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Abstract

Data on Arctic and Sub-Arctic summer heat events are limited due to the sparse network of surface
observation stations. Here, we analyze large heat events within 60°-80°N using land surface
temperature (LST) observations from the moderate resolution imaging spectroradiometer
(MODIS) sensor aboard the Terra satellite. Our heatwave (HW) detection method uses
exceedances of the climatological 90th percentile of LST across summer months, and a
spatio-temporal density-based clustering algorithm to distinguish space-time coherent events
across Northern Hemispheric high latitudes for the summers of 2000-2022. We find a close link
between HW duration, spatial extent and amplitude across the study region (correlations ranging
from 0.63 to 0.73). MODIS-derived burned area data show that wildfire seasons are significantly
correlated to summer HW activity, particularly in Siberia (r = 0.87 at p < 0.05) and Alaska and
NW Canada (r=0.45 at p < 0.05), and are also spatially co-located. MODIS active fire data also
show substantial increase during larger heat events. For the strongest HWs in Siberia, the peak in
daily fire count (from the MODIS active fire archive) lags behind peak HW activity. We conclude
that there is a close link between intense fire summers and extensive HWs over boreal and shrub
tundra regions (Interior Alaska, the Canadian Prairies and Eastern Siberia).

1. Introduction

Heatwaves (HWs) are extreme weather phenomena
characterised by exceptionally high temperatures, and
associated with slow-moving, anticyclonic circula-
tion (Perkins-Kirkpatrick 2015, Horton et al 2016).
High pressure regions tend to accumulate heat over
time, which evaporates moisture and exacerbates the
hot and dry conditions (Perkins-Kirkpatrick 2015).
Therefore, extreme heat often coincides with intense
wildfire activity and drought, creating compound
hazards (Horton et al 2016, Ciavarella et al 2021,
Kharuk et al 2022).

The scientific literature has mostly focused on
regional heat events across well-documented areas,
e.g. Europe (e.g. Stott et al 2005, Russo et al 2015),
North America (e.g. Cowan ef al 2016, Qiu and
Yan 2020) and Australia (e.g. Jyoteeshkumar Reddy
et al 2021), and less on high latitudes (Horton et al
2016). In part, this is related to the distribution of

© 2024 The Author(s). Published by IOP Publishing Ltd

weather stations (Allen et al 2012). The harsh and
remote Arctic and Sub-Arctic (ASA) hinders reli-
able, long-term in situ observations of temperature.
Research on Arctic HWs is comprised almost exclus-
ively of individual case studies (e.g. Wendler et al
2011, Fazel-Rastgar 2020, Ciavarella et al 2021, Liu
et al 2022) using surface observations and reanalysis,
which can have large gaps and uncertainties at high
latitudes. Recent extreme events within the Arctic
Circle (>66°N), such as record-breaking HWs and
unprecedented fire activity observed across Canada in
2023 and Siberia in 20202021 highlight the need for
more comprehensive research to characterise Arctic
HWs and their links to fire activity.

The lack of in situ observations is a key limita-
tion in ASA research. However, satellite data provide
frequent monitoring of remote locations and could
help fill this gap. Research and development of
applications for remote sensing data is advancing fast
and series are now long enough to record variability
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and trends. Satellite-derived datasets, such as land
surface temperature (LST) and burned area (BA),
are readily available for analysis. Our study uses
remotely-sensed LST data to analyse large-scale HW
activity, fire activity and their connection across
the ASA. We employ a novel way of identifying
spatio-temporally-coherent HW clusters and analyse
their attributes such as amplitude, spatial variability,
length and size.

While wildfire regimes for Siberia and Alaska have
been studied extensively, as summarised by McCarty
et al (2021), their link to HWs has not been system-
atically investigated. Previous studies (e.g. Hu et al
2015, Descals et al 2022) suggest that wildfire activ-
ity accelerates when certain thresholds of mean sum-
mer temperature are exceeded, and in some regions
can be attributed to greenhouse gas forcing on large
scales (Gillett er al 2004). Hence, this study evalu-
ates the relationship between HWs and wildfires in
the ASA with the help of additional fire products
from MODIS. We recognise that aggregating across
large areas ignores regional differences such as terrain
and fire management. A large-scale analysis identi-
fies statistical and mechanistic relationships between
heat and fire, across different regions, but smoothens
out small-scale events caused by topography and
microclimates.

2. Data and methods

2.1. Data

This study focuses on the terrestrial ASA (60°—80°N,
180°W-180°E). We divide the study area into quad-
rants: 180°-90°W (Q1), 90°-0°W (Q3), 0°-90°E
(Q4), 90°—180°E (Q2). The choice of quadrants fol-
lows from previous research by Dobricic et al (2020).
Due to the short warm period in the ASA, we limit
our HW analysis to June—August (JJA) and BA ana-
lysis to June—September (JJAS). We restrict our ana-
lysis to 20002022 due to data availability. We reg-
rid each dataset to 1° x 1° resolution to identify large-
scale heat and fire patterns.

We define burnable area within our study region
using the Boreal-Arctic Wetland and Lake Dataset
(BAWLD). It provides estimates of fractional land
cover of 19 land cover classes at 0.5° resolution
(Olefeldt et al 2021). The study region of BAWLD is
categorised into 15 wetscapes via distinct configur-
ations of land cover classes. We mask out wetscapes
classed as Rivers, Large Lakes, Glaciers, Alpine and
Tundra Barrens and Lake-rich Shield, as they com-
prise of little or no vegetation cover. We assume the
other ten wetscapes have sufficient vegetation that
could burn—we call these regions burnable.

We use the LST/Emissivity Daily (MOD11C1)
Version 6.1 product (Wan et al 2021) from moderate
resolution imaging spectroradiometer (MODIS)
aboard Terra from 2000 to 2022. MOD11C1 provides
gridded, daily LST at 0.05° resolution. The average

2

D Hegedyis et al

overpass time of Terra is around noon. As the LST
algorithm only works for clear-sky pixels, cloud cover
leads to missing values. This means that MOD11C1
has an intrinsic warm bias in its climatology; it under-
represents cloudy and rainy days, which tend to be
cooler. However, MOD11C1 does not under-sample
clear, warm days. Heavy smoke might also hinder
observations. Comparison of LST and surface air
temperature from ERA5 shows strong correlation
between the data, while confirming an LST warm bias
(see supplementary materials). While several studies
attempt to create global, spatio-temporally continu-
ous LST datasets (Ghafarian Malamiri et al 2018, Yu
et al 2022, Zhang et al 2022), we do not interpolate
missing values in order to maintain purely observa-
tional data.

We retrieve two fire products derived from
MODIS:

e Monthly BA from MODIS (FireCCI51), produced
as part of the Fire Disturbance Climate Change
Initiative project of the European Space Agency
(Chuvieco et al 2018). FireCCI51 is available for
2001-2020 at 250 m resolution, we aggregate it to
1° x 1° to focus on large fires.

e Archived active fire data (MCD14ML) distributed
by Fire Information for Resource Management
Service, spans 2001-2022 (NASA FIRMS 2023).
MCD14ML is a subset of the data produced by
the MODIS Fire and Thermal Anomalies algorithm
(Giglio et al 2016), aboard both Terra and Aqua.
MCD14ML records 1 x 1 km pixels containing one
or more active fires or thermal anomalies. We
aggregate the data to 1° x 1° resolution by sum-
ming up the number of active fire pixels within each
grid cell.

Neither fire product is available in 2000, so HWs in
2000 are excluded from our HW—-wildfire analysis. As
a level 2 product, MCD14ML has spatial and tem-
poral sampling issues (Giglio et al 2016) in the pres-
ence of smoke. Hence the monthly BA product may
be more robust and representative of wildfire extent
on seasonal timescales. We use MCD14ML to study
the relationship between HWs and wildfires on times-
cales shorter than a month and for investigating the
timing of peak fire activity with respect to peak HW
activity.

2.2. HW clustering technique

Our HW definition builds on previous definitions
used in climate research (Perkins-Kirkpatrick and
Alexander 2013, Cowan et al 2016). On a grid-point
level, we define heatwaves as three consecutive days
which exceed the day-of-year 90th percentile (90thp)
of LST. We use a multi-year, centred 11 day rolling
window for calculating 90thp for each grid point over
the analysis period. If a missing day caused by sensor
outage in 2000 is both preceded and followed by an
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exceedance, we flag it as an HW pixel. We use the
90thp, instead of the 95th percentile, due to the pres-
ence of missing values. We use a rolling window of
11 days to account for the seasonal cycle, provide a
reasonable sample size and reduce noise from syn-
optic scale variability. We use at least three consecut-
ive days of anomalous heat, as more consecutive days
yield more intense events and prolonged heat is more
likely to impact vegetation. Reasonable perturbations
of the percentile and length of consecutive days to
identify gridpoint heat, and the length of the rolling
window for climatology yield similar results.

To identify space-time coherent, large-scale HWs,
we perform spatio-temporal density-based cluster-
ing with noise (ST-DBSCAN) on our dataset of grid
points recording HW conditions. We apply a three-
dimensional (3D) version (Birant and Kut 2007) of
DBSCAN (Ester et al 1996), an unsupervised cluster-
ing algorithm that labels each point as part of a group
or noise based on its location with respect to all other
points in the dataset. We discard small clusters below
100 000 km? daily extent (details see supplementary
materials) to study the characteristics of large HWs
in the Arctic. This results in the final definition of a
(large) HW as prolonged heat exceedances clustered
in space and time, which cover at least 100 000 km?
for at least one day.

The 3D ST-DBSCAN requires three parameters
(Birant and Kut 2007, Cakmak et al 2021): a spa-
tial threshold (g5), the minimum number of neigh-
bours () and a temporal threshold (g;). & and &,
are the maximum spatial and temporal separation
between two points to be neighbours and 7 is the min-
imum number of points within a neighbourhood for
the region to be considered dense.

We evaluate the sensitivity of HW clusters to
parameter choices. They are least sensitive to &,
but vary greatly with e, and 7. The clustering per-
formed best when choosing 1000 km, 2 days and 10
neighbours as parameters; see supplementary mater-
ials for a detailed description of our parameter tun-
ing method and discussion on clustering algorithm
choices. We also note that the clustering algorithm
is a tool to identify larger and longer HWs, rather
than find the optimal HW characteristics. We com-
pare clusters found in the LST data to those in the
daily maximum near-surface air temperature (Tpay)
from ERA5 reanalysis (table S2). We find good agree-
ment, but more clusters in Ty, due to the afore-
mentioned warm bias in LST data (see supplementary
materials).

We are not aware of any other study that uses ST-
DBSCAN for HW analysis. Most HW-related studies
define HWs at grid cell level only (Reddy et al 2022).
To characterise HW extent, many studies (e.g. Cowan
et al 2016) estimate the proportion of grid cells under
HW conditions within a region of interest, instead of
tracking the shape and extent of the events.

D Hegedyis et al

Using only grid points which are a part of an HW
cluster without interpolation, we assign attributes to
each cluster:

e Duration: the number of days from the first to last
day when the daily cluster size exceeds 100 000 km?.
This filters out small HWs, the beginning and tail
of large HWs. However, it lets HWSs vary in size
throughout their duration.

e Region: the quadrant that the coordinates of the
cluster centroid are located in.

e Amplitude: maximum of the daily area-weighted
mean LST anomaly of the hottest 100000 km?
within a cluster. For each day, we rank the highest
LST anomalies from the 90thp and cut off our
weighted average once the cumulative extent of the
ranked grid cells exceeds 100 000 km?. This method
samples over the hottest regions of the same size to
avoid a low bias in the intensity of the largest HWs.

e Entropy: scatter of LST anomalies within an HW.
Higher entropy means more variation in LST
anomalies.

e Anomalous energy: integral of the daily LST anom-
aly over the spatial extent of the HW, averaged over
its duration.

e Maximum extent: HW area on the day of the largest
spatial extent.

e Fire density: mean fire count per day and per burn-
able area. We divide the number of active fires dur-
ing each day of a HW by its burnable area, and aver-
age over its duration. The resulting fire density val-
ues are standardised by the spatial mean and stand-
ard deviation (o) in each quadrant separately—
0 corresponds to the regional-average fire activity
during the HW, and 1 (or above) means that the fire
occurrence was 1 o (or more) above the regional-
average.

To compare HWs within and across the quadrants,
we use the Pearson correlation coefficient (r) and
the multiple correlation coefficient (ry,, for > 3 vari-
ables).

2.3. HW-wildfire relationship
We aggregate HW days over summer (JJA) as the per-
centage of burnable grid cells with valid LST observa-
tions which are part of a cluster. Similarly, we divide
the cumulative sum of BA over the extended sum-
mer (JJAS) by its total burnable area. We estimate the
Pearson correlation coefficient  for the resulting time
series in each quadrant. This gives an indication of the
strength of the HW-wildfire relationship. We assess
the significance of r by randomly perturbing the time-
order of the aggregated BA, with p-value being the
proportion of 10 000 permutations which has a larger
correlation coefficient than the observed r.

We also analyse the spatial characteristics of the
mean JJAS BA in each quadrant. We compare these
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results to spatial distribution of the fire density of
HW clusters during the whole study period, the five
strongest HW and fire summers.

To analyse timing between heat and fire, we cre-
ate composites of HW clusters with the highest amp-
litude and stack them by the day of their maximum
amplitude. We carry out lagged cross-correlation
(CC) of the daily HW metric and fire count. We per-
form a leave-one-out cross-validation to test sensitiv-
ity of our composite mean to each member.

3. Results

3.1. Arctic HW characteristics

The HW attributes and number of clusters we obtain
are shown in figure 1. We note no significant differ-
ence between the distributions of HW character-
istics across the four quadrants (figure 1(a)). We
find that HW metrics are significantly correlated
(p <0.05) with each other in all quadrants: max
extent with duration (Q1:r=0.654+0.17, Q2:r=
0.59+0.16, Q3:r=0.51£0.25and Q4 : r=0.61 &+
0.17), max extent with amplitude (Ql:r=
0.63+0.17, Q2: r=0.70 +0.13, Q3 : r=0.76 &
0.15and Q4 : r=0.69+0.14), and duration with
amplitude (Q1:r=0.4440.23, Q2:r=0.48+
0.19, Q3:r=0.30£0.31 and Q4 : r=0.61 :|:0.17).
In addition, larger and longer HWs have higher
amplitude  (r,=0.63in Q1, 1, =0.70in Q2, ry, =
0.77 in Q3, 1,,=0.73 in Q4). Figure 1(b) demon-
strates these relationships visually for each quadrant.

3.2. HW-wildfire relationship

With the active fire archive, we also find sig-
nificant correlation between fire density and
maximum extent in all quadrants (Q1:r=
0.371+0.24, Q2:r=0.26£0.23, Q3:r=0.38 &=
0.29 and Q4 : r=0.51+0.20), and with other char-
acteristics in some quadrants ( for duration: Q1 :r=
0.224+0.23, Q2:r=0.564+0.17, Q3:r=0.14 £+
0.33, Q4 : r=0.46 - 0.21; and for amplitude Q1 :
r=0.194+0.24, Q3:r=0.20+0.32, Q4:r=0.21 +
0.25) despite substantial sampling uncertainty. The
strong correlation between fire density and maximum
extent is consistent with drying of the vegetation
caused by large-scale extreme heat promoting burn-
ing (Seneviratne et al 2021), and increased chance of
ignition in a larger area.

We also identify a link between HW occurrence
and wildfire BA across a quadrant over the whole
summer (figure 2). While the relationship between
JJA HW and JJAS BA remains significant over the
entire study region (r=0.63), splitting the Arctic
into quadrants reveals that the quadrants contain-
ing Siberia (r=0.87) and Alaska (r =0.46) are the
strongest contributors toward the observed strong
HW-BA relationship within the Arctic. Q3 and Q4

D Hegedyis et al

show low, non-significant correlation between sum-
mertime HW activity and BA (r=0.04 and r =0.27
respectively). This is consistent with less vegetation
cover in NE Canada and Greenland (Q3). The reason
for this smaller correlation for Q4 (encompassing
North Europe) is less clear, and may be linked to
a strong fire management regime in North Europe
(Nordic Forest Research, SNS 2021) and possibly also
complex topography. As the Arctic warms, HWs will
become more likely (Seneviratne et al 2021), but due
to high variability this occurs on the background of
large climate variability seen in the sectors. For dis-
cussion on trends and the impact of clustering on
figure 2, see supplementary materials.

We further investigate the temporal link between
HW and fire activity in figure 3, using MCD14ML.
As the quadrant (Q2) exhibiting the strongest HW-
wildfire link, we create a composite of the ten hottest
HW clusters in Siberia in figure 3 (see supplementary
materials for other quadrants). Peak fire activity tends
to follow peak HW activity—significant (p < 0.05)
CCis found for a lag of 12-13 d. While the location of
significant heat/fire lags varies with the cluster num-
ber or HW metric chosen, the strong and signific-
ant negative correlation before the peak HW activity
remains consistent, showing that fire activity does not
climax before HW activity.

We investigate the spatial relationship between
HW and fire activity in figure 4—relating fire activity
(BA as grayscale shading and fire density as coloured
points) to HW locations. Evaluating the entire study
period (figure 4(a)), we find negligible fire activity
during HWs in Greenland and North Europe. Events
coinciding with anomalously strong fire activity (in
space, at any given time) in Q4 are located in Western
Siberia. In Q1 and Q2 we see some overlap between
where high fire density HWs have been observed
and where most of the summertime BA occurs, and
a tendency for anomalous fire density (red shaded
dots) to occur with larger HW (larger dots) in those
regions. This indicates a spatial dependency for fire-
prone HWs in Interior Alaska, the Canadian Prairies
and Eastern Siberia. While HWs occur across the
entire Arctic, there is a limited relationship between
HWs and fires in the far northern Arctic. In summary,
extreme heat over regions with sufficient vegetation
appear most likely to result in high fire activity.

Finally, we investigate whether HW activity in the
five strongest HW/fire summers is more prone to fires
(figures 4(b) and (c)). In comparison to figure 4(a),
we find a more pronounced spatial HW-BA rela-
tionship during these five summers (figures 4(b)
and (c)). Especially for intense fire summers, we find
a strong spatial co-incidence between HWs and BA
(figure 4(c)). This suggests that extensive HWs con-
tribute greatly to intense fire summers. As fire activ-
ity lags behind peak HW activity (figure 3), this sup-
ports that intense HW activity may result in extreme
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Figure 1. Analysis of heatwaves detected with the clustering algorithm for LST during JJA (2000-2022). (a) Stacked histograms of
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region. (b) Scatterplot of maximum extent against duration of heatwave for each quadrant. Each point symbolises a heatwave
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BA. However, strong HW activity does not result in
extensive burning everywhere (figure 4(b), and dis-
cussion).

4. Discussion

Our spatio-temporal clustering technique allows us
to include spatial connectivity in our HW defini-
tion. We minimise noise sensitivity to individual hot
days through limiting gridpoint HW conditions to at
least three consecutive HW days, before clustering.
We tune the parameters via a simplified 3D exten-
sion of the grid search method. However, we note that
most clustering quality indices and hyper-parameter
tuning methods have not yet been implemented for
spatio-temporal data and require further work.

We aim to minimise the bias within HW
attributes:

e We only use valid grid cells recording HW condi-
tions when calculating HW attributes rather than
interpolating across missing values. This may res-
ult in an underestimate of some HWs (see sup-
plementary materials), as the 90thp threshold with
complete sampling includes cool, cloudy days that
may be missing for LST. Further work could focus
on using gap-filling techniques for the LST data
(e.g. Metz et al 2017, Ghafarian Malamiri et al
2018).

e We choose an extent threshold of >100000km? in
our definition of HW duration to focus on large-
scale events and limit influence of noise during
the onset or decay period of HWs. Moreover, this
helps to compare the frequency and characteristics
of similar-sized HWs across the ASA.

e We split our study region into only four quad-
rants, similarly to Dobricic et al (2020) rather
than smaller (e.g. IPCC) regions (Christensen
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and Kanikicharla 2021) to avoid separating large
HW clusters. Our focus is on the large-scale link
between heat and fire, integrating across different
topography and fire management regimes which
would need to be considered in a regional analysis.

e The amplitude of the HW is similarly based on the
hottest 100000 km? grid cell area. Our final amp-
litude definition closely agrees with the anomalous
energy of the HW and shows a much clearer logar-
ithmic relationship between our amplitude defin-
ition and entropy than a more simple metric (see
supplementary materials).

We find that the duration, maximum extent and amp-
litude of HW clusters are strongly correlated across
the terrestrial Arctic. Previous studies (e.g. Bieli et al
2015, Perkins-Kirkpatrick 2015, Horton et al 2016,
Quinting and Reeder 2017, Papritz 2020, Yasunari
et al 2021) show that high pressure regions are the
dominant atmospheric features responsible for HW
development. Several case studies on recent HWs in
Siberia (Overland and Wang 2020, Ciavarella et al
2021), Scandinavia (Sinclair et al 2019, Lindroth
et al 2021), Alaska (Wendler et al 2011) and Canada
(Fazel-Rastgar 2020) report upper level ridging and
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(a)

(b)

Legend applies to all subfigures.

Figure 4. Spatial link between heatwave and wildfire activity. Circles denote the centroid of each heatwave, colour indicates the
observed fire density during each event relative to average and standard deviation of fire density during heat waves across the
spatial sector, size denotes maximum extent of each heatwave. Grayscale shading shows average JJAS burned area during (a)
2001-2020, (b) the five strongest heatwave summers and (c) the five strongest fire summers in each quadrant. JJAS burned area is
calculated as a percentage of area burned in each grid cell. Summers used in (b) and (c) are the strongest events shown in figure 2.
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semi-stationary anticyclones. The longer the HW
persists (as a result of the anticyclonic conditions),
the stronger and larger it may become, amplify-
ing surface heating and preventing heat dissipation.
Therefore, the strong link between HW duration, size
and strength demonstrated in our results is consist-
ent with HW development being governed by anti-
cyclonic weather systems across the ASA.

However, due to climatic and land surface dif-
ferences across the study region, HWs in the more
continental climate of Siberia, NW Canada and
Alaska tend to have larger, longer and stronger
HWs (figure 1). HWs in the maritime climate of
NE Canada and Greenland are weaker in intensity

(figure 1), but can persist for long periods of time,
likely due to the persistence of melting.

As our analysis is large-scale, we are not able
to deal with local confounding factors consistently.
Instead, we focus on the question if HW activ-
ity contributes to fire variability, a question that is
addressable using large-scale data where local effects
tend to average out. The scatter of our HW clusters
(figure 4(a)) indicates that HWs extending over large
burnable areas are closely linked to above-average
fire activity, and that links between heat and fire can
therefore be extended to high latitude HWs. High
HW activity can extend much further than BA, thus
HWs do not result in wildfires everywhere in the
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Arctic. Our findings show that enhanced HW activ-
ity over the boreal and shrub tundra regions—mainly
Siberia, Alaska and NW Canada—are most likely to
result in high fire activity (figures 4(b) and (c)). The
findings of Masrur et al (2018) also support this; they
identify clusters of high fire activity in the tundra
regions of Alaska, the Canadian Arctic and NE Russia.
North Europe at present shows a weaker link, which
might be explained by more complex topography and
fire management.

Our findings are consistent with research by
Descals et al (2022), who find an exponential rela-
tionship between mean summer average temperature
and annual BA in the Siberian Arctic and propose that
temperature controls various other fire factors dir-
ectly (i.e. vapour pressure deficit, length of growing
season) and indirectly (climatic water deficit). While
they do not discuss HWs specifically, high mean sum-
mer temperature often reflects an intense HW season
(Dobricic et al 2020). Our findings suggest that pro-
longed, extreme heat conditions might be an under-
lying cause of the relationship observed by Descals
et al (2022). Our study focuses on the observed link
between heat and fire and does not aim to explain
other important factors in wildfires that have shown
to be regionally important, such as fire management
or fuel load (Descals et al 2022).

Overall, our findings suggest that HWs are a
driver of a severe wildfire season. Physically, this
might be linked to enhanced evaporation during pro-
longed periods of extremely hot days. Ignition in the
high latitudes is mainly caused by lightning strikes
(Wendler et al 2011, Descals et al 2022). The more
intense the heat, the drier the vegetation can become,
and the more likely convection and lightning will
occur. With increasing HW extent, more vegetation
experiences heat stress and ignition can occur over a
larger area. For small, short or weak HWs, the prob-
ability of burn is lower due to the cool (and often wet)
climate of Arctic summers.

5. Conclusion

We use a novel, density-based clustering method to
find large individual HWs in the LST product from
MODIS. This allows us to characterise each event by
their duration, amplitude and maximum extent. We
find that these metrics are strongly correlated (rp, =
0.63-0.73) across the study region, consistent with
the idea that Arctic HWs are governed by anticyclonic
circulation.

Using two different fire datasets from MODIS
(active fire archive and BA), we show that there is a
strong connection between intense fire seasons and
enhanced HW activity in Siberia, Alaska and NW
Canada. Summertime BA is significantly correlated
with HW activity in two quadrants: Siberia (r = 0.87
at p<0.05), Alaska and NW Canada (r=0.45 at
p <0.05). Analysing the strongest HWs in Siberia,
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we find a 12-13 d lag between peak HW activity and
peak daily fire count. We identify Interior Alaska, the
Canadian Prairies and Eastern Siberia as hot-spots for
fire-related HWs. In particular, we link intense fire
summers to extensive HWs. While not all HWs lead to
wildfires, our findings demonstrate that extreme heat
played an important role in the intense wildfire sea-
sons that Siberia, Alaska and NW Canada experienced
in the 21st century.

Our results of a strong connection between fire
and heat raises concerns about how the carbon-
cycle may be affected by the HW-wildfire relation-
ship in high latitudes. Hence consistent with Wang
et al (2023), boreal forest and the high latitudes are
a region that may be affected by significant climate
risk, both to the carbon cycle and air quality. This is
illustrated dramatically in the 2023 strong Canadian
Arctic fire seasons which impacted air quality across
North America.
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