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Abstract
Crop harvested carbon (HC) is one of the most important components of the carbon cycle in
cropland ecosystems, with a significant impact on the carbon budget of croplands. China is one of
the most important crop producers, however, it is still unknown on the spatial and temporal
variations of HC. This study collected statistical data on crop production at the province and
county levels in China for all ten crop types from 1981 to 2020 and analyzed the magnitude and
long-term trend of harvested crop carbon. Our results found a substantial increase of HC in
cropland from 0.185 Gt C yr−1 in 1981 to 0.423 Gt C yr−1 in 2020 at a rate of 0.006 Gt C yr−1. The
results also highlighted that the average annual carbon sink removal from crop harvesting in China
from 1981 to 2020 was 0.32 Gt C yr−1, which was comparable to the net carbon sink of the entire
terrestrial ecosystems in China. This study further generated a gridded dataset of HC from 2001 to
2019 in China by using jointly the statistical crop production and distribution maps of cropland. In
addition, a model-data comparison was carried out using the dataset and results from seven
state-of-the-art terrestrial ecosystem models, revealing substantial disparities in HC simulations in
China compared to the dataset generated in the study. This study emphasized the increased
importance of HC for estimating cropland carbon budget, and the produced dataset is expected to
contribute to carbon budget estimation for cropland ecosystems and the entire China.

1. Introduction

As one of the most important terrestrial ecosys-
tems, cropland plays a crucial role in regulating
the terrestrial carbon cycle (Bondeau et al 2007).
Globally, approximately 12% of the ice-free land
surface is occupied by cropland, with large spatio-
temporal variations influenced by factors such as
population changes, crop product prices, and socio-
economic factors (Yuan et al 2018). The vegeta-
tion gross primary productivity of croplands contrib-
utes to 12%–16% of global vegetation gross primary
productivity (Cai et al 2014), and also partly con-
trols the seasonal fluctuations of the terrestrial car-
bon cycle (Zeng et al 2014). Previous studies have

also emphasized the positive relationship between
the growth of cropland production and the seasonal
variations in atmospheric CO2 concentration (Gray
et al 2014). Furthermore, over the past few decades,
there has been a notable expansion of cropland at the
expense of forests, grasslands, and other ecosystems
(Winkler et al 2021), leading to an increased contri-
bution to the global carbon cycle (Erb et al 2017).
Consequently, it is imperative to accurately estimate
the magnitude and changes in the carbon cycle for
agricultural land areas (Osborne et al 2010).

In crop ecosystems, during harvest and removal
from cropland, the carbon in grains will be emitted to
the atmosphere in a short period along with human
and livestock consumption. It is widely acknowledged
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that the carbon derived from harvested grain signi-
ficantly influences the carbon budget of the crop-
land ecosystem (Smith et al 2010). Measurements of
eddy covariance in 17 European cropland ecosystems
showed that the cropland transitioned from carbon
sink to carbon source after accounting for harves-
ted carbon (HC) at crop harvest (Moors et al 2010).
Regional studies also highlighted that HC dominates
the carbon budget not only for cropland but also at
the entire country level (Ciais et al 2010). A recent
study estimated that annual carbon losses from cro-
pland harvesting were 0.44 Gt C yr−1 within the con-
tinental United States, which was 2.56 times of annual
mean net carbon sink (0.17 Gt C yr−1) (Liu et al
2020). According to statistical yield datasets, the aver-
age crop harvest in 25 European countries was 275
and 239 g C m−2 yr−1 during the period 1990–1999,
representing approximately 40% of net vegetation
production (Ciais et al 2010). The global cropland
harvest in 2000 was 3.2 Gt C yr−1, which is around
half of the total biomass harvest or the global ter-
restrial net carbon sink (Wirsenius 2003, Krausmann
et al 2008, Friedlingstein et al 2022).

The carbon harvested significantly affects the car-
bon budget of cropland ecosystems, and it has been
the most common land management-related process
considered in current terrestrial ecosystem models
(Gervois et al 2004, Lokupitiya et al 2009, Drewniak
et al 2013, Pongratz et al 2018). To integrate agri-
culture into a comprehensive land biosphere model,
Kucharik andBrye (2003) incorporated a crop growth
model (i.e. Erosion-Productivity Impact Calculator)
into the Integrated BIosphere Simulator (IBIS) (Foley
et al 1996, Yuan et al 2014) to simulate the agricul-
tural process. More recently, the community Land
Model Version 5 (CLM5.0) introduced a crop mod-
ule to accurately represent crop distributions and
management, including dynamic major crop dis-
tributions, fertilization, and irrigation management
(Lombardozzi et al 2020).

Although previous research has made valuable
efforts, there is still great uncertainty in accurately
quantifying harvested carbon in cropland (HCC) eco-
systems (Smith et al 2010, Lun et al 2016). For
example, the CLM5.0 crop model can reproduce the
observed long-term trend of crop yields with relative
accuracy before 1990 but showed a substantial under-
estimation after 1990 (Lombardozzi et al 2020). There
are still numerous challenges for terrestrial ecosystem
models to simulate crop yield. Specifically, models
need accurately represented the multiple crop prop-
erties (e.g. planting density, crop variety, crop breed-
ing), field management practices (e.g. irrigation, till-
age, fertilization), and impacts of climate change
(e.g. drought, flood, heatwave), which largely affect
crop yield and crop-carbon cycle interactions (Yuan
et al 2016). Most of the above factors highly depend
on human decisions and activities, which strongly
challenge the model’s ability (Cheng et al 2014).

Few terrestrial ecosystem models, therefore, can rep-
resent crop properties and management practices
due to the complicated interactions between human
decisions and biogeochemical cycle processes (Zhang
et al 2018). Therefore, many models used the globally
fixed ratio of removed carbon with large uncertain-
ties in simulating regional and global carbon budgets
(Stocker et al 2011, Malyshev et al 2015). In contrast,
a large volume of statistical data is more readily avail-
able, which provides a good opportunity to generate
a dataset of HC instead of relying on terrestrial eco-
systemmodels (National Bureau of Statistics of China
2020).

As one of the largest crop producers globally,
China contributes approximately 610 million tons of
grain annually, representing 20% of the total global
crop production (FAO 2021). In addition, the cro-
pland accounts for about 13% of total land area in
China (Chen et al 2022b), and plays an important role
in determining terrestrial carbon budget. However, it
is still unknown about the magnitude and trend of
HC in China due to limited information and insuffi-
cient model capability. This study first collected agri-
cultural census data at the province and county levels
from 1981 to 2020 and investigate the magnitude and
long-term trend of harvested crop carbon. In addi-
tion, we generated a gridded dataset of harvested
crop carbon from 2001 to 2019 based on the exist-
ing crop distribution maps in China. Finally, based
on this newly produced gridded dataset, we examined
the model performance of seven state-of-the-art ter-
restrial ecosystem models in reproducing harvested
crop carbon.

2. Data andmethod

2.1. Agricultural statistical data
This study collected province and county-level statist-
ical data on the planting area, yield, and production
of various crops from agricultural yearbooks of vari-
ous regions (National Bureau of Statistics of China
2020). We collected province-level statistical data of
10 crop types for all investigated 31 provinces from
1981 to 2020, which was used to analyze the long-
term trend of harvested crop carbon inChina. To gen-
erate the gridded dataset of harvested crop carbon,
i.e. Terrestrial Ecosystem Disturbance-HCC (TED-
HCC), we collected county-level statistical data of
crop production from 2001 to 2019 to match with
the distribution map of cropland (see section S2).
Province-level data was obtained from the agricul-
tural section of the National Statistical Yearbooks,
and county-level crop production data was sourced
from the sections on key economic indicators of
counties (cities, districts) in the statistical yearbooks
of each province. For the county without statistical
production through the period of 2001–2019, we
conducted a gap-filling method to fill the missing
county-level statistical production. (1) For a given
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Table 1. Carbon content of 10 crop types.

Type Content (%) Type Content (%)

Grain 0.5 Sugar beet 0.05
Oilseeds 0.57 Tea 0.5
Cotton 0.56 Tobacco 0.5
Hemp 0.438 Fruit 0.05
Sugarcane 0.438 Vegetable 0.026

Data from Baes et al (1984).

county, the missing statistical production was less
than three years continuously, then a linear equation
was used to fill the missing statistical production
based on the statistics of the adjacent two years. (2)
If the years of missing statistical production were
more than three years continuously, the mean ratio
between county-level and province-level statistical
production in the other years was calculated, and cal-
culated the statistical production of this given year
for this given county based on the mean ratio and
province-level production of this year.

2.2. Estimation of harvested crop carbon
Harvested crop carbon was estimated by consider-
ing crop production data from provincial or county
statistical sources. Given the significant variations
in carbon content among different crops, this study
employed specific carbon content values of each crop
(table 1) (Baes et al 1984) to calculate the HC based
on their statistical production. The investigated crops
include ten types: grain (wheat, corn, and rice),
oilseeds, cotton, hemp, sugar beet, sugarcane, tea,
tobacco, fruit, and vegetables.

Furthermore, we allocated county-level HC of 10
crops to the pixel level in each county, with a focus on
wheat, maize, and rice, which are key for determining
harvested crop carbon and account for 74%ofChina’s
total crop production. Using the ChinaCropArea1km
dataset, we assigned county-level HC to correspond-
ing 1 × 1 km pixels for these grains. This method,
assuming higher HC in pixels with greater leaf area
index, applies an equation (see section S2) to calculate
the allocated HC at each pixel. For crops like sugar-
cane and oilseeds without specific distribution maps,
we used the China Land Cover Dataset for allocation,
after removing areas of wheat, maize, and rice. Due to
the absence of comprehensive crop distributionmaps
and to reduce uncertainties, the gridded datasets were
aggregated into a 10× 10 km resolution for compar-
ison with ecosystem model simulations of HC.

2.3. Generation of gridded HC dataset andmodel
comparison
To examine the performance of state-of-the-art ter-
restrial ecosystem models in reproducing the spatial
and temporal variations of harvested crop carbon,

this study generated a gridded dataset of HCC eco-
systems from 2001 to 2019, referred to as TED-HCC,
as a component of the TED dataset. The gridded
dataset was generated through the combined utiliza-
tion of statistical data, crop distribution datasets, and
satellite-based vegetation index. The detailed method
of generating gridded HC dataset was introduced in
the supplementary (see section S1).

This study collected simulations of harves-
ted crop carbon from the Global Carbon Budget
(Friedlingstein et al 2022). Although there were 17
ecosystem models in Global Carbon Budget, 7 ter-
restrial ecosystem models provided the output of
harvested crop carbon: the Community Land Model
(CLM5.0; Lawrence et al 2019), Integrated BIosphere
Simulator (IBIS; Yuan et al 2014), Interaction Sol-
Biosphère-Atmosphère Model (ISBA; Noilhan and
Mahfouf 1996), the land component of theMPI Earth
System Model (JSBACH; Reick et al 2021), Lund–
Potsdam–Jena General Ecosystem Simulator model
(LPJ-GUESS; Sitch et al 2003), a newly developed ver-
sion of the terrestrial biosphere model (OCN; Zaehle
and Friend 2010), and the Organizing Carbon and
Hydrology In Dynamic Ecosystems (ORCHIDEE;
Krinner et al 2005). To meticulously analyze interan-
nual variations, we employed linear detrending on the
HC outputs from each terrestrial ecosystem model.
This method meticulously subtracted the calculated
linear trend from the original data series, enabling
us to isolate and focus on the cyclical fluctuations
inherent in the data.

3. Results

3.1. Magnitude of HC and its spatial-temporal
changes
Based on the province-level statistical data, we first
analyzed the magnitude of HC and its spatiotem-
poral patterns. During the past 40 years, the mean
HC of the cropland ecosystem in China was determ-
ined to be 0.32 Gt C yr−1 in China (figure 1). The HC
in China showed substantial temporal change dur-
ing the past 40 years. Specifically, total HC increased
by about 2.3 times, from 0.185 Gt C yr−1 in 1981
to 0.423 Gt C yr−1 in 2020 (figure 1). All crop types
showed an increasing trend, with grain types (i.e. rice,
wheat, and maize) contributing the most to China’s
total harvested growth (68.3%) (figure 2(b)) because
of their larger share (figure 2(a)).

Notably, there were significant variations in the
distribution of HC across different crop types. The
grain, including maize, rice, and winter wheat,
accounted for the largest proportion of total HC
at 75.9% through 1981–2020 (figure 2(a)). In addi-
tion, sugarcane, vegetables, and oilseeds contrib-
uted shares of 11.1%, 5.2%, and 4.3% respectively.
Collectively, these four crop types accounted for

3
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Figure 1. Long-term changes of harvested carbon in cropland ecosystem in China.

Figure 2. Percentage share of various crops in harvested carbon and contribution to long-term changes in China. (a) Share of
various crops to the total harvested carbon. (b) Share of various crops to long-term changes of harvested carbon. (c), (d) are
similar to (a), (b) but indicate provincial shares, and the abbreviations indicate the province (figure S1).

more than 96% of the total HC (figure 2(a)). Other
six types of crops (i.e. cotton, hemp, sugar beet,
tobacco, tea, and fruits) only shared 3.7% of the
total HC (figure 2(a)). Of these, hemp, tobacco and
tea accounted for the smallest share, all at 0.2%.

Large differences of harvested crop carbon also were
found among the various provinces. The largest five
provinces, i.e. Guangxi, Henan, Shandong, Sichuan,
and Heilongjiang, contributed more than 36% of
total HC in China (figures 2(c) and S1). While, these
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Figure 3. The relationship between the change trends of the total planting area of all crops in each province of China from 1981 to
2020, the change trends of crop yield, and the change trends of crop production, where the horizontal axis represents the area, the
vertical axis represents the yield, and the size of the circle represents the change trends of harvested carbon.

Figure 4. Intensity (a) and trend (b) of harvested crop carbon from 2001 to 2019. The small bar chart I on the lower left corner of
panel b shows the proportion of four situations: significantly decreased (p< 0.05), insignificantly decreased, insignificantly
increased and significantly increased. The bar chart II displays the distribution of grid point trends in>10, 0–10,−10–0, and
<−10 g C m−2 yr−1.

five provinces also contributed the largest increased
shares, and contributedmore than 48.5% increases of
HC in China (figure 2(d)).

Both planting area and yields have had a sig-
nificant impact on harvested crop carbon over the
past 40 years (figure 3). Most provinces increased
in planting area and yields, which jointly promoted
an increase in crop HC. Only a few provinces, such
as Zhejiang, Guangdong, Fujian, Beijing, Shanghai,
Sichuan, showed a decline in HC in the last 40 years
(figure 3). As figure 3 shown, only Fujian province,
the decreased HC was attributed to the decreases of
both planted area and yield (figure 3), and other 5
mainly due to a decrease in planted area (figure 3).
There were several provinces with decreased planting
areas, but theHC still showed the increased trend, e.g.
Shanxi, Jiangsu (figure 3).

3.2. Gridded dataset of HC
Based on the statistical dataset, this study generated a
gridded dataset of HC in China with a spatial resolu-
tion of 10× 10 km (i.e. TED-HCC dataset). Notably,
the dataset excludes Hongkong, Macau, and Taiwan
due to the lack of statistical data. Figure 4 reveals
that the HC was mainly distributed in Northeast,
North, and Southwest China. The intensity of HC
varies from 1 g C m−2 yr−1 to 467 g C m−2 yr−1

(as depicted in figure 4(a)). Through the past two
decades (2001–2019), the intensity of HC showed an
increasing trend over more than 42.1% of regions
(34.4% with a significant upward trend), and only
18.4% showed a decreased trend (5.1% with a sig-
nificant downward trend) (figure 4(b)). It should be
noticed that the decreasing trend mainly occurred in
the Southeast region.

5
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Figure 5. Comparison between harvested carbon derived from statistical data and simulations of seven models. (a) The temporal
variations of harvested carbon; (b) the detrended temporal variations of harvested carbon; (c) the harvested carbon averaged
through 2001–2019, (d) the harvested carbon trends averaged through 2001–2019.

It should be noticed that the availability of stat-
istical crop production highly determined the accur-
acy of TED-HCC dataset. Although there existed data
gaps of county-level crop production, the statistics
of major crops were available. Grain crops (maize,
wheat, and rice) contributed the largest share (75.9%)
of total HC (figure 2(a)), and the collected county-
level statistical production accounted for 68%provin-
cial production averaged from 2001 to 2019 (figure
S2(a)). The sugarcane and oilseed were the second
and fourth largest contributors of the total HC (i.e.
11.1% and 4.3%), and the county-level statistical pro-
duction accounted for 76% of the provincial statist-
ical production. Therefore, these three crops accoun-
ted for more than 90% of HC, and the available
county-level statistical production accounted for 72%
of provincial production.

3.3. Model-data comparison
Based on the TED-HCC dataset of HC gener-
ated by this study, we further evaluated the model
performance of seven terrestrial ecosystem models
for simulating HC. On average, the simulated HC
by seven models ranged from 0.14 Gt C yr−1 to
0.87 Gt C yr−1 through 2001–2019, and there were

10.4% to 143.2% differences compared with the
HC derived from statistical data (0.36 Gt C yr−1)
(figure 5(c)). The mean simulations by CLM5.0
(0.39 Gt C yr−1) (figure 5(c)) were quite close to HC
derived from statistical data. However, the simula-
tions by other six models showed the large differences
with HC derived from statistical data (figure 5(c)).
The simulated HC trends by seven models ranged
from 0.0012 Gt C yr−1 to 0.018 Gt C yr−1 2001–
2019, with CLM5.0 still demonstrating the trend
closest to the statistical results (figure 5(d)), while the
trends simulated by the other six models continue to
exhibit significant differences from the statistical data.
Furthermore, although there is a substantial variation
in the inter-annual changes of the six models com-
pared to the statistical data, a closer inspection reveals
that the trends of ISBA, ORCHIDEE, and IBIS mod-
els are quite similar to each other, as depicted in
figures 5(a) and (b).

Our results also revealed significant variations in
the spatial distribution of simulated HC among seven
terrestrial ecosystem models when compared to the
HC derived from the TED-HCC dataset (figures 6
and S3). The majority of models can characterize the
main spatial pattern with the large intensity of HC

6
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Figure 6. The mean intensity of harvested carbon derived from seven terrestrial ecosystem models from 2001 to 2019. Figures
(a)–(g) show the simulations of seven models, and (i) shows the harvested carbon derived from the TED-HCC dataset.

Figure 7. Long-term trends in harvested carbon from 2001 to 2019 simulated by seven process-based ecosystem models. Figures
(a)–(g) show the simulations of seven models, and (h) shows the harvested carbon trends derived from the TED-HCC dataset.

in Northeast, North, Southeast, and Southwest China
(figure 6). However, several models (e.g. JSBACH and
OCN) failed to accurately depict the spatial distri-
bution compared with the gridded dataset generated
by this study (figures 6(c) and (e)). For example,
the JSBACH model only showed Southeast China
as the main region of HC in China and lost other
regions such as Northeast China (figure 6(c)). While
most models demonstrated a significant intensity of
HC in North China, the most substantial variations
among models were also observed in this region
(figure 6).

We further analyzed the model performance for
reproducing the trend of HC compared with the
observed trend. In general, seven ecosystem mod-
els showed large spatial differences in the simu-
lated trends (figures 7 and S4). CLM5.0, ISBA, LPJ-
GUESS, IBIS, and ORCHIDEE showed a similar
spatial pattern on the trend of simulated HC, and
a largely increased trend was observed in north-
ern China (figures 7(a), (b), (d), (f) and (g)).

However, the spatial pattern showed large differ-
ences from the observed trend in the TED-HCC
dataset, and large increases were found in Northeast
China, and decreased trends existed in Southern
China (figure 7(h)). Although the other two models
showed the decreased trend of HC over some regions
(figures 7(c) and (e)), the decreased regions largely
differed with the TED-HCC dataset (figure 7(h)).
In addition, the observed HC shows significantly
increased trend from 2001 to 2019 with a rate of
0.0083 Gt C yr−1 (figure 5(d)).

4. Discussion

Harvested crop carbon play an important role in
determining carbon budget of cropland and even
entire terrestrial ecosystems in China. According to
our dataset, there were 0.32 Gt C yr−1 exported
from cropland ecosystem to human society aver-
aged from 1981 to 2020, which was comparable
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with the terrestrial carbon sink in China (i.e. 0.19–
0.26 Gt C yr−1) (Piao et al 2009). More import-
ant, the HC substantially increased by the rate of
0.006 Gt C yr−1 through the past 40 years, from
0.18 Gt C yr−1 in 1981 to 0.42 Gt C yr−1 in 2020
(figure 1). This trend is closely linked to the observed
increase in crop yield benefit (tech-enhanced harvest
index, climate-induced multi-cropping), as higher
yields directly translate to greater amounts of har-
vested crop carbon. As HC is one of the largest
carbon fluxes in cropland ecosystems, the increased
HC substantially impacts carbon budget. Based on
eddy covariance measurements of rotation crop-
land in the North China Plain, a study estimated a
winter wheat ecosystem to be a large carbon sink
(359 g C m−2 yr−1), but only a carbon sink of
90 g C m−2 yr−1 after accounting for HC (Wang
et al 2015). In addition, numerous studies highlighted
the harvest index (the ratio of grain to aboveground
biomass) largely increased (Yang and Zhang 2010),
which implied more aboveground biomass allocated
to grain and reduced themagnitude of straw resulting
in less accumulation of soil organic carbon in crop-
land ecosystems.

Although the total harvested crop carbon highly
increases over the entire China during the past
40 years, there are large spatial heterogeneity of
changes in HC. In general, the harvested crop car-
bon showed the increased trend in the north China,
but decreased trend in south China. Previous study
supported our conclusion and showed substantial
regional shifts in crop cultivation and the subsequent
impacts on crop production in China (Yuan et al
2018). They found that South China have lost large
planting areas of cropland in order to pursue industry
and commerce, but Northeast and Northwest China
have witnessed increases in planting areas (Yuan
et al 2018). The competition for resources between
agricultural and nonagricultural sectors and across
regions has been intensified by the rapid industrializ-
ation, urbanization, strong income growth, and pop-
ulation expansion.

Model-data comparison conducted in this study
showed the large uncertainties of state-of-the-art
terrestrial ecosystem models for simulating HC
(figures 5–7, S3 and S4). Figure S5 showed the pro-
vincial crop areas derived from LUH2 dataset was
close to the statistical areas at most provinces, and
which implied the model capability was the more
important reason for the uncertainties of simulated
HC. Simulating harvested crop carbon is a consid-
erable challenge for terrestrial ecosystem models
(Lombardozzi et al 2020). The primary difficulty
arises from the need to accurately represent crop
management at regional and global scales (Licker
et al 2010). Substantial efforts have been made to
produce regional and global maps of cropland man-
agement (Xiang et al 2020). However, there are still

large uncertainties due to the lack of statistical and
survey datasets (Siebert et al 2010). For example, a
recent study found that the widely used FAO irriga-
tion dataset (i.e. Global Map of Irrigation Areas) in
China (Xiang et al 2019) has low accuracy. In addi-
tion, several other important factors highly determ-
ined crop yield, but there was no regional and global
information yet (Cabas et al 2010). Previous studies
highlighted the improvement of crop variety contrib-
uted substantially to the rising of crop yield (Xiong
et al 2014). A recent study showed that satellite-based
light use efficiency incorporating regional inform-
ation on crop variety can significantly improve the
estimates of crop yield (Dong et al 2020). However,
spatial information on crop variety was lacking in
most regions. Therefore, most process-based ter-
restrial ecosystem models did not integrate several
important crop management information (Pongratz
et al 2018), which led to large uncertainties in simu-
lating crop production.

TED-HCC, therefore, has an important implic-
ation for carbon budget estimates as the HC largely
determined the carbon budget of cropland ecosys-
tems (Zhang et al 2015). Therefore, a national data-
set of HC generated by this study had an import-
ant role in improving the estimates of country
and global-level carbon budgets. Currently, Global
Carbon Budget provided several important forest
and cropland disturbance information, which were
difficult to simulate by terrestrial ecosystem models
(Friedlingstein et al 2022). For example, the LUH2
dataset provided gridded annual harvest forest car-
bon (Chini et al 2021), which was quite similar to
harvest carbon in the cropland ecosystems in terms
of strong human decision. However, Global Carbon
Budget did not provide harvest crop carbon due to
data scarcity (Friedlingstein et al 2022). Our results
showed the averaged harvested crop carbon in China
is 0.32 Gt C yr−1 from 1981 to 2020, which is lar-
ger than the harvested forest carbon reported by the
LUH2 dataset in China (0.04 Gt C yr−1 averaged
from 1981 to 2020). More importantly, the former
will emit into the atmosphere at a faster rate com-
pared with harvested forest carbon. In addition, this
dataset (i.e. TED-HCC) is urgently needed for the
top-down method (i.e. atmospheric inverse model)
to deduct HC. As an important carbon budget assess-
ment method, atmospheric inverse models have been
widely used to estimate the regional and global ter-
restrial carbon sink (Chen et al 2022a). It should
be noticed that atmospheric inverse models estim-
ated carbon flux between land and atmosphere, but
did not simulate the process of crop harvest, and the
carbon fixed in the crop grain will not be removed
from cropland. Therefore, atmospheric inverse mod-
els may overestimate the carbon sink in the cropland
because they did not simulate the emission of harves-
ted crop carbon.

8



Environ. Res. Lett. 19 (2024) 054036 P Ren et al

5. Conclusion

HC, a crucial component of the carbon budget in
cropland ecosystems, poses a well-documented chal-
lenge for terrestrial ecosystemmodels. This study col-
lected statistical production of 10 crop types from
1981 to 2020 and calculated the HC with crop har-
vest. The results showed that the total HC increased
about 2.3 times during the past 40 years, from
0.18 Gt C yr−1 in the1981 to 0.42 Gt C yr−1 in
2020. The grain-type crop (i.e. rice, wheat, and
maize) makes the largest contribution (68.3%) to
total increases of HC in China. In addition, based on
the statistical crop production data, this study gen-
erated the gridded dataset of HC (TEC-HCC, i.e.
Terrestrial EcosystemDisturbance-HarvestedCarbon
in Cropland Ecosystems) over entire China (did not
include Hongkong, Macau, and Taiwan) jointly using
crop distribution maps and satellite-based vegeta-
tion index. The spatial resolution of this dataset is
10 km × 10 km. Based on this newly produced data-
set, and we evaluated the performance of the seven
terrestrial ecosystem models for simulating HC in
China. Several models could reproduce the spatial
patterns of HC, but all models failed to reproduce
the temporal variations during the past 40 years. This
study highlighted a substantial increased trend of har-
vested crop carbon during the past 40 years, and the
produced dataset has a large potential for estimating
the national carbon budget and to be a benchmark of
state-of-the-art terrestrial ecosystem models.

Data availability statements

Any data that support the findings of this study are
included within the article and/or the supplementary
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The harvested carbon dataset of cropland in
China from this study is available at: https://doi.org/
10.6084/m9.figshare.22785800.v4 (Ren et al 2023).

The dataset consists of a single NetCDF file con-
taining agricultural annual harvested carbon images,
with each image representing the carbon harvested
per square meter of each grid cell for a specific year
(unit: g C m−2 yr−1). To obtain the total carbon har-
vested for each grid cell, please multiply the carbon
harvested value in each image file by the correspond-
ing grid cell area.
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