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Abstract. We present an algorithm for computing any block of the inverse of a block
tridiagonal, nearly block Toeplitz matrix (defined as a block tridiagonal matrix with a small
number of deviations from the purely block Toeplitz structure). By exploiting both the block
tridiagonal and the nearly block Toeplitz structures, this method scales independently of the
total number of blocks in the matrix and linearly with the number of deviations. Numerical
studies demonstrate this scaling and the advantages of our method over alternatives.
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1. Introduction

The direct inversion of matrices is useful for countless applications, most notably for solving linear
systems of equations. Unfortunately, general algorithms for this task scale poorly with the matrix size,
prompting the use of approximate, iterative solvers instead [1, 2]. Algebraic structure in the matrix to be
inverted can, when exploited, produce more efficient direct inversion algorithms, as seen for tridiagonal
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[3, 4], tridiagonal/Toeplitz [5], block tridiagonal [4, 6–12], block Toeplitz [13] and block tridiagonal/block
Toeplitz [14, 15] matrices. Moreover, some applications, such as the electronic structure of materials [15–18],
require only specific elements of the inverse matrix (as opposed to the entire matrix), resulting in additional
efficiency [10, 15, 19].

Block tridiagonal and nearly block Toeplitz matrices, i.e. block tridiagonal, block Toeplitz matrices with
a small number of deviations from the purely block Toeplitz structure (hereafter called deviations), have
recently appeared when investigating surface effects in materials [15, 18]. Physically, these studies examined
the persistence of surface effects into the material and, mathematically, confined deviations to the surfaces
(upper left and/or bottom right matrix corners). Moreover, a small number of blocks of the inverse matrix were
required in these studies—those at or near a surface—and were obtained using either (i) a block tridiagonal
matrix inversion method (ignoring the nearly block Toeplitz structure) [18] or (ii) a specially designed block
tridiagonal/block Toeplitz matrix inversion method where the deviations were assumed to be in particular
locations (the matrix corners) [15]. The former method, while general, scales linearly with the number of
blocks in the matrix, whereas the latter trades generality for constant scaling [O(1)].

Accordingly, the goal of this work is to describe a computational algorithm for calculating specific blocks
(a ‘block-by-block’ algorithm) of the inverse of a block tridiagonal, nearly block Toeplitz matrix with a certain
number of deviations in arbitrary locations. Such an algorithm will facilitate investigations into the effects of
defects and disorder in materials. In brief, our method combines the strengths of the two previous algorithms,
using the generality of the block tridiagonal method to incorporate deviations and the block tridiagonal/block
Toeplitz method to accelerate computation away from any deviations. As will be demonstrated, this yields an
algorithm that scales linearly with the number of deviations and independently of the total number of blocks
in the matrix.

The structure of this paper is as follows. Section 2 develops our algorithm by first introducing the block
tridiagonal matrix inversion algorithms (section 2.1) and then incorporating the block Toeplitz and nearly
block Toeplitz structures in sections 2.2 and 2.3, respectively. We proceed to comparing our method to that
for block tridiagonal matrices [10] with several numerical tests in section 3. Finally, we conclude in section 4.

2. The inversion algorithm

Mathematically, we seek blocks of M−1 where

M =



A C 0 · · · 0 0 0 0 · · ·

B A C · · · 0 0 0 0 · · ·

0 B′ A · · · 0 0 0 0 · · ·

...
...

...
. . .

...
...

...
... · · ·

0 0 0 · · · A C 0 0 · · ·

0 0 0 · · · B A′ C 0 · · ·

0 0 0 · · · 0 B A C′
· · ·

0 0 0 · · · 0 0 B A · · ·

...
...

...
...

...
...

...
...

. . .



(1)

is a block tridiagonal, nearly block Toeplitz matrix. In the nearly block Toeplitz structure shown in (1), blocks
A, B and C are repeated along their diagonals with some deviations (denoted by primes) present arbitrarily
along these diagonals.

In this section, we describe our method for obtaining an arbitrary block of M−1. We begin by reviewing
block-by-block algorithms for inverting a block tridiagonal matrix in section 2.1. We then introduce a matrix
Möbius transformation [19] and discuss its role in exploiting the block Toeplitz structure in section 2.2. Finally,
we complete our algorithm in section 2.3 by incorporating deviations.

2



Computational Science & Discovery 5 (2012) 014009 M G Reuter and J C Hill

2.1. Inverting a block tridiagonal matrix

Block-by-block algorithms for inverting block tridiagonal matrices have been discussed previously [8, 10, 15];
we summarize these algorithms here. Suppose that

M =


A1 C2 0 · · · 0
B1 A2 C3 · · · 0
0 B2 A3 · · · 0
...

...
...

. . .
...

0 0 0 · · · AN

 (2)

is a general block tridiagonal matrix with N blocks along the diagonal. We also assume that the diagonal
blocks are square matrices and that A1 and AN are invertible. Then, the diagonal blocks of M−1 are(

M−1)
n,n = [An − Xn − Yn]−1 , (3)

where

Xn =

{
0 if n = N ,

Cn+1 [An+1 − Xn+1]−1 Bn if 1 6 n < N
(4)

and

Yn =

{
0 if n = 1,

Bn−1
[
An−1 − Yn−1

]−1 Cn if 1 < n 6 N .
(5)

A close examination of (3)–(5) reveals that An − Xn − Yn is the Schur complement of the partition of M
excluding row/column n [20]. Furthermore, the off-diagonal blocks are

(
M−1)

m,n =

{
− [Am − Xm]−1 Bm−1

(
M−1

)
m−1,n if m > n,

− [Am − Ym]−1 Cm+1
(
M−1

)
m+1,n if m < n.

(6)

From (3) and (6), the Xn and Yn sequences provide all the necessary quantities for computing an arbitrary
block of M−1. Moreover, only parts of the Xn and Yn sequences are needed for calculating

(
M−1

)
m,n;

specifically, Xn+k for k = 0, . . . , max(0, m − n) and Yn−k for k = 0, . . . , max(0, n − m). Unfortunately, (4)
and (5) require the recursive calculation of the Xn and Yn sequences, respectively, meaning that more sequence
terms must be calculated than are actually needed. Even though the computations scale linearly with n, each
step in the recurrences can be expensive, especially if the blocks of M are large.

2.2. Exploiting the block Toeplitz structure

Let us now assume that M is also block Toeplitz, that is, An = A, Bn = B and Cn = C for all appropriate n.
Incorporating this structure into the recursive Xn sequence (4),

Xn = C (A − Xn+1)
−1 B; (7)

the process of calculating Xn from Xn+1 is exactly the same as calculating Xn+1 from Xn+2, etc. We now
show that the matrix Möbius transformation enables exploitation of this block Toeplitz structure by combining
multiple iterations of (7) into a single step.

The matrix Möbius transformation [19] is a generalization to matrices of the Möbius transformation from
complex variables, which has found numerous uses in, e.g., conformal mappings and geometry [21]. Given
M × M matrices a, b, c, d and z, the matrix Möbius transformation of z by T is defined as

T • z ≡ (az + b) (cz + d)−1 , (8)

3
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where

T =

[
a b
c d

]
is a 2M × 2M matrix. Furthermore, it is easily proven that the matrix Möbius transformation retains the
property of associativity from its complex variables analogue, i.e.

S • (T • z) = (ST) • z, (9)

where S and T are matrix Möbius transformations and ST is the standard matrix product.
Now, returning to the Xn sequence in (7),

Xn = C
[
B−1 (A − Xn+1)

]−1

=

[
0 C

−B−1 B−1A

]
• Xn+1

=

[
0 C

−B−1 B−1A

]N−n

• XN . (10)

Assuming B is invertible, the matrix Möbius transformation accelerates the calculation of an arbitrary Xn; we
simply need to assemble the matrix Möbius transformation in (10), diagonalize it and apply the desired power.
Note that, if B is numerically singular, the authors of [15, 22] suggest using the singular value decomposition
of B to construct an invertible approximation of B for use in (10). Similarly for the Yn sequence (5),

Yn =

[
0 B

−C−1 C−1A

]n−1

• Y1. (11)

Thus, exploitation of the block Toeplitz structure yields a constant-scaling (O(1)) algorithm for directly
calculating terms in the Xn and Yn sequences. This is a considerable improvement for obtaining blocks of
M−1 with (3) and (6) since we no longer have to spend time and resources computing unnecessary terms in
the Xn and Yn sequences.

2.3. Incorporating deviations

Finally, suppose that there is a deviation around row/column j in the matrix (1 6 j 6 N ),

M =


. . .

...
...

... · · ·

· · · A C j 0 · · ·

· · · B j−1 A j C j+1 · · ·

· · · 0 B j A · · ·

· · ·
...

...
...

. . .

 , (12)

such that M is now nearly block Toeplitz. As before, we must calculate the desired terms in the Xn and Yn

sequences to use in (3) and (6). The calculations of Xn for n > j are straightforward using (10). Computing
X j+1 in that manner, (4) is used to obtain X j and then X j−1,

X j = C j+1
[
A − X j+1

]−1 B j ,

X j−1 = C j
[
A j − X j

]−1 B j−1.

Then, for n < j − 1,

Xn =

[
0 C

−B−1 B−1A

] j−1−n

• X j−1.

4



Computational Science & Discovery 5 (2012) 014009 M G Reuter and J C Hill

Table 1. Scaling rules for the recursive method (equations (4) and (5)) and our matrix Möbius
transformation method (MTM, section 2.3). N is the number of blocks in the matrix and ND is the
number of deviations from block Toeplitz structure.

Recursive MTM

N O(N ) O(1)

ND O(1) O(ND)

200

100

0 µs
80

40

0 ms

4

2

0 s

8000

4000

0 µs

1000

500

0 ms

40

20

0 s
0 2000 4000 0 2000 4000

R
un

tim
e

NN

a

b

c

d

e

f

Figure 1. Average runtimes of 20 trials for calculating X1 and YN with the matrix MTM (left) and the
recursion relations (right). Top: 1 × 1 block sizes, runtimes in µs; middle: 25 × 25, runtimes in ms;
bottom: 100 × 100, runtimes in s. Each line represents a fixed number of deviations (ND): 0 (black),
1 (purple), 2 (blue), 10 (green), 20 (yellow) and 40 (red). The recurrence relations scale linearly with the
number of blocks (N ). With 1×1 blocks, the MTM scales independently of N (for N sufficiently large),
as theoretically expected. Larger block sizes, however, introduce computational effects (perhaps related
to caching) with a weak dependence on N . These runtimes indicate that the MTM is advantageous for
the recurrence relations for large N .

Abstractly, we use the matrix Möbius transformation (10) to skip past rows and columns that conform
to the block Toeplitz structure and the recursive formulation (4) near any deviations. In this way, we compute
the desired terms in the Xn sequence in constant time with n and in linear time with the number of deviations
from the block Toeplitz structure. A similar idea is used for calculating the Yn sequence. Finally, having all
the required Xn and Yn terms, the blocks of M−1 are computed with (3) and (6).

3. Computational tests

As discussed in section 2, our method for computing an arbitrary block of M−1 reduces to calculating terms in
the Xn and Yn sequences. Without block Toeplitz structure, recurrence relations (4) and (5) are used, producing
an algorithm that scales linearly with the number of blocks and is unfazed by deviations. On the other hand, the
matrix Möbius transformation accelerates calculation of the sequences in the absence of deviations, ultimately
producing an algorithm that scales constantly with the total number of matrix blocks and linearly with the
number of deviations. Here we numerically compare these two techniques and substantiate the theoretical
scaling rules summarized in table 1.

Code for both routines was written in C++ and serially executed on a 2.3 GHz processor; no effort
was made to optimize the code for either algorithm. Since the only difference between the methods lies in
calculating the Xn and Yn sequences, we compare the time needed for either method to compute both X1 and
YN (the most expensive terms in each sequence). Figures 1 and 2 show average runtimes for both methods over
a range of block sizes (M), the number of blocks (N ) and the number of deviations (ND). In particular, figure 1
verifies that the matrix Möbius transformation method (MTM) scales independently of N (figure 1(a)) and that

5
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Figure 2. Average runtimes of 20 trials for calculating X1 and YN with the matrix MTM (left) and the
recursion relations (right). Top: 1 × 1 block sizes, runtimes in µs; middle: 25 × 25, runtimes in ms;
bottom: 100 × 100, runtimes in s. Each line represents a fixed number of blocks (N ): 50 (purple), 100
(blue), 500 (green), 1000 (yellow) and 5000 (red). As expected, the MTM scales linearly with ND and
the recurrence relations scale independently of ND.

0.001 0.01 0.1 1

1

10

100

1000

Deviation Density, ND N

Sp
ee

du
p,

t R
R

t M
T

M

1 1
25 25
100 100

Figure 3. Speedup from using the matrix MTM over the recurrence relations (RRs) in calculating X1

and YN as a function of the deviation density ND/N (ND is the number of deviations, N is the total
number of blocks, tRR is the average runtime for the RRs and tMTM is the average runtime for the
MTM). Various block sizes (1 × 1, 25 × 25 and 100 × 100) all show the same trend: the MTM greatly
accelerates computation of the Xn and Yn sequences when ND � N and remains computationally
advantageous for ND . N/10.

the recursive method scales linearly with N . We note, however, that the MTM exhibits a weak dependence on
N as the block size increases; this may be caused by caching effects. Similarly, figure 2 displays the expected
scaling behavior with respect to ND.

Figure 3 additionally shows the average speedup gained by the MTM relative to the recursive method
as a function of the deviation density (ND/N ). Unsurprisingly, the highest speedups are realized when the
deviation density is very small (ND � N ); in these cases the MTM skips past the many Xn and Yn terms far
from a deviation. Furthermore, figure 3 shows that the MTM continues to outperform the recursive method for
ND . 0.1N . Matrices with many deviations stretch the notion of ‘nearly block Toeplitz’ and do not benefit
from such a structure.

4. Conclusions

Block tridiagonal, nearly block Toeplitz matrices have recently appeared in studies of materials [15, 18], and
their inverses, in whole or in part, contain desirable information. In this work, we have detailed an efficient
(constant-scaling with the size of the matrix and linear-scaling with the number of deviations from a purely

6
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block Toeplitz structure) algorithm for calculating any block of the inverse of a block tridiagonal, nearly block
Toeplitz matrix. Previous algorithms for this task either ignored the nearly block Toeplitz structure or assumed
the deviations to be in specific locations. Our method remedies both limitations by using a matrix Möbius
transformation to accelerate computation away from deviations and the recurrence relations to incorporate
deviations. Owing to this favorable scaling, our method will facilitate investigations of disorder in materials,
which have been computationally difficult due to necessarily large system sizes [23, 24]. Finally, although
this method was designed with the study of materials in mind, we hope it is useful in other applications. For
instance, this method may find use in computing preconditioners for implicit finite difference methods.
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