing standard about data sets, and SkData’s low-level interface correspondingly
comprises many modules that are not meant to be formally interchangeable. Still, there are
informal sorts of similarities in some aspects of what users want to do with data, at least in the
context of doing machine learning. SkData’s low-level modules provide logic for several
common activities for most of the data sets supported by the library:

• downloading,

• verifying archive integrity,

• decompressing,

• loading into Python, and

• deleting cached data.

These common activities are typically implemented by methods on singleton classes
within SkDataʼs low-level modules. The data set class for the Labeled Faces in the Wild [LFW]
data set provides a representative example of what low-level data set objects look like. What
follows is an abridged version of what appears in skdata.lfw.dataset.

3

Comput. Sci. Discov. 8 (2015) 014007 J Bergstra et al

″″″
<Description of data set>
<Citations to key publications>
″″″
published_scores = {’PC11’: .881, ...}
url_to_data_file = ...
sha1_of_data_file = ...
class LFW(object):

@propertys
def home(self):

″″″Return cache folder for this data set″″″
return os.path.join(

skdata.data_home.get_data_home(),
’lfw’)

def fetch(self, download_if_missing = True):
″″″Return iff required data is in cache″″
...

def clean_up(self):
″″″Remove cached and downloaded files″″″
...

@property
def meta(self):

″″″Return meta-data as list of dicts″″″
...

The next few sub-sections describe what the methods of this class (as a representative of
low-level data set classes) and other elements of the module are supposed to do. There is a
convention that this low-level logic for each data (e.g. foo) should be written in a Python file
called skdata.foo.dataset. Other projects may implement data set classes in whatever
files are convenient. Technically, there is no requirement that the low-level routines adhere to
any standard interface because SkData includes no functions meant to work on any data set.

Context and documentation

First, notice that the dataset.py file includes a significant docstring describing the data set
and providing some history regarding its usage. This docstring should provide links to key
publications that either introduced or used this data set.

If the data set has a home page, that should be documented here too. Many data sets’ home
pages maintain a table of benchmarks and pointers to influential model evaluation papers. It is
appropriate to reproduce such tables in this dataset.py file either in the docstring, or, more
helpfully, as a module-level Python dictionary (e.g. the published_scores module-level
dictionary in our example). Such a dictionary makes it easier to produce figures and tables
showing performance relative to models from the literature.

Downloading and deleting

Often the first order of business when dealing with a data set is to download it. Data sets come
from a range of sources, but it is worth distinguishing those that can be downloaded freely (we

4

Comput. Sci. Discov. 8 (2015) 014007 J Bergstra et al

will call these public) from the rest (private). The SkData library is suitable and useful for both
public and private data, but it is more useful for public data sets because the original download
from a canonical internet source can be automated. Whether a data set is private or public, the
dataset.py file should include checksums for verifying the correctness of important data
files when it makes sense to do so.

Most dataset modules use SkData’s get_data_home() function to identify a local
location for storing large files. This location defaults to .skdata/ but it can be set via a
$SKDATA_ROOT environment variable. In our code example, LFW.home() uses this
mechanism to identify a location where it can store downloaded and decompressed data. The
convention is that a dataset called foo would use path.join(get_data_home(),
’foo’) as a persistent cache location.

The fetch method downloads, verifies the correctness of, and decompresses the various
files that make up the data set. It stores downloaded files within the folder returned by
LFW.home(). If download_if_missing is False, then fetch raises an exception if the
data is not present. When fetch() returns, it means that the data can be loaded (see below).

If a data set module downloads or creates files, then it should also provide a mechanism for
deleting them. In our LFW example, the clean_up method recursively deletes the entire
LFW.home() folder, erasing the downloaded data and all derived files. Other data sets may
wish to provide a more fine-grained approach to clean-up that perhaps erases derived files, but
not any archive files that cannot easily be replaced.

Decompressing, parsing and loading

Experienced machine learning practitioners are well aware that in terms of files and formats, a
data set may be just about anything. Some of the more popular data sets in machine learning and
computer vision include one or more of the following:

• comma separated value text files,

• XML documents (with idiosyncratic internal structure),

• text files with ad hoc formatting,

• collections of images, movies, audio files,

• Matlab workspaces,

• pickled NumPy ndarray objects and

• HDF5 databases.

Correctly interpreting meta-data can be tricky and writing code to simply load media
collections that include files with non-homogeneous formats, encoding types, sampling
frequencies, color spaces, and so on can be tedious.

One of the main reasons for developing and releasing SkData was to save scientists the
trouble of re-writing scripts that make sense of data set files. A low-level data set module should
include the logic for reading, walking, parsing, etc any and all raw archive files. This logic
should turn those raw archive files into appropriate Python data structures such as lists,
dictionaries, NumPy arrays, Panda data frames and or PyTables Table objects.

5

Comput. Sci. Discov. 8 (2015) 014007 J Bergstra et al

For example, the low-level LFW data set class’s meta attribute is computed by parsing a
few text files and walking the directory structure within LFW.home(). The meta property is a
list of dictionaries enumerating what images are present, how large they are, what color space
they use, and the name of the individual in each image. It does not include all the pixel data
because, in our judgement, the pixel data required a lot of memory and could be provided
instead by a lazy array (see Dealing with Large Data below). Generally, the choice of what
aspects of a data set should be in the meta table and what should be indexed indirectly is left up
to the data set module author. The guiding criterion should be that the meta elements should
provide some convenient representation of the data and fit easily into memory. If the entire
dataset is small, then it can all be put into the meta list. If the data set is large, then the elements
of the meta list should contain information for looking up the larger payload data, such as
images, video, audio, etc. Standardizing data sets is not the job of the meta attribute; we will
see how to do that below in the discussion of Tasks.

The LFW low-level module contains an additional method called parse_pairs_file
which parses some additional archived text files describing the train/test splits that the LFW
authors recommend using for the development and evaluation of algorithms. This may seem
ad hoc and indeed it is. Low-level modules are meant to be particular to individual data sets, and
not standardized.

There is not a lot more to say about low-level data set modules in general. The section
Current List of Data Sets below enumerates the data sets currently in SkData that have some
degree of low-level support, and that list continues to grow.

Intro to experiment protocols (high-level interface)

Users who simply want a head start in getting Python access to downloaded data are
well-served by the low-level modules, but users who want a framework to help them
reproduce previous machine learning results by following specific experiment protocols will be
more interested in using SkData’s higher-level view interface. The next few sections describe
the high-level protocol abstractions provided by SkData’s various data set-specific view
modules.

Background: classification and cross-validation

Before we get into view module abstractions for experiment protocols, this section will
introduce the machine learning methodology that these abstractions will ultimately provide.

SkData’s high-level modules currently provide structure for classification problems. A
classification problem, in machine learning terms, is a scenario in which labels (without loss of
generality: integers) are to be predicted from features. If we wish to predict the name of an
individual in a photograph, or categorize email as spam or not spam, it is natural to look at these
as classification problems.

It is useful to set this up formally. If is our set of possible labels, and is the set of
possible feature vectors, then a classifier is a mapping (or model) → m: . A classification
algorithm is a procedure for selecting a particular model from a set of possible models.
Generally this selection is made on the basis of data that represent the sorts of features and

6

Comput. Sci. Discov. 8 (2015) 014007 J Bergstra et al

labels that we believe will arise. If we write this belief as a joint density P x y(,) over ×
then we can write down one of the most important selection criteria for classification models:

= ≠)ℓ m(, (1)y m x{ ()}
⎡⎣ ⎤⎦

= ∈)m ℓ m* argmin (. (2)m
()

Any function like the ℓ here that assigns a real-valued score to a model can be called a loss
function. This particular loss function is called the zero–one loss because it is the expected
value of a random variable that is either zero (when our classifier is wrong) or one (when our
classifier predicts the label). In terms of end-of-the-day accuracy, m *() is, by definition, the best
model we could possibly choose. Classification algorithms represent various ways of
minimizing various loss functions over various sets of models.

In practice, we cannot expect a mathematical expression for P x y(,). Instead, we must
content ourselves with a sample D of 〈 〉x y, pairs. An enumeration of the various ways of using
the examples in D to select and evaluate models from is beyond the scope of this paper. (For
more information, see e.g. [HTF09]). SkData is designed to support the full variety of such
protocols, but in the interest of keeping this paper focused, we will only use what is called
simple cross-validation to illustrate how SkData’s high-level view modules make it easy to
evaluate classification algorithms on a range of classification tasks.

Protocol case study: simple cross-validation

Simple cross-validation is a technique for evaluating a learning algorithm (e.g. a
classification algorithm), on the basis of a representative sample of independent,
identically drawn (iid) 〈 〉x y, pairs. It is helpful to think of a learning algorithm as
encapsulating the selection criterion and optimization algorithm corresponding to
equations (1) and (2), and as providing a mapping → A: from a data set to a model.
Evaluating a classification algorithm means estimating how accurate it is likely to be on
data it has never seen before. Simple cross-validation makes this estimate by partitioning
all available data D into two disjoint subsets. The first subset Dtrain is called a training set;
it is used to choose a model m from . The second subset Dtest is called a test set; since
this data was not used during training, it represents a sample of all data that the learning
algorithm has never seen. Mathematically, simple cross-validation means evaluating an
algorithm A as follows:

=)m A D(, (3)train

∑=
∣ ∣ < >∈

≠ℓ A
D

()
1

. (4)
x y D

y m x
test ,

{ ()}

test

The abstractions provided by SkData make it as easy to evaluate an algorithm on a data set as
equations (3) and (4) suggest. Conveniently, the [sklearn] library provides learning
algorithms such as LinearSVC that implement a methods fit and predict that
correspond exactly to the requirements of equations (3) and (4) respectively. As a
convenience and debugging utility, SkData provides a simple wrapper called Sklearn-
Classifier that makes it easy to apply any sklearn classifier to any SkData
classification view. Using this wrapper, evaluating an SVM on the [Iris] data set for
example looks like this:

7

Comput. Sci. Discov. 8 (2015) 014007 J Bergstra et al

1 from sklearn.svm import LinearSVC
2 from skdata.base import SklearnClassifier
3 from skdata.iris.view import SimpleCrossValidation
4
5 # Create an evaluation protocol
6 iris_view = SimpleCrossValidation()
7
8 # Choose a learning algorithm
9 estimator = LinearSVC
10 algo = SklearnClassifier(estimator)
11
12 # Run the evaluation protocol
13 test_error = iris_view.protocol(algo)
14
15 # See what happened:
16 for report in algo.results[best_model]:
17 print report[train_name], report[model]
18
19 for report in algo.results[loss]:
20 print report[task_name], report[err_rate]
21
22 print "TL;DR: average test error:", test_error

The next few subsections explain what these functions do and suggest how Tasks and
Protocols can be used to encode more elaborate types of evaluation.

Case study step 1: creating a view

The first statement of our cross-validation code sample creates a view of the Iris data set.

6 iris_view = SimpleCrossValidation()

The SimpleCrossValidation class uses the Iris data set’s low-level interface to load
features into a numpy ndarray and generally prepare it for usage by Sklearn. In general, a
View may be configurable (e.g. how to partition D into training and testing sets) but this simple
demonstration protocol does not require any parameters.

Case study step 2: creating a learning algorithm

The next two statements of our cross-validation code sample create a learning algorithm as an
SkData class.

10 estimator = LinearSVC
11 algo = SklearnClassifier(estimator)

The argument to SklearnClassifier is a parameter-free function that constructs a
sklearn.Estimator instance, ready to be fit to data. The algo object keeps track of the
interactions between the iris_view protocol object and the estimator classifier object.
When wrapping around sklearn’s Estimators it is admittedly confusing to call algo the
learning algorithm when estimator is also deserving of that name. The reason we call algo
the learning algorithm here (rather than estimator) is that SkData’s high-level modules

8

Comput. Sci. Discov. 8 (2015) 014007 J Bergstra et al

expect a particular interface of learning algorithms. That high-level interface is defined by
skdata.base.LearningAlgo.

The SklearnClassifer acts as an adapter that implements the skdata.base.
LearningAlgo interface in terms of sklearn.Estimator. The class serves two roles:
(1) it provides a reference implementation for how to handle commands from a protocol object
and (2) it supports unit tests for protocol classes in Skdata. Researchers are encouraged to
implement their own LearningAlgo classes following the example of the Sklearn-
Classifier class. Custom LearningAlgo classes can compute and save algorithm-specific
statistics and implement performance-enhancing hacks such as custom data iterators and pre-
processing caches. The practice of appending a summary dictionary to the lists in self.results
has proved useful in our own work, but it likely not the best technique for all scenarios. A
LearningAlgo subclass should somehow record the results of model training and testing, but
SkData’s high-level view modules does not require that those results be stored in any
particular way. We will see more about how a protocol object drives training and testing later in
the section The Evaluation Protocol.

Case study step 3: evaluating the learning algorithm

The heavy lifting of the evaluation process is carried out by the protocol()call on line 14.

14 test_error = iris_view.protocol(algo)
15
16 # See what happened:
17 for report in algo.results[best_model]:
18 print report[train_name], report[model]
19
20 for report in algo.results[loss]:
21 print report[task_name], report[err_rate]

The protocol method encapsulates a sort of dialog between the iris_view object as
a driver and the algo object as a handler of commands from the driver. The protocol in
question (iris.view.SimpleCrossValidation) happens to use just two kinds of
command:

1. Learn the best model for training data.

2. Evaluate a model on testing data.

The first kind of command produces an entry in the algo.results[’best_model’]
list. The second kind of command produces an entry in the algo.results[’loss’] list.

After the protocol method has returned, we can loop over these lists (as in lines 17–21)
to obtain a summary of what happened during our evaluation protocol.

The experiment protocol

Now that we have seen the sort of code that SkData’s high-level evaluation protocol is meant to
support, the next few sections dig a little further into how it works.

9

Comput. Sci. Discov. 8 (2015) 014007 J Bergstra et al

The protocol container: Task

The main data type supporting SkData’s experiment protocol is what we have called the Task.
The skdata.base file defines the Task class, and it is used in all aspects of the protocol
layer. A Task instance represents a semantically labeled subsample of a data set. It is simply a
dictionary container with access to elements by object attribute (it is a namespace), but it has
two required attributes: name and semantics. The name attribute is a string that uniquely
identifies this Task among all tasks involved in a Protocol. The semantics attribute is a string
that identifies what kind of Task this is.

A task’s semantics identifies (to the learning algorithm) which other attributes are present
in the task object and how they should be interpreted. For example, if a task object has
’vector_classification’ semantics, then it is expected to have (a) an ndarray
attribute called x whose rows are examples and columns are features and (b) an ndarray
vector attribute y whose elements label the rows of x. If a task object instead has
’indexed_image_classification’ semantics, then it is expected to have (a) a sequence
of RGBA image ndarrays in attribute .all_images, (b) a corresponding sequence of labels
.all_labels, and (c) a sequence of integers .idxs that picks out the relevant items from
all_images and all_labels as defined by NumPy’s take function.

The set of semantics is meant to be open. In the future, SkData may have a data set for
which none of these semantics applies. For example SkData may, in the future, provide access
to aligned multi-lingual databases of text. At that point it may well be a good idea to define a
’phrase_translation’ task whose inputs and outputs are sequences of words. The new
semantics string would cause existing learning algorithms to fail, but failing is reasonable
because phrase translation is not obviously reducible to existing semantics.

The semantics identifiers employed so far in SkData include:

• ’vector_classification’

• ’indexed_vector_classification’

• ’indexed_image_classification’

• ’image_match_indexed’

Vector classification was explained above; it corresponds quite directly to the sort of X and
y arguments expected by e.g. sklearn’s LinearSVC.fit. The indexed semantics allow
learning algorithms to cache example-wise pre-processing in certain protocols, such as K-fold
cross-validation. The general idea is that Tasks with e.g. ’indexed_vector_classifica-
tion’ semantics share the same X and y arrays, but use different index lists to denote different
selections from X and y. Whenever different indexed tasks refer to the same rows of X and y,
the learning algorithm can re-use cached pre-processing. The ’image_match_indexed’
semantics were introduced to accommodate the LFW data set in which image pairs are labeled
according to whether they feature the same person or different people. Future data sets featuring
labeled image pairs may leverage learning algorithms written for LFW by reusing the
’image_match_indexed’ semantics. Future data sets with new kinds of data may wish to
use new semantics strings.

10

Comput. Sci. Discov. 8 (2015) 014007 J Bergstra et al

Protocol commands (learningAlgo interface)

Now that we have established what Tasks are, we can describe the methods that a
LearningAlgo must support in order to participate in the most basic protocols:

best_model(task, valid = None)

Instruct a learning algorithm to find the best possible model for the given task, and
return that model to the protocol driver. If a valid (validation) task is provided, then
use it to detect overfitting on train.

loss(model, task)

Instruct a learning algorithm to evaluate the given model for the given task. The
returned value should be a floating point scalar, but the semantics of that scalar are
defined by the semantics of the task.

forget_task(task)

Instruct the learning algorithm to free any possible memory that has been used to cache
computations related to this task, because the task will not be used again by the
protocol.

These functions are meant to have side effects in the sense that the LearningAlgo
instance is expected to record statistics and summaries etc, but the LearningAlgo instance is
expected not to cheat! For example, the best_model method should use only the examples in
the task argument as training data. The interface is not designed to make this sort of cheating
difficult to do, it is only designed to make cheating easy to avoid.

A LearningAlgo can also include additional methods for use by protocols. For
example, one data set in SkData features a protocol that distinguishes between the selection of
features and the selection of a classifier of those features. That protocol calls an additional
method that is not widely used:

retrain_classifier(model, task)

Instruct the learning algorithm, to retrain only the classifier, and not repeat any internal
feature selection that has taken place.

When new protocols require new commands for learning algorithms, our policy is to add
them. As evidenced by the short list of commands above, we have only had to do this once
to date.

The SemanticsDelegator LearningAlgo

Authors of new LearningAlgo base classes may wish to inherit from
base.SemanticsDelegator instead. The SemanticsDelegator class handles calls
to e.g. best_model by appending the semantics string to the call name and calling that more
specialized function, e.g. best_model_indexed_vector_classification. While the
number of protocol commands may be small, a new LearningAlgo subclass might
implement some protocol commands quite differently for different semantics strings with little
code overlap. The SemanticsDelegator base class makes writing such LearningAlgo
classes a little easier.

11

Comput. Sci. Discov. 8 (2015) 014007 J Bergstra et al

The SklearnClassifier uses the SemanticsDelegator in a different way to
facilitate a cascade of fallbacks from specialized semantics to more general ones. The indexed
image tasks are converted first to indexed vector tasks and then to non-indexed vector tasks
before finally being handled by the sklearn classifier. This pattern of using machine
learning reductions to solve a range of tasks with a smaller set of core learning routines is a
powerful one, and a LearningAlgo subclass presents a natural place to implement this
pattern.

Protocol objects

Having looked at the Task and LearningAlgo classes, we are finally ready to look at that
last piece of SkData’s protocol layer: the Protocol objects themselves. Protocol objects (such as
iris.view.SimpleCrossValidation) walk a learning algorithm through the process
of running an experiment. To do so, they must provide a view of the data set they represent (e.g.
Iris) that corresponds to one of the Task semantics. They must create Task objects from subsets
of that view in order to call the methods of a LearningAlgo.

In the case study we looked at earlier, the call to iris_view.protocol(algo)
constructed two Task objects corresponding to a training set (train) and a test set (test) of
the Iris data and then did the following:

model = algo.best_model(train)
err = algo.loss(model, test) return err

More elaborate protocols construct more task objects and train and test more models, but
typically the protocol methods are quite short. Doubly-nested K-fold cross-validation is
probably the most complicated evaluation protocol, but it still consists essentially of two nested
for loops calling best_model and loss using a single K-way data partition. It can be useful
to implement longer protocols as iterators rather than methods so that they can be aborted early.

Dealing with large data

Generally, each data set module is free to deal with large data in a manner befitting its data set,
although particular Task semantics constrain the data representations that can be used at the
protocol layer. Two complementary techniques are used within the SkData library to keep
memory and CPU usage under control when dealing with potentially enormous data sets. The
first technique is to use the indexed Task semantics. Recall that when using indexed semantics,
a Task includes an indexable data structure (e.g. ndarray, DataFrame, or Table)
containing the whole of the data set D, and a vector of positions within that data structure
indicating a subset of examples. Many indexed Task instances can be allocated at once because
each indexed Task shares a pointer to a common data set. Only a vector of positions must be
allocated for each Task, which is relatively small.

The second technique is to use the lazy array in skdata.larray as the indexable data
structure for indexed Tasks. The larray can delay many transformations of an ndarray
until elements are accessed by __getitem__. For example, if a protocol only requires the first
100 examples of a huge data set, then only those examples will be loaded and processed. The
larray supports transformations such as re-indexing, elementwise functions, a lazy zip, and
cacheing. Lazy evaluation together with cacheing makes it possible for protocol objects to pass
very large data sets to learning algorithms, and for learning algorithms to treat very large data

12

Comput. Sci. Discov. 8 (2015) 014007 J Bergstra et al

sets in sensible ways. The lazy array does not make batch learning algorithms into online ones,
but it provides a mechanism for designing iterators so that online algorithms can traverse large
numbers of examples in a cache-efficient way.

Command-line interface

Some data sets also provide a main.py file that provides a command-line interface for
operations such as downloading, visualizing, and deleting data. The LFW data set for example,
has a simple main.py script that supports one command that downloads (if necessary) and
visualizes a particular variant of the data using [glumpy].

python -c skdata/lfw/main.py show funneled

Several other data sets also have main.py scripts, which support various commands.
These scripts are meant to follow the convention that running them with no arguments prints a
usage description, but they may not all conform. In most cases, the scripts are very short and
easy to read so go ahead and look at the source if the help message is lacking.

Current list of data sets

The SkData library currently provides some level of support for about 40 data sets (some data
sets are parametrically related, not clearly distinct). The data sets marked with (*) provide the
full set of low-level, high-level and script interfaces described above. Details and references for
each one can be found in the SkData project web page, wiki and source code. Many of the
synthetic data sets are inherited from the sklearn project; the authors have contributed most
of the image data sets.

Blobs

Synthetic: isotropic Gaussian blobs

Boston

Real-estate features and prices

Brodatz

Texture images

CALTECH101

Med-res Images of 101 types of object

CALTECH256

Med-res Images of 256 types of object

CIFAR10 (*)

Low-res images of 10 types of object

Convex

Small images of convex and non-convex shapes

Digits

Small images of hand-written digigs

13

Comput. Sci. Discov. 8 (2015) 014007 J Bergstra et al

Diabetes

Small non-synthetic temporal binary classification

IICBU2008

Benchark suite for biological image analysis

Iris (*)

Features and labels of iris specimens

FourRegions

Synthetic

Friedman{1, 2, 3}

Synthetic

Labeled Faces in the Wild (*)

Face pair match verification

Linnerud

Synthetic

LowRankMatrix

Synthetic

Madelon

Synthetic

MNIST (*)

Small images of hand-written digigs

MNIST Background Images

MNIST superimposed on natural images

MNIST Background Random

MNIST superimposed on noise

MNIST Basic

MNIST subset

MNIST Rotated

MNIST digits rotated around

MNIST Rotated Background Images

Rotated MNIST over natural images

MNIST Noise {1, 2, 3, 4, 5, 6}

MNIST with various amounts of noise

Randlin

Synthetic

Rectangles

Synthetic

Rectangles Images

Synthetic

14

Comput. Sci. Discov. 8 (2015) 014007 J Bergstra et al

PascalVOC {2007, 2008, 2009, 2010, 2011}

Labeled images from PascalVOC challenges

PosnerKeele (*)

Dot pattern classification task

PubFig83

Face identification

S Curve

Synthetic

SampleImages

Synthetic

SparseCodedSignal

Synthetic

SparseUncorrelated

Synthetic

SVHN (*)

Street View House Numbers

Swiss Roll

Synthetic dimensionality reduction test

Van Hateren Natural Images

High-res natural images

Conclusions

Standard practice for handling data in machine learning and related research applications
involves a significant amount of manual work. The lack of formalization of data handling steps
is a barrier to reproducible science in these domains. The SkData library provides both low-
level data wrangling logic (downloading, decompressing, loading into Python) and high-level
experiment protocols that make it easier for researchers to work on a wider variety of data sets,
and easier to reproduce one another’s work. Development to date has focused on classification
tasks, and image labeling problems in particular, but the abstractions used in the library should
apply to many other domains from natural language processing and audio information retrieval
to financial forecasting. The protocol layer of the SkData library (especially using the larray
module) supports large or infinite (virtual) data sets as naturally as small ones. The library
currently provides some degree of support for about 40 data sets, and about a dozen of those
feature full support of SkData’s high-level, low-level and main.py script APIs.

Acknowledgments

This work was funded by the Rowland Institute of Harvard, the National Science Foundation
(IIS 0963668) in the United States and the Banting Postdoctoral Fellowship program in Canada.

15

Comput. Sci. Discov. 8 (2015) 014007 J Bergstra et al

References

[CIFAR-10] Krizhevsky A 2009 Learning multiple layers of features from tiny images Masters Thesis University
of Toronto

[glumpy] https://code.google.com/p/glumpy/
[HTF09] Hastie T, Tibshirani R and Friedman J 2009 The Elements of Statistical Learning: Data Mining

Inference, and Prediction (Berlin: Springer)
[Iris] http://archive.ics.uci.edu/ml/datasets/Iris
[Lac12] Lacoste A, Laviolette F and Marchand M 2012 Bayesian comparison of machine learning algorithms on

single and multiple datasets Proc. AISTATS
[LFW] Huang G B, Ramesh M, Berg T and Learned-Miller E 2007 Labeled Faces in the Wild: A Database for

Studying Face Recognition in Unconstrained Environments Amherst TR 07-49 University of Massachusetts
[Netflix] http://netflixprize.com/
[MLData] http://mldata.org
[Pandas] http://pandas.pydata.org
[PyTables] http://pytables.org
[PyLearn2] Goodfellow I J, Warde-Farley D, Lamblin P, Dumoulin V, Mirza M, Pascanu R, Bergstra J,

Bastien F and Bengio Y 2013 Pylearn2: a machine learning research library arXiv:1308.4214
[SkData] http://jaberg.github.io/skdata/
[sklearn] Pedregosa A et al 2011 Scikit-learn: machine learning in Python JMLR 12 2825–30
[TorDat] https://github.com/rosejn/torch-datasets
[Torch] The Torch Machine Learning Library: http://torch.ch/
[UCI] http://archive.ics.uci.edu/ml/

16

Comput. Sci. Discov. 8 (2015) 014007 J Bergstra et al

https://code.google.com/p/glumpy/
http://archive.ics.uci.edu/ml/datasets/Iris
http://netflixprize.com/
http://mldata.org
http://pandas.pydata.org
http://pytables.org
http://arXiv.org/abs/1308.4214
http://jaberg.github.io/skdata/
https://github.com/rosejn/torch-datasets
http://torch.ch/
http://archive.ics.uci.edu/ml/

	Introduction
	Data set access (low-level interface)
	Context and documentation
	Downloading and deleting
	Decompressing, parsing and loading

	Intro to experiment protocols (high-level interface)
	Background: classification and cross-validation

	Protocol case study: simple cross-validation
	Case study step 1: creating a view
	Case study step 2: creating a learning algorithm
	Case study step 3: evaluating the learning algorithm

	The experiment protocol
	The protocol container: Task
	Protocol commands (learningAlgo interface)
	The SemanticsDelegator LearningAlgo
	Protocol objects
	Dealing with large data

	Command-line interface
	Current list of data sets
	Conclusions
	Acknowledgments
	References

