
Computational Science & Discovery

PAPER

Application of PDSLin to the magnetic
reconnection problem
To cite this article: Xuefei Yuan et al 2013 Comput. Sci. Discov. 6 014002

 

View the article online for updates and enhancements.

You may also like
A variational fast Fourier transform method
for phase-transforming materials
A Cruzado, J Segurado, D J Hartl et al.

-

Direct and inverse electromagnetic
scattering problems for bi-anisotropic
media
Dinh-Liem Nguyen

-

Iterative methods for 3D implicit finite-
difference migration using the complex
Padé approximation
Carlos A N Costa, Itamara S Campos,
Jessé C Costa et al.

-

This content was downloaded from IP address 3.144.77.71 on 04/05/2024 at 08:55

https://doi.org/10.1088/1749-4699/6/1/014002
https://iopscience.iop.org/article/10.1088/1361-651X/abe4c7
https://iopscience.iop.org/article/10.1088/1361-651X/abe4c7
https://iopscience.iop.org/article/10.1088/1361-6420/ab382d
https://iopscience.iop.org/article/10.1088/1361-6420/ab382d
https://iopscience.iop.org/article/10.1088/1361-6420/ab382d
https://iopscience.iop.org/article/10.1088/1742-2132/10/4/045011
https://iopscience.iop.org/article/10.1088/1742-2132/10/4/045011
https://iopscience.iop.org/article/10.1088/1742-2132/10/4/045011


Application of PDSLin to the magnetic reconnection
problem

Xuefei Yuan1, Xiaoye S Li1, Ichitaro Yamazaki2, Stephen C Jardin3,4,
Alice E Koniges1 and David E Keyes5,6

1 Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
2 Innovative Computing Laboratory, University of Tennessee, Knoxville, TN 37996, USA
3 Theory and Computation Department, Princeton Plasma Physics Laboratory, Princeton,
NJ 08540, USA
4 Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA
5 Division of Computer, Electrical and Mathematical Sciences and Engineering,
King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
6 Department of Applied Physics and Applied Mathematics, Columbia University, New York,
NY 10027, USA
E-mail: xyuan@lbl.gov

Received 13 February 2012, in final form 19 October 2012
Published 9 January 2013
Computational Science & Discovery 6 (2013) 014002 (12pp)
doi:10.1088/1749-4699/6/1/014002

Abstract. Magnetic reconnection is a fundamental process in a magnetized plasma at both
low and high magnetic Lundquist numbers (the ratio of the resistive diffusion time to the
Alfvén wave transit time), which occurs in a wide variety of laboratory and space plasmas,
e.g. magnetic fusion experiments, the solar corona and the Earth’s magnetotail. An implicit
time advance for the two-fluid magnetic reconnection problem is known to be difficult because
of the large condition number of the associated matrix. This is especially troublesome when
the collisionless ion skin depth is large so that the Whistler waves, which cause the fast
reconnection, dominate the physics (Yuan et al 2012 J. Comput. Phys. 231 5822–53). For
small system sizes, a direct solver such as SuperLU can be employed to obtain an accurate
solution as long as the condition number is bounded by the reciprocal of the floating-point
machine precision. However, SuperLU scales effectively only to hundreds of processors or
less. For larger system sizes, it has been shown that physics-based (Chacón and Knoll 2003
J. Comput. Phys. 188 573–92) or other preconditioners can be applied to provide adequate
solver performance. In recent years, we have been developing a new algebraic hybrid linear
solver, PDSLin (Parallel Domain decomposition Schur complement-based Linear solver)
(Yamazaki and Li 2010 Proc. VECPAR pp 421–34 and Yamazaki et al 2011 Technical Report).
In this work, we compare numerical results from a direct solver and the proposed hybrid solver
for the magnetic reconnection problem and demonstrate that the new hybrid solver is scalable
to thousands of processors while maintaining the same robustness as a direct solver.
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1. Introduction

Most of the visible universe is in the state of plasma, and plasma phenomena are of major importance
in space, solar and ionospheric physics. A plasma is an ionized gas, which consists of positively charged
ions and negatively charged electrons. In a plasma, the microscopic processes are dominated by collective
charged particles interactions: charge separation between ions and electrons gives rise to electric fields,
and charged particles motions result in currents and, consequently, magnetic fields. Electric and magnetic
fields configurations can be quite intricate and provide foundations for a wide range of phenomena of
overwhelming complexity. The mathematical description of plasma appropriate for describing global dynamics
is magnetohydrodynamics (MHD) [5].

The simplest form of MHD is ideal MHD, where a fluid has so little resistivity that it can be treated as a
perfect conductor [6, 7]. The topology of magnetic fields is fixed due to this small resistivity and energy can
be stored in moving fluids. The release of energy can happen when the condition of ideal MHD breaks down;
thus resistive MHD is considered [8–10]. Resistive MHD describes magnetized fluids with nonzero electrical
resistivity that leads to a breaking in magnetic topology, and the presence of the Hall parameter introduces
Whistler waves into the equations [5, 11, 12].

Among a multitude of plasma phenomena, the magnetic reconnection problem deserves special
attention [13]. Magnetic reconnection is a fundamental process in a magnetized plasma: in the reconnection
process, two magnetic flux tubes come close together at some point, and they are broken and reconnected in
a different way due to the effect of finite resistivity and other non-ideal effects, where the overall topology of
the magnetic field is changing and the magnetic field energy is converting into particle heat and bulk kinetic
energy over a relatively short period of time [11]. Such phenomena occur in a wide range of laboratory and
space plasmas, e.g. magnetic fusion experiments, the solar corona and the Earth’s magnetotail [11, 14, 15].

To fully capture the change of magnetic field topology in magnetic reconnection, we focus on a four-field
Hall MHD model valid in the low guide-field limit, where Whistler waves are the dominant two-fluid (ion
and electron) effect in the present work. This set of extended MHD equations with hyper-resistivity terms
is derived from a set of two-dimensional basic MHD equations describing incompressible, two-fluid, quasi-
neutral plasma [16–18]. These equations are a subset of the full, compressible two-fluid MHD equations,
which have been studied in two [19] and three [20, 21] dimensions.

However, the simulation of magnetically confined, reconnecting plasma presents numerical
challenges [18, 19, 22, 23]. This is a result of many factors, including the complexity of models that accurately
represent burning plasmas, as well as the resolution of the large range of spatial–temporal scales at which
significant physical processes occur [24]. Even in the simpler ideal MHD model, a symmetric hyperbolic
system that is a subset of the two-fluid or extended MHD equations, there are three distinct wave types with
a wide separation of propagation speeds and with complex polarizations when applied to magnetized plasma
conditions typical of fusion plasmas. When discretized on a finite difference or finite element mesh, these
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alone lead to a range of timescales and accuracy requirements that are a challenge to address with a single
simulation [25].

A key result of temporal stiffness is that traditional explicit methods used for solution to such models may
require prohibitively small time step restrictions compared to the dynamical scales of macroscopic stability
and plasma fueling. The Courant–Friedrichs–Lewy condition [26, 27] imposes the time step size limits for
numerical stability that grow quadratically with the mesh increment sizes. Implicit schemes alleviate those
issues related to the time step size and the mesh increment sizes.

We present implicit numerical methods in a backwards difference formula (BDF)–Newton solution
framework. The partial differential equations system becomes a set of nonlinear finite difference equations,
F(u) = 0, after discretization. For such a set of nonlinear algebraic equations, inexact Newton methods [28–30]
are applied on each implicit time step to iterate to a solution through a sequence of linear problems (Newton
update equations) from an initial guess of the solution from the previous time step, and some linear solvers
are used for the Newton equations. Moreover, such an implicit time advance for the two-fluid magnetic
reconnection problem is known to be difficult because of the large condition number of the associated matrix.
This is especially troublesome when the collisionless ion skin depth is large, so that the Whistler waves, which
cause the fast reconnection, dominate the physics [1].

Large-scale sparse linear systems of equations, such as the Newton update equations system within
numerical simulations of magnetic reconnection, become more interesting in large-scale numerical simulations
because their complexity grows superlinearly with traditional direct techniques. If such a system is solved via
a direct solver by factorization, the memory requirement is extremely large; if such a system is solved via
an iterative solver, the preconditioning techniques are highly required in which parameters tuning is quite
complex to provide a quick convergence [1].

Recently, a new library called PDSLin (Parallel Domain decomposition Schur complement-based Linear
solver) [3, 4] was introduced as a hybrid direct/iterative solver based on Schur complement methods.
The Krylov method (Generalized Minimal RESidual (GMRES) method) with the exact LU factors of the
approximation of the Schur complement as the preconditioner in PETSc [31] is used to solve the Schur
complement system. Finally, the interior systems are solved in parallel using the already computed LU factors
of the subdomains. PDSLin is implemented in C with a Fortran interface and uses MPI for message passing
on distributed memory machines.

In section 2, we state the four-field extended MHD equations including hyper-resistivity terms. Section 3
describes the inexact Newton methods. In section 4, the hybrid linear solver library PDSLin is introduced.
The numerical experiments and comparisons for the direct solver and hybrid solver are discussed in section 5.
Section 6 provides the conclusions of this work.

2. The mathematical model for the magnetic reconnection problem

The reduced two-fluid MHD equations in two dimensions in the limit of zero electron mass can be written
as [18, 32] 

∂

∂t
∇

2φ + V · ∇(∇2φ) = [∇2ψ,ψ] + µ∇
4φ,

∂V

∂t
+ V · ∇V = [B, ψ] + µ∇

2V − µh∇
4V,

∂ψ

∂t
+ V · ∇ψ = di[ψ, B] + η∇2ψ − ν∇4ψ,

∂B

∂t
+ V · ∇ B = [V, ψ] + di[∇

2ψ,ψ] + η∇2 B − ν∇4 B.

(1)

Here, φ and ψ are stream functions for the in-plane components of the ion velocity and magnetic field,
respectively, and V and B are z components of the ion velocity and magnetic field, respectively. Hence, the
ion velocity and magnetic field are expressed as V = ∇φ × ẑ + V ẑ and B = ∇ψ × ẑ + Bẑ, where η is the
electrical resistivity, di is the collisionless ion skin depth, µ is the fluid viscosity, ν is the hyper-resistivity
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(or electron viscosity) and h is the hyperviscosity coefficient added to damp spurious oscillations that might
otherwise develop. It must be verified that the physical results converge to a unique value independent of those
coefficients over some range [18]. The Poisson bracket [ f, g] ≡ ∇ f ×∇g· ẑ =

∂ f
∂x
∂g
∂y −

∂ f
∂y
∂g
∂x , V·∇ f = −[φ, f ]

( f = ∇
2φ, V , ψ , B), and the out-of-plane current density j is the negative Laplacian of the magnetic flux

j = −∇
2ψ .

It has been shown that equations (1) are valid in the low guide-field limit in which Whistler waves are
the dominant two-fluid effect [17] and that a very similar set of equations is valid in the high guide-field limit
in which the kinetic Alfvén wave is prominent [16]. Thus, we take equations (1) to be typical of the extended
MHD equations in two dimensions. The hyper-viscosity term is present just to damp grid scale oscillations.
However, the hyper-resistivity term is necessary for the equations to be mathematically well behaved in the
neighborhood of the reconnection layer. It has been shown that a unique converged result will be obtained if
the hyper-resistivity decreases as the square of the typical zone size h2 as h approaches 0 [19, 33].

The finite difference approximation to equations (1) is obtained by applying standard second-order space-
centered finite difference operators in spatial discretization and variable order BDF methods in temporal
discretization [1]. Our physical domain is � = [− Lx

2 ,
Lx
2 ] × [− L y

2 ,
L y

2 ], L x = 25.6, L y = 12.8 [18] with

periodic boundary conditions in the x-direction and Dirichlet boundary conditions at y = ±
L y

2 . However, we

take the first quadrant �̃ = [0, Lx
2 ] × [0, L y

2 ] as the computational domain and solutions in � are obtained by
mirroring solutions from this first quadrant. This is because φ, B in equations (1) are anti-symmetric along
the x-axis and y-axis and V, ψ are symmetric along the x-axis and y-axis. Therefore, boundary conditions of
equations (1) in �̃ become (i) Dirichlet at y =

L y

2 and (ii) anti-symmetric for φ and B and symmetric for ψ
and V at y = 0, x = 0 and x =

Lx
2 .

We define a Harris equilibrium and perturbation similar to that used in the geospace environmental
modeling (GEM) magnetic reconnection challenge [34], and take it as the initial condition for ψ . The other
three fields (φ, V, B) are initialized to zero:

ψ(x, y, 0) =
1
2 ln cosh 2y + ε cos kx x cos ky y, kx =

2π
Lx
, ky =

π
L y
, ε = 0.1. (2)

The GEM initial conditions also included a perturbation in the fluid density, which we take to be constant in
this four-field model.

3. The nonlinear solver: inexact Newton methods

The nonlinear partial differential equations (1) become a set of nonlinear algebraic equations through finite
difference approximation: F(u) = 0 with F = (Fφ, FV , Fψ , FB) and u = (φ, V, ψ, B) after spatial
and temporal discretizations. When we advance the system in time with the notation (φk, V k, ψk, Bk) and
(φk−1, V k−1, ψk−1, Bk−1) as the solutions for (φ, V, ψ, B) obtained at time level k, k − 1, respectively, a
high-order BDF method requires sufficient solution history to be accumulated at the beginning of the time
integration process. In our approach, the time integration process begins, starting from an initial guess at t = 0
with a BDF method of the order of one (backward Euler), gradually increasing the order up to a desired value
as more and more solution history becomes available7.

For the residual evaluation system F(u) = 0, we can do multivariable Taylor expansion about a current
point um :

F(um+1) = F(um) + F′(um+1
− um) + h.o.t.,

where h.o.t. means higher-order terms. Let the right-hand side be zero and neglect h.o.t. to derive a strict
Newton iteration over a sequence of linear systems:{

J(um)δum
= −F(um)

um+1
= um + δum, m = 0, 1, . . . ,

(3)

7 The highest order available in the hand-coded program is fourth order, and numerical experiments are carried out to second order in
time.
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for a given u0. Here, F(u) is a vector-valued function of nonlinear residuals, J =
∂F
∂u is its Jacobian matrix, u

is the vector to be found and m is the nonlinear iteration index.
We posit that the vector-valued function F(um) has the following properties: there exists an u∗ with

F(u∗) = 0; F is continuously differentiable in the neighborhood of u∗; and the Jacobian matrix J(u∗) is
nonsingular.

The Newton iteration stops based on a required drop in the norm of the nonlinear residual

‖F(um)‖ < εr‖F(u0)‖,

and/or a sufficiently small Newton update

‖δum
‖ < εs.

Newton methods are attractive because they converge rapidly from any sufficiently good initial guess u0.
In transient problems, a good initial guess at each stage is the solution at the previous stage. However, there is
a drawback of Newton’s method when solving the Newton correction (Newton update equation) at each stage:
it is very expensive to compute the exact solution using a direct method such as Gaussian elimination if the
number of unknowns is large and may not be justified when um is far from u∗. Therefore, it is reasonable to
use iterative methods to solve the Newton equation only approximately.

There is a class of inexact Newton methods that computes an approximate solution of Newton equations
in a manner such that

‖rm
‖

‖F(um)‖
6 ηm,

where the residual rm is given by

rm
≡ J(um)δum + F(um),

and the non-negative forcing sequence {ηm
} is used to control the level of accuracy [30].

Then the inexact Newton method is{
J(um)δum

= −F(um) + rm, where ‖rm
‖

‖F(um)‖
6 ηm,

um+1
= um + δum, m = 0, 1, . . . .

(4)

Here ηm may depend on um . When ηm
= 0, we recover the Newton method.

4. The parallel domain decomposition Schur complement-based linear solver

At each Newton (nonlinear) iteration, we need to solve linear system (3) for Newton methods or (4) for inexact
Newton methods. In this section, we introduce the parallel domain decomposition Schur complement-based
linear solver PDSLin.

The hybrid linear software library PDSLin is designed to solve a large-scale linear system:

Ax = b, (5)

where A is a square real or complex general matrix, b is a given right-hand-side vector and x is the solution
vector. It uses a non-overlapping domain decomposition technique called the Schur complement method [35].
The original linear system is first reordered into a 2 × 2 block system of the following form:(

A11 A12

A21 A22

) (
x1

x2

)
=

(
b1

b2

)
, (6)

where A11 are interior subdomains, A22 are separators, and A12 and A21 are the interfaces between A11 and
A22. To eliminate the unknowns associated with A11, an equivalent system(

A11 A12

0 S

) (
x1

x2

)
=

(
b1

b̂2

)
(7)

5
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is obtained. In this system, the Schur complement S is defined as

S = A22 − A21 A−1
11 A12, (8)

and the right-hand side

b̂2 = b2 − A21 A−1
11 b1. (9)

The solution of the global system can be achieved by solving the Schur complement system

Sx2 = b̂2 (10)

first and then solving the interior system

A11x1 = b1 − A12x2. (11)

If k interior subdomains are extracted, the coefficient matrix of (6) has the form

(
A11 A12

A21 A22

)
=


D1 E1

D2 E2
. . .

...

Dk Ek

F1 F2 · · · Fk A22

 , (12)

where Dl is the lth subdomain and El and Fl are the interfaces between Dl and A22. There are two processor
groups gl and gs : processors in gl factorize the subdomain Dl and rows of Dl , El and columns of Fl are
distributed among these processors8; processors in gs solve the Schur complement system (10).

In parallel, the Schur complement S in (8) is computed as

S = A22 −

k∑
l=1

Fl D−1
l El = A22 −

k∑
l=1

(U−T
l FT

l )
T(L−1

l El) = A22 −

n p∑
p=1

W (p)G(p), (13)

for an LU factorization Dl = L lUl . Here, n p is the number of cores used to solve the entire system, and the
matrices W (p) and G(p) are given by9

W (p)
= W (:, jp : ( jp+1 − 1)), G(p)

= G( jp : ( jp+1 − 1), :), (14)

such that the pth processor owns the jpth through ( jp+1 − 1)th columns of W = (U−T
11 AT

21)
T and rows of

G = L−1
11 A12, where A11 = L11U11 given by L l and Ul , l = 1, . . . , k.

When computing W (p) and G(p), their approximations W̃ (p) and G̃(p) are calculated by discarding
nonzeros with magnitudes less than a prescribed drop tolerance σ1, and the approximate update matrix
T̃ (p)

= W̃ (p)G̃(p). If the pth processor belongs to the processor group gs , to compute its local portion of the
approximate Schur complement, it gathers the corresponding rows of T̃ (q) from all processors, and computes

Ŝ(p) = A(p)22 −

∑
q

T̃ (q)(i p : (i p+1 − 1), :),

where the pth processor owns the i pth through the (i p+1 − 1)th row of A22. Moreover, small nonzeros are
dropped from Ŝ(p) to form its approximation S̃(p) with dropping tolerance σ2. In the process of computing the
approximate Schur complement S̃, several performance-enhancing techniques are employed [3].

There are three main phases: extracting and factorizing the interior subdomains A11; computing an
approximate Schur complement S̃ of S in (8); and computing the solution. During those phases, a challenge
exists to develop such a robust, efficient and general-purpose hybrid solver for thousands of processors with a
parallel implementation.

8 The nonzeros of Dl and El are stored in the compressed row storage format and the nonzeros of Fl are stored in the compressed
column storage format.
9 Fortran notation is used here.
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When the parallel nested dissection algorithm implemented in PT-SCOTCH [36] is used to extract interior
subdomains, multiple processors are assigned to each interior subdomain to allow us to increase the processor
count without increasing either the number of subdomains or the size of the Schur complement. This two-
level parallel approach is different from the general one-level approach10 and does not need a large number
of subdomains to use large numbers of processors; therefore, the size of the Schur complement does not
increase. To compute an approximate Schur complement as a preconditioner, we have to deal with the load
imbalance and communication both in an intra-processor group assigned to the same subdomain and in the
inter-processor groups assigned to different subdomains [3]. When computing the solution, a preconditioned
Krylov method in PETSc [31] is used to solve the Schur complement system, and the preconditioner is the
exact LU factorization of the approximate Schur complement S̃ via SuperLU [37]. Finally, the interior systems
are solved in parallel, using the already computed LU factors of the subdomains.

The most challenging phase of the parallel implement is to compute an approximate Schur complement S̃,
especially for a two-level parallel framework, where multiple processors are assigned to one subdomain. The
benefit of using such a two-level approach is to limit the size of the Schur complement when using thousands
of processors; however, it is hard to deal with the load imbalance and communication in these two aspects:
an intra-processor group assigned to the same subdomain and the inter-processor groups assigned to different
subdomains.

There are two other hybrid linear solvers, HIPS [38] and MaPHyS [39], that are also based on the Schur
complement methods. However, they have different approaches in parallel implementations. The one-level
approach is used in HIPS, where multiple subdomains are assigned to a single processor, and PDSLin and
MaPHyS use the two-level approach. As a result, HIPS has a larger Schur complement system when the
number of cores increases. The Schur complement system is treated as a global system in PDSLin and HIPS,
but a local system11 in MaPHyS. When solving the Schur complement system, HIPS uses the block level-
based ILU and MaPHyS uses additive Schwarz as preconditioners; PDSLin uses the LU of the approximation
of the Schur complement S̃ as the preconditioner, which provides a robust preconditioning for solving highly
indefinite or ill-conditioned systems.

5. Numerical results

Our numerical experiments are carried out on the Cray XE6 Hopper, a leading petascale supercomputing
system at the National Energy Research Scientific Computing Center (NERSC). Hopper is NERSC’s first
petascale system with a peak performance of 1.28 Petaflops s−1, 153 216 processor cores for running scientific
applications, 212 TB of memory and 2 Petabytes of online disk storage. Hopper has 6384 compute nodes
made up of two twelve-core AMD ‘MagnyCours’ 2.1 GHz processors per node, of which 6000 nodes have
32 GB DDR3 1333 MHz memory per node and 384 nodes have 64 GB DDR3 1333 MHz memory per node
(www.nersc.gov/systems/hopper-cray xe6/). All calculations were carried out with a 64 bit arithmetic.

There are five physical parameters: the electrical resistivity η, the fluid viscosity µ, the hyper-viscosity
h = C1hx h y , the hyper-resistivity ν = C2hx h yη and the collisionless ion skin depth di. The cell size is hx ×h y .
We choose as default the values used given in the GEM problem specification: η = 0.005, µ = 0.05, C1 = 4.0,
C2 = 1.0 and di ∈ [0, 1] [18, 34].

For the nonlinear solver: the relative convergence tolerance εr = 10−8; the convergence tolerance in terms
of the norm of the change in the solution between steps εs = 10−7.

5.1. Condition numbers

Starting from initial states (2), the system (1) evolves in time. When the collisionless ion skin depth number
di = 0.0 (resistive MHD), because φ = V = B = 0.0 at t = 0, the second and fourth equations in (1) imply
that V and B remain unchanged as time advances, and the out-of-plane current density has a large gradient

10 In a one-level parallel approach, a single processor is assigned to factorize one or more interior subdomains.
11 MaPHyS computes the local Schur complements associated with the subdomains explicitly to construct a set of parallel local
preconditioners.

7
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Figure 1. The plots of the negative current density − j in � = [− L x
2 ,

L x
2 ] × [− L y

2 ,
L y

2 ] at time t = 0.0
(left), time t = 40.0 with di = 0.0 (middle) and time t = 40.0 with di = 1.0 (right).
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Figure 2. The reconnected magnetic flux 9(t) (a), the reconnection rate R(t) (b) for di = 0.1, 0.5, 1.0
with dt = 0.1 and the condition numbers (c) for di = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0 with dt = 1.0 from
time t = 0.0 to T = 40.0 for η = 0.005, µ = 0.05, C1 = 4.0 and C2 = 1.0 on a 128 × 128 grid.

in the mid-plane. As we expected, there is a thin current layer in the mid-plane, known as the Sweet–Parker
layer [40, 41] and no x-point shows up. As di changes from 0.0 to 1.0, the reconnection region has essentially
changed character from a y-point to an x-point as expected [42] (see figure 1). For the system (1), the
reconnected magnetic flux is defined as 9(t) =

1
2 [ψ(0, 0, t) − ψ(L x/2, 0, t)], and the reconnection rate

is the time derivative of 9(t): R(t) = ∂9(t)/∂t .
The implicit time advance for this two-fluid magnetic reconnection problem is known to be difficult

because of the large condition number of the associated matrix. This is especially troublesome when the
collisionless ion skip depth di is large so that the Whistler waves, which cause the fast reconnection, dominate
the physics [1].

Figures 2(a) and (b) show comparisons between 9(t) and R(t) for the collisionless ion skin depth
di = 0.1, 0.5 and 1.0 with dt = 0.1. When di = 1.0, the reconnection rate reaches its maximum at
R(t = 26.6) = 0.03. Figure 2(c) shows comparisons of condition numbers of different di = 0.0, 0.2, 0.4,
0.6, 0.8 and 1.0 with dt = 1.0. When di = 1.0, the condition number reaches its maximum of 1.95 × 107 at
t = 11.0.

Moreover, the condition number increases as the problem size increases or the time step size increases [1].
Table 1 lists condition numbers of associated matrices of the time-dependent nonlinear system for different
problem sizes. The problem size (Nx × Ny), the size of the associated matrix (size(A)), the nonzeros in the
matrix (nnz(A)), the nonzeros in the matrix L + U (nnz(L + Z )), the fill ratio, the condition number (cond(A))
and the memory usage (mem) in Gigabytes are listed in the table. As the problem size increases, the fill ratio
increases; therefore the memory usage increases. The maximum memory per node on Hopper is 64 GB, which
is not enough for evaluating the condition number for the associated matrix for the 1024 × 1024 size problem:
if the fill ratio is 100, the estimate requirement of memory is about 98 GB. The sequential direct solver package
SuperLU 4.3 [43] is used to obtain these condition numbers.

Two matrices are chosen for numerical experiments: the first one has a size of 1048 576 with 23 970 514
nonzeros, and we call the related linear system as mcomp; the other one has a size of 4194 304 with 96 175 314
nonzeros, and we call the related linear system as bcomp.
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Table 1. The condition numbers of associated matrices of the magnetic reconnection problem for
t = 0.0 with dt = 0.5, di = 1.0, η = 0.005, µ = 0.05, C1 = 4.0 and C2 = 1.0.

Nx × Ny size(A) nnz(A) nnz(L + U ) Fill ratio cond (A) mem (GB)

64 × 64 16 384 358 674 13 698 180 38 6.30 × 104 0.15
128 × 128 65 536 1470 802 71 554 872 48 1.48 × 106 0.88
256 × 256 262 144 5956 050 401 569 028 67 2.41 × 107 5.00
512 × 512 1048 576 23 970 514 2133 808 772 89 3.93 × 108 28.54

Figure 3. The total time required to solve the linear system mcomp: the direct solver SuperLU DIST 3.0
(black dotted line), the one-level approach (red solid line) and the two-level approach (blue dashed
line). The tolerances σ1 = 10−6 and σ2 = 10−5.

5.2. The hybrid linear solver: the parallel domain decomposition Schur complement-based linear solver

In this section, we use the PDSLin library as the linear solver for the associated matrices in the magnetic
reconnection problem and present some numerical results and parallel performance of this hybrid linear
solver. In PDSLin, the SuperLU DIST 2.4 [37] is used as a direct solver for interior subdomains and the
Schur complement systems are solved using a preconditioned Krylov method in PETSc12 [31]. The stopping
criterion for the Krylov solver is to check the l2-norm of the initial residual; if it is reduced by at least 10−12,
we consider the solution to be converged13.

The first experiment is to compare the total time required by the direct solver and the hybrid solver (both
the one-level parallel framework and the two-level parallel framework) to solve the mcomp linear system. In
the one-level approach, the number of the interior subdomains k is set to be the same as the total number of
cores, the cores used for solving the Schur complement system is half of the total number of cores; in the
two-level approach, the number of the interior subdomains is fixed at 32, and the processors are distributed
equally among all interior subdomains.

To enhance the performance of the hybrid solver, the drop tolerance σ1 is used to enforce the sparsity
of Ẽ and F̃ , and the drop tolerance σ2 is used to enforce the sparsity of S̃. Figure 3 shows comparisons
of the total time with σ1 = 10−6, σ2 = 10−5 and the number of cores n p = 32, 64, . . . , 4096: PDSLin
scales better than SuperLU DIST, and the scaling of the one-level and two-level approaches is similar. For
example, SuperLU DIST does not scale after 128 cores, while PDSLin scales well till 512 cores for the one-
level approach and 2048 cores for the two-level approach.

12 The version is 3.1.09.
13 When using the Krylov solver to solve the system (10), a very accurate solution (x2) is required as it is used to achieve x1 in the
system (11) for the whole solution of the linear system Ax = b.
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Table 2. The Schur complement system in the one-level approach: the number of subdomains, the size
of the Schur complement, the number of nonzeros and the iteration numbers in the iterative solver.

k size nnz(LU (S̃)) its k size nnz(LU (S̃)) its

32 38 056 280 975 663 70 512 128 236 575 865 038 62
64 53 610 365 279 060 85 1024 178 925 671 580 408 75
128 80 780 554 788 925 124 2048 251 229 788 066 929 80
256 110 672 637 663 812 120 4096 346 378 860 595 342 93

(a) one-level (b) two-level

Figure 4. The time for LU factorization of the interior domains LU (D), computation of the
approximate Schur complement comp(S), LU of the approximate Schur complement LU (S), solution
of the system for the one-level (a) and the two-level (b) approaches for bcomp.

Although a similar scaling of the one-level and two-level approaches is observed here, it is not always
true. For matrices in other applications [3], the two-level approach has a better scaling than the one-level
approach. In the one-level approach, the number of the interior subdomains k increases as the total number of
cores increases; thus the size of the Schur complement increases. In general, the iterative solver has difficulty
in convergence in large-size Schur complement systems: the iteration number increases as the size of the Schur
complement increases. Thus, for most matrices, the scaling of the one-level approach is not as good as that of
the two-level approach, where the two-level approach has a fixed number of subdomains, and a fixed size of
the Schur complement as the number of cores increases.

In the two-level approach for solving the mcomp linear system, the size of the Schur complement is
38 056 × 38 056 with average nonzeros 303 189 610 for a fixed 32 subdomains, and the number of iterations
is 70; in the one-level approach for solving the mcomp linear system, the size of the Schur complement
increases. In table 2, the number of subdomains (k: equivalent to the number of cores n p), the size of the
Schur complement (size), the nonzeros (nnz) and the iteration numbers of the iterative solver for the Schur
complement system (its) are listed.

The nonzeros in the Schur complement increase more slowly than the increment of the size of the Schur
complement: while the size increases 128 times from 32 to 4096, the size of the Schur complement only
increases about nine times from 38 056 to 346 378, and the nonzeros only increases about three times from
280 975 663 to 860 595 342. Moreover, there is a dip in nonzeros when the number of cores increases from 256
to 512; therefore, the iterations required decrease from 120 to 62. These explain why the one-level approach
and the two-level approach have a similar scaling in the present reconnection model.

A similar scaling is also found in solving the bcomp linear system in both the one-level and two-level
approaches. Moreover, we check the times (in seconds) for the LU decomposition of the interior subdomain
Dl (LU (D)), the computation of the approximate Schur complement S̃ (comp(S)), the LU decomposition of S̃
(LU (S)), and the computation of the solution vector (Solve) for bcomp. Figure 4 shows seven cases where the
number of cores n p = 32, 128, . . . , 2048 for both one-level and two-level approaches for solving the bcomp
linear system.
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In general, LU (S) increases with the number of cores because doubling the number of cores doubles
the number of subdomains and typically doubles the size of the Schur complement. Hence, LU (S) typically
increases when twice as many cores are used on a twice larger Schur complement. This is unfortunate because
one-level parallelization will not scale on a large number of cores. However, we can use two-level parallelism
to scale to a larger number of cores by fixing a small number of subdomains. We can see from figure 4(a) (the
one-level parallelization for bcomp) and figure 4(b) (the two-level parallelization for bcomp) that all the times
are scaling well, and the good scaling of LU (S) allows one-level parallelization to scale to thousands of cores.

6. Conclusions

In this paper, we have presented implicit numerical methods in a BDF–Newton solution framework as
the nonlinear solver for the four-field extended MHD equations (the magnetic reconnection problem). Two
different types of linear solvers are compared for the linear system (the Newton update equations): the direct
solver and the hybrid solver. Numerical experiments show that in solving the linear system associated with the
magnetic reconnection problem, the parallel hybrid solver (both the one-level parallelization and the two-level
parallelization) can scale up to thousands of processors. Moreover, the one-level parallelization can scale as
well as the two-level parallelization, which is usually difficult to see from other linear systems, for example
the linear systems from the numerical simulation of an accelerator cavity design [3]. The flexibility of having
both the one-level parallelization and the two-level parallelization enables PDSLin to solve linear systems with
different properties. When solving the nonlinear system in time, we expect that PDSLin can provide a better
scaling than the direct solver while maintaining the same robustness as a direct solver.

Acknowledgments

The majority of the work described in this paper was supported by the Petascale Initiative in Computational
Science which is funded by the U.S. Department of Energy, Office of Science, Advanced Scientific Computing
Research under contract No. DE-AC02-05CH11231 at the National Energy Research Scientific Computing
Center (NERSC) and the Center for Simulation of RF Wave Interactions with Magnetohydrodynamics
(CSWIM), which is funded by the US Department of Energy, the Office of Science. Computational resources
were provided by the NERSC, which is supported by the Office of Science of the US Department of Energy
under contract No. DE-AC02-05CH11231.

References

[1] Yuan X, Jardin S C and Keyes D E 2012 Numerical simulation of four-field extended magnetohydrodynamics in
dynamically adaptive curvilinear coordinates via Newton–Krylov–Schwarz J. Comput. Phys. 231 5822–53

[2] Chacón L and Knoll D A 2003 A 2d high-β Hall MHD implicit nonlinear solver J. Comput. Phys. 188 573–92
[3] Yamazaki I and Li X S 2010 On techniques to improve robustness and scalability of the Schur complement method

Proc. VECPAR pp 421–34
[4] Yamazaki I, Li X S and Ng E G 2011 PDSLin Users Guide Lawrence Berkeley National Laboratory Technical

Report LBNL-4825E
[5] Jardin S C 2010 Computational Methods in Plasma Physics (London: Taylor and Francis)
[6] Sturrock P A 1994 Plasma Physics, An Introduction to the Theory of Astrophysical, Geophysical & Laboratory

Plasmas (Cambridge: Cambridge University Press)
[7] Braginskii S I 1965 Rev. Plasma Phys. vol 1 (New York: Consultants Bureau), 205
[8] Ottaviani M and Porcelli F 1995 Fast nonlinear collisionless magnetic reconnection Phys. Plasmas 2 4104–17
[9] Ottaviani M and Porcelli F 1993 Nonlinear collisionless magnetic reconnection Phys. Rev. Lett. 71 3802–5

[10] Stix T H 1978 Plasma transport across a braided magnetic field Nucl. Fusion 18 353–8
[11] Biskamp D 2000 Magnetic Reconnection in Plasmas (Cambridge Monographs on Plasma Physics) (Cambridge:

Cambridge University Press)
[12] Grasso D, Pegoraro F, Porcelli F and Califano F 1999 Hamiltonian magnetic reconnection Plasma Phys. Control.

Fusion 41 1497–515

11

http://dx.doi.org/10.1016/j.jcp.2012.05.009
http://dx.doi.org/10.1016/S0021-9991(03)00193-1
http://dx.doi.org/10.1063/1.871033
http://dx.doi.org/10.1103/PhysRevLett.71.3802
http://dx.doi.org/10.1088/0029-5515/18/3/006
http://dx.doi.org/10.1088/0741-3335/41/12/306


Computational Science & Discovery 6 (2013) 014002 X Yuan et al

[13] Biskamp D 1993 Nonlinear Magnetohydrodynamics (Cambridge: Cambridge University Press)
[14] Shibata K 1996 New observational facts about solar flares from Yohkoh studies-evidence of magnetic reconnection

and a unifield model of flares Adv. Space Res. 17 9–18
[15] Baker D N, Pulkkinen T I, Angelopoulos V, Baumjohann W and McPherron R L 1996 Neutral line model of

substorms: past results and present view J. Geophys. Res. 101 12975–3010
[16] Fitzpatrick R 2004 Scaling of forced magnetic reconnection in the Hall-magnetohydrodynamical Taylor problem

with arbitrary guide field Phys. Plasmas 11 3961–8
[17] Fitzpatrick R 2004 Scaling of forced magnetic reconnection in the Hall-magnetohydrodynamical Taylor problem

Phys. Plasmas 11 937–46
[18] Jardin S C and Breslau J A 2005 Implicit solution of the four-field extended-magnetohydrodynamic equations using

high-order high-continuity finite elements Phys. Plasmas 12 056101
[19] Jardin S C, Breslau J and Ferraro N 2007 A high-order implicit finite element method for integrating the two-fluid

magnetohydrodynamic equations in two dimensions J. Comput. Phys. 226 2146–74
[20] Breslau J, Ferraro N and Jardin S C 2009 Some properties of the M3D-C(1) form of the three-dimensional mhd

equations Phys. Plasmas 16 092503
[21] Ferraro N, Jardin S C, Breslau J and Chen J 2012 Multiple timescale calculations of sawteeth and other global

macroscopic dynamics of tokamak plasmas Comput. Sci. Discovery 5 014002
[22] Chacón L, Knoll D A and Finn J M 2002 An implicit, nonlinear reduced resistive MHD solver J. Comput. Phys.

178 15–36
[23] Biskamp D 1986 Magnetic reconnection via current sheets Phys. Fluids 29 1520–31
[24] Reynolds D R, Samtaney R and Woodward C S 2006 A fully implicit numerical method for single-fluid resistive

magnetohydrodynamics J. Comput. Phys. 219 144–62
[25] Gruber R and Rappaz J 1985 Finite Element Methods in Linear Ideal MHD (Berlin: Springer)
[26] Courant R, Friedrichs K and Lewy H 1928 Uber die parteillen differenzengleichungen der mathematischen physik

Math. Ann. 100 32–74
[27] Courant R, Friedrichs K and Lewy H 1967 On the partial difference equations of mathematical physics IBM J.

215–34
[28] Cai X-C and Keyes D E 2002 Nonlinearly preconditioned inexact Newton algorithms SIAM J. Sci. Comput.

24 183–200
[29] Dembo R S, Eisenstat S C and Steihaug T 1982 Inexact Newton methods J. Numer. Anal. 19 400–8
[30] Eisenstat S C and Walker H F 1996 Choosing the forcing terms in an inexact Newton method SIAM J. Sci. Comput.

17 16–32
[31] Balay S, Brown J, Buschelman K, Gropp W D, Kaushik D, Knepley M G, Curfman McInnes L, Smith B F and

Zhang H 2011 PETSc web page http://www.mcs.anl.gov/petsc
[32] Yuan X, Jardin S C and Keyes D E 2011 Moving grids for magnetic reconnection via Newton–Krylov methods

Comput. Phys. Commun. 182 173–6
[33] Breslau J A and Jardin S C 2003 Global extended MHD studies of fast magnetic reconnection Phys. Plasmas

10 1291–8
[34] Birn J et al 2001 Geospace environmental modeling (GEM) magnetic reconnection challenge J. Geophys. Res.

106 3715–9
[35] Smith B F, Bjorstad P E and Gropp W D 1996 Domain Decomposition. Parallel Multilevel Methods for Elliptic

Partial Differential equations (Cambridge: Cambridge University Press)
[36] Chevalier C and Pellegrini F 2008 PT-SCOTCH: a tool for efficient parallel graph ordering Parallel Comput.

34 318–31
[37] Li X S and Demmel J W 2003 SuperLU DIST: a scalable distributed-memory sparse direct solver for unsymmetric

linear systems ACM Trans. Math. Softw. 29 110–40
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