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Abstract
Rapid Arctic Ocean warming has caused severe sea ice decline, impacting light distribution,
phytoplankton blooms, and primary production. We investigated Arctic phytoplankton bloom
timing using continuous chlorophyll-a fluorescence data obtained from three Korea Arctic
Mooring Systems (KAMSs) deployed north of the East Siberian Sea (KAMS1), north of the
Chukchi Sea (KAMS2), and the middle of the Northwind Ridge (KAMS4). Our findings revealed
that the bloom initiation times were June 4 (±28 d) in KAMS1, June 24 in KAMS2, and May 21
(±6 d) in KAMS4, when the sea ice concentration (SIC) was>90% and the ice thickness was
1–2 m, indicating that the under-ice phytoplankton blooms (UIBs) developed 1–2 months before
the sea ice retreated (mid-July, when SIC was<80%). Peak bloom and termination times were
consistently observed in early August and mid-October, respectively. The average phytoplankton
bloom lasted for approximately four months, longer than the open water periods at the mooring
sites. However, the timing of the phytoplankton blooms from the biogeochemical model-based
reconstructions was, on average, 6–10 weeks later than that deduced from the observed data.
Furthermore, the maximum chlorophyll-a concentration observed during the bloom peak was
approximately ten-times higher than that indicated by the biogeochemical model-based
reconstructions (1.81 vs. 0.17 mg −3). The differences in chlorophyll-a concentrations and bloom
timings indicate that biogeochemical models remain insufficient for simulating the phytoplankton
dynamics of the Arctic Ocean, such as UIBs and the subsurface chlorophyll maximum layer. Based
on the continuously observed chlorophyll-a concentrations, we gained a precise understanding of
the seasonal cycles of Arctic phytoplankton, including UIBs. These valuable data will contribute to
improving the accuracy of biogeochemical models of the Arctic Ocean.

1. Introduction

Rapid warming in the Arctic Ocean has resulted in
severe sea ice decline, accompanied by a decrease in
the volume of perennial sea ice. In particular, sea
ice condition alterations and early retreat influence
water column light distribution, affecting total sea-
sonal primary production and the marine phyto-
plankton bloom period. For example, under domin-
ant first-year ice in the Arctic Ocean, widermelt pond
coverage has greater light transmission than bare ice,
causing a change in the underwater light field (Kwok

et al 2011, Stroeve and Notz 2018, Shu et al 2022).
Early sea ice retreats or delayed sea ice advances have
led to changes in the early phytoplankton and fall
blooms in the Arctic Ocean (Kahru et al 2011, Ardyna
et al 2014,Manizza et al 2023). Two factors contribute
to primary production increase in the Arctic Ocean.
Phytoplankton growing season extension due to early
sea ice retreat resulted in a 30% increase in the annual
primary production between 1998 and 2012 (Arrigo
and van Dijken 2015). Additionally, new nutrient
influx into the Arctic Ocean sustained an increase
in phytoplankton biomass between 2012 and 2018
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(Lewis et al 2019). These findings confirm that rapid
sea ice changes have a substantial impact on phyto-
plankton growth and primary production. However,
this has mainly been documented in coastal or shelf
areas in open water (Horvat et al 2017, Lowry et al
2018). To gain a comprehensive understanding of the
response of phytoplankton to rapid environmental
changes in the Arctic Ocean, it is crucial to investig-
ate phytoplankton dynamics in openwater and under
sea ice.

Phytoplankton development is constrained by
extremely low light and coldwater conditions beneath
the sea ice in the Arctic Ocean (Nansen 1902, Gran
1904). However, under-ice phytoplankton blooms
(UIBs) have been observed since the 1950s in vari-
ous regions of the Arctic Ocean, including the central
Arctic Ocean (Apollonio 1959, English 1961), coastal
Alaska (Yager et al 2001), the Beaufort Sea (Mundy
et al 2009), and other local regions (Martin et al 2002,
Leu et al 2011). TheseUIBs has been suggested to con-
tribute to an approximately 12% increase in primary
production in the Arctic Ocean (Perrette et al 2011,
Arrigo et al 2012). Recently, the large UIBs have been
observed on the Chukchi shelf, leading to the recogni-
tion of UIBs as a common phenomenon (Arrigo et al
2012, Lowry et al 2014, Ardyna et al 2020). However,
the actual seasonal cycles and bloom timings of UIBs
have not beenwell determined or understood because
of the lack of continuous measurements. Thus, con-
tinuous data on phytoplankton biomass under sea
ice are essential to determine the actual UIBs in
seasonally ice-melting areas and higher-latitude
regions.

We installed chlorophyll-a (Chl-a) fluorometers
in the Korean Arctic Mooring System in the west-
ern Arctic Ocean in 2018 and have been continu-
ously operating them to date. Moored fluoromet-
ers provide long-term continuous data at specific
depths and certain locations to investigate the sea-
sonal cycles of phytoplankton. Additionally, these
observational data can be valuable for validating
biogeochemical models and serve as evidence for
predicting the seasonal cycle of Arctic phytoplank-
ton in the future. Validating biogeochemical model
products is crucial because they are essential for
investigating the impacts of ongoing climate change
on the marine environment of the Arctic Ocean
(Schourup-Kristensen et al 2018). Therefore, the
objectives of this study were to (1) determine the
actual phytoplankton bloom timing from under sea
ice to open water using continuous chlorophyll-a
data obtained from mooring systems deployed at
three different sites and (2) suggest how the observed
timing differs from the timings simulated using
Global and Arctic Ocean biogeochemical analysis
data.

2. Methods

2.1. Year-long chlorophyll-a measurement
We determined chlorophyll-a levels year-round using
moored fluorometers (Seapoint) with a data logger
(RBRvirtuoso3, RBR) installed near the surface layer
of the Korean Arctic Mooring System (KAMS) in the
western Arctic Ocean. The three KAMSs are oper-
ative at different sites: north of the East Siberian
Sea (KAMS1), north of the Chukchi Sea (KAMS2),
and in the middle of the Northwind Ridge (KAMS4)
(figure 1(a)). Information on the sensor depths and
measurement periods for the individual KAMSs is
presented in figure 1(b) and table 1. Themoored Chl-
a fluorescence values were corrected using the Chl-
a concentrations obtained from the bottle samples
to calculate the phytoplankton phenology. Niskin
bottle-sampled seawater was filtered (500 ml) using
a glass fiber filter (GF/F, Whatman) and extracted in
the dark for 24 h with 90% acetone. The extracted
samples were analyzed using a fluorometer (Trilogy,
TurnerDesigns) calibratedwith a purified SigmaChl-
a standard solution (Parsons et al 1984). The Chl-a
fluorescence profile at eachmooring site was obtained
during summer field surveys using a fluorometer
(ECO FL, WET Labs), which was calibrated using
the Chl-a concentration sampled in a Niskin bottle
(Ko et al 2022). The subsurface chlorophyllmaximum
(SCM) depth was determined based on the depth at
which the highest value was observed for the Chl-a
fluorescence profile in summer filed surveys.

2.2. Phytoplankton bloom timing calculation
The depth at which the fluorometer was installed var-
ied each year, resulting in diverse patterns in Chl-
a concentration and its annual cycle. To determ-
ine the bloom timing from Chl-a concentration, the
Gaussian method was deemed suitable because it is
insensitive to changes in Chl-a concentration and
allows stable calculations (Zhao et al 2022). The cor-
rected Chl-a concentrations obtained from themoor-
ing sites were applied to the adjusted Gaussian curve
fitting method to calculate the seasonal timing of the
phytoplankton (Yamada and Ishizaka 2006, Thomalla
et al 2011, Park et al 2019).

This method can be used to continuously infer
chlorophyll dynamics, the equation (Park et al 2019)
used is as follows:

C(x) = C0+ h× e
−(x−tm)2

2σ2 +
d

1+ e
−(x−tm)

2σ

(1)

where C0 is the initial Chl-a concentration, h is the
bloom amplitude, x is time, tm is the time of the
bloom peak, sigma is the bloom width, and d is
the residual Chl-a concentration. tm ± 2σ accounts
for 95% of the Chl-a distribution. In this study, the
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Figure 1.Map of chlorophyll-a fluorometers moored in the north of Chukchi Sea and schematic diagrams of the mooring system.
(a) Map of mooring stations and the timing of sea ice retreat (color-shaded) which was estimated based on the average daily sea
ice concentration (⩽80%) between 2018 and 2020. The black squares indicate the locations of three Korean Arctic Mooring
Systems (KAMS1, 2, and 4). The black solid lines represent the bathymetric contours for 100 and 1000 m. (b) Schematic diagrams
of KAMS1 (left), KAMS2 (middle), and KAMS4 (right). The green solid line represents the subsurface chlorophyll maximum
(SCM) depth during the summer season in individual years. The blue ovals indicate the chlorophyll-a fluorometer installed on
each mooring system.

phytoplankton bloom period was calculated as the
differences between the initiation and termination
time, and the initiation and termination times of the
phytoplankton bloomswere defined using the follow-
ing equation (Yamada and Ishizaka 2006):

ti,t = tm ± 2σ. (2)

2.3. Sea ice data
Sea ice concentration (SIC), sea ice thickness (SIT),
snow depth, and melt pond fraction data were used
to interpret sea ice conditions around the threemoor-
ing sites. Daily SIC data with 25 km resolution
were obtained from the National Snow and Ice Data
Center. SIT and snow depth data were downloaded
from the European Space Agency Soil Moisture and
Ocean SalinityOnlineDissemination Service (https://
smos-diss.eo.esa.int/oads/access/). These data have
the same resolution as the SIC data, but are only
available during the winter season (October to May).
Daily melt pond fraction data provided by Bremen
University (www.uni-bremen.de/) were measured
using the Ocean and Land Color Instrument with a
12.5 km resolution. Sea ice data were extracted and
averaged for each mooring site.

2.4. Ocean biogeochemistry analysis data
To reasonably compare the Chl-a concentration
obtained from our localized mooring systems with
the simulated model results, we needed to con-
sider the operational modeling systems with a high-
resolution horizontal grid (less than 25 km) and a
biogeochemical model specifically designed for the
Arctic Ocean. Finally, we used two analysis data-
sets provided by Copernicus (www.copernicus.eu/
en) to compare the observed Chl-a annual cycles with
the simulated results—one was the Global Ocean
Biogeochemistry Analysis and Forecast (GOBAF,
daily) based on the Pelagic Interactions Scheme
for Carbon and Ecosystem Studies biogeochemical
model with a 1/4◦ horizontal resolution and 50 ver-
tical levels (https://doi.org/10.48670/moi-00015) and
the other was the Arctic Ocean Biogeochemistry
Analysis and Forecast (AOBAF, daily) that spans
the whole Arctic Ocean with a 6.25 km horizontal
resolution and 40 vertical levels (https://doi.org/
10.48670/moi-00003). AOBAF was produced using
the TOPAZ5 physical model and the biological
ECOSystem Model (ECOSMO). We used three-
year (2018–2020) data for GOBAF and two-year
(2019–2020) data for AOBAF. The chlorophyll

3

https://smos-diss.eo.esa.int/oads/access/
https://smos-diss.eo.esa.int/oads/access/
https://www.uni-bremen.de/
https://www.copernicus.eu/en
https://www.copernicus.eu/en
https://doi.org/10.48670/moi-00015
https://doi.org/10.48670/moi-00003
https://doi.org/10.48670/moi-00003


Environ. Res. Lett. 19 (2024) 024028 E Ko et al

Table 1. Phytoplankton phenology estimated from chlorophyll-a concentrations in observed data (OBS) at the Korean Arctic Mooring
System (KAMS) stations and Global and Arctic Ocean Biogeochemistry Analysis and Forecast data (GOBAF, AOBAF) (SCM: subsurface
chlorophyll maximum depth; ti: initiation time of bloom; tm: maximum time of bloom; tt: termination time of bloom; Peak
concentration: seasonal maximum chlorophyll-a concentration (mg m−3)).

Station
(year) Type

Depth
(m)

SCM
(m) ti (days) tm (days) tt (days)

Bloom
period
(days)

Peak
concentration
(mg m−3)

KAMS1
(2018–
2020)

OBS

37–44

28–34 June 4
(±28)

August 2
(±18)

October 1
(±23)

119
(±36)

3.04± 0.71

GOBAF NA June 23
(±26)

September
23 (±7)

November
27 (±1)

158
(±27)

0.29± 0.08

AOBAF NA September
8 (±38)

November 7
(±15)

January 6
(±7)

120
(±45)

0.06± 0.05

OBS

67–74

28–34 July 29
(±20)

September 1
(±13)

October 6
(±11)

69
(±20)

0.83± 0.41

GOBAF NA June 4
(±68)

September
25 (±37)

December19
(± 49)

198
(±34)

0.10± 0.01

AOBAF NA August 11
(±12)

October 27
(±5)

January 22
(±6)

164
(±6)

0.03± 0.04

KAMS2
(2020)

OBS
68

47 June 24 August 19 October 14 112 1.44
GOBAF NA August 2 October 22 January 5 156 0.12
AOBAF NA August 20 November 6 January 23 156 0.01

KAMS4
(2019–
2020)

OBS

52, 58

51, 68 May 21
(±6)

August 1
(±15)

October 12
(±23)

122
(±14)

1.63± 0.29

GOBAF NA June 17
(±60)

October 1
(±18)

December 8
(±18)

175
(±42)

0.13± 0.04

AOBAF NA July 20 September 8 October 28 100 0.04± 0.06

parameters (mg m−3) from both datasets were aver-
aged over the depths corresponding to the installation
depths of the individual chlorophyll-a fluorometers
in the mooring systems for a reasonable comparison
with the observed Chl-a concentration. The Chl-
a concentration from the two analysis datasets was
used to determine the phytoplankton bloom timing
using the adjusted Gaussian curve fitting method, as
used for the observational data.

3. Results

3.1. Seasonal cycles of phytoplankton obtained
from continuous observed data
To investigate the seasonal cycles of Arctic phyto-
plankton, we examined phytoplankton bloom timing
estimated from the Chl-a concentrations observed at
the three mooring sites. The bloom timings showed
some yearly and vertical variations; however, the
Chl-a concentration generally increased prior to sea
ice retreat. In the upper part of Chl-a fluorometer
of KAMS1, approximately 40 m near the sum-
mer SCM layer, Chl-a concentration was approx-
imately 0.1 mg m−3 during winter and began to
increase between April and June (figure 2(a)). The
onset of phytoplankton blooms was estimated to be
June 4 (±28 d) on average between 2018 and 2020
(table 1). For KAMS4 (52–58 m) around the SCM
layer, winter Chl-a concentrations ranged between
0.1 and 0.3 mg m−3, and phytoplankton blooms

typically began on May 21 (±6 d) in 2019–2020
(figure 2(d)). The total water depth at the mooring
sites was >500 m, suggesting that the phytoplankton
likely originated from the water column or vegetat-
ive cells generated by melting sea ice (figure 1(b)).
After sea ice retreated at KAMS1 andKAMS4 stations,
the peak times of phytoplankton bloom were similar,
occurring on August 2 (±18 d) and 1 (±15 d) on
average, respectively. However, the maximum Chl-a
concentration at KAMS1 was 46% higher than that
at KAMS4 (3.04 ± 0.71 vs. 1.63 ± 0.29 mg m−3).
Subsequently, the Chl-a concentration decreased rap-
idly at both mooring sites between early and mid-
October as the sea ice advanced and light availabil-
ity decreased. The bloom periods at the two mooring
sites were similar (119± 36 vs. 122± 14 d); however,
KAMS1 exhibited the longest bloom period of 160 d
in 2020.

Chl-a fluorometers were installed at 67–74 m at
KAMS1 and KAMS2, corresponding to the depths
below the summer SCM layer (figure 1(b) and
table 1). In the lower part of KAMS1 (67–74 m),
the Chl-a concentration began to increase at least
one month later than in the upper part (37–44 m).
Thus, the onset of the bloom was estimated to be
on approximately July 29 (figure 2(b)). At 68 m in
KAMS2, phytoplankton blooms began on June 24,
approximately one month earlier than on July 29
in KAMS1 (figure 2(c)). The peak blooms in the
lower layer at KAMS1 and KAMS2 took place on
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Figure 2. Seasonal cycle of chlorophyll-a concentrations (mg m−3, colored symbols) detected at individual Korea Arctic Mooring
System (KAMS) stations by year. (a) The upper part of KAMS1 between 2018 and 2020 (37–44 m), (b) The lower part of KAMS1
between 2018 and 2020 (67–74 m), (c) KAMS2 in 2020 (68 m), (d) KAMS4 between 2019 and 2020 (52–58 m). The gray dotted
lines represent the daily time series of sea ice concentrations (%) around each mooring station. The colored lines represent the
fitting lines for chlorophyll-a concentration estimated using the adjusted Gaussian curve fitting method.

September 1 (±13 d) and August 19, respectively,
which were later than the peak blooms near the SCM
layer. Additionally, the maximum Chl-a concentra-
tion at KAMS2 was higher than that at KAMS1 (1.44
vs. 0.83 ± 0.41 mg m−3). In 2020, the SCM depth
at KAMS2 was approximately 47 m, deeper than the
30mdepth at KAMS1. As a result, themaximumChl-
a concentration at KAMS2, which is close to the SCM
layer, exceeded that at KAMS1 (figure S1). Similar
to the observations in the periphery of the SCM
layer, the termination times of bloom were recor-
ded on October 6 (±11 d) and October 14 below the
SCM layers of KAMS1 and KAMS2, respectively. The
bloom period of phytoplankton in the lower part of
KAMS1was 69 (±20 d), whichwas shorter than 112 d
observed at KAMS2.

3.2. Difference between chlorophyll-a simulated
using biogeochemical analysis data and in-situ data
The vertical distribution of the Chl-a concentra-
tions extracted from the two biogeochemical ana-
lysis datasets showed similar trends at the three
mooring sites (figure 3). GOBAF demonstrated that,
in the surface layer, the Chl-a concentration dur-
ing winter was nearly 0.1 mg m−3 and started to
increase in June (figures 3(a)–(c)). Subsequently, in
August and September, the surface layer exhibited

the peak concentration of Chl-a, ranging from 0.7 to
0.9 mg m−3, while the Chl-a concentration at 40 m
was as low as 0.5 mg m−3. The Chl-a concentra-
tion decreased after October and reached winter Chl-
a concentration in November. In contrast, AOBAF
indicated that the Chl-a concentration during winter
was notably low (<0.01 mg m−3) and began to rise
from mid-July in the surface layer (figures 3(b), (d)
and (f)). Notably, the Chl-a concentration at KAMS1
and KAMS2 showed two peaks (1–2.5 mg m−3 and
0.8–1 mg m−3) in the surface layer during sum-
mer, and that at KAMS4 showed one peak (0.4–
1 mg m−3). The Chl-a concentrations showed a
slow decrease from October to December in the
upper layer. Overall, the two biogeochemical ana-
lysis datasets were insufficient to represent the ver-
tical distribution of Chl-a characterizing the summer
SCM. Additionally, the timing and concentrations of
observed Chl-a showed significant differences from
the reanalysis data, with these differences being more
pronounced in AOBAF compared to that in GOBAF.

The timing of the phytoplankton blooms was
estimated using Chl-a concentrations from biogeo-
chemical analysis data at depths comparable to those
installed in each mooring system (figure 4 and
table 1). At KAMS1 and KAMS4 station locations,
around the summer SCM layer, the initiation times
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Figure 3. Temporal distribution of vertical chlorophyll-a concentration (mg m−3) in the upper layers (0–100 m) averaged over
2019–2020 in the Global (left panels) and Arctic (right panels) Ocean Biogeochemistry Analysis and Forecast datasets at stations
(a), (b) Korean Arctic Mooring System (KAMS)1, (c) and (d) KAMS2, and (e) and (f) KAMS4. The colors within the circles
represent the average value of observed chlorophyll-a concentration at each mooring site. The color bar of chlorophyll-a
concentration represents the natural logarithmic scale.

of blooms were in mid-June, and the peak times were
estimated on September 23 (±7 d) and October 1
(±18 d), respectively, in GOBAF (figures 4(a) and (d)
and table 1). The termination times of blooms were
estimated to be November 27 (±1 d) and December
8 (±18 d), respectively. In general, the bloom times
estimated from GOBAF were four to nine weeks later
than the observed times (figure 5(a) and table 1).
Furthermore, the Chl-a concentrations during the
peak were 0.29 ± 0.08 and 0.13 ± 0.04 mg m−3,
respectively, which were more than 10-times lower
than the observed values (figures 4(a) and (d) and
table 1). Similarly, in the AOBAF, phytoplankton
blooms at KAMS1 and KAMS4 occurred 2–14 weeks
later than did the observed blooms (figure 5(b)
and table 1). The peak time Chl-a concentrations
were also extremely low, ranging from 0.06 ± 0.05–
0.04 ± 0.06 mg m−3 (table 1). For KAMS1 (67–
74 m) and KAMS2 (68 m), corresponding to depths
below the SCM layer, the bloom times estimated
from GOBAF and AOBAF were 2–15 weeks late
(figure 5), and the maximum Chl-a concentra-
tion was ⩽0.10 mg m−3, which was significantly

lower than the observed value (figures 4(b) and (c)
and table 1). Both biogeochemical analysis datasets
simulated the bloom times of phytoplankton much
later than the observed times, and the Chl-a concen-
tration was simulated to be relatively low.

4. Discussion and conclusions

Our observations confirmed the presence of UIBs
prior to the sea ice retreat in the Arctic Ocean.
Although sea ice retreat typically occurred around
mid-July at the mooring sites (figure 1(a)), the
Chl-a concentration near the summer SCM layer
began to increase between April and June (figure 2).
Specifically, the onset time was estimated to be June
4 (±28 d) in the north of the East Siberian Sea
(KAMS1) and May 21 (±6 d) in the middle of
the Northwind Ridge (KAMS4) (table 1). Additional
reports confirmed that UIBs are present before sea
ice retreat. For instance, on the continental slope of
the Chukchi Sea near the mooring sites, phytoplank-
ton growth under sea ice was observed from late June
to late July in 2011 and 2014 (Arrigo et al 2014,
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Figure 4. Comparison of averaged chlorophyll-a concentration (mg m−3) from the Global and Arctic Ocean Biogeochemistry
Analysis and Forecast datasets (GOBAF and AOBAF) with observed data (OBS). (a) chlorophyll-a concentration (37–44 m) at
Korean Arctic Mooring System (KAMS)1 between 2018 and 2020, (b) chlorophyll-a concentration (67–74 m) at KAMS1 between
2018 and 2020, (c) chlorophyll-a concentration (68 m) at KAMS2 in 2020, (d) chlorophyll-a concentration (52–58 m) at KAMS4
between 2019 and 2020. All units are mg m−3. The colored lines indicate the fitting lines obtained by applying the adjusted
Gaussian curve fitting method for observed (green circle), GOBAF (blue square), and AOBAF (red triangle) data, respectively.
The gray dotted line represents the daily time series of averaged sea ice concentration (%) during individual mooring periods. The
blue shading box represents the average bloom period calculated from observed data at individual KAMS stations.

Hill et al 2018). Boles et al (2020) also reported that
the winter Chl-a concentration in the mixed layer
of Amundsen Basin was 0.15 mg m−3, which star-
ted to increase in early May and reached 0.5 mg m−3

by late June in 2017, indicating that phytoplankton
began to thrive under sea ice. UIBs have been iden-
tified in various regions; however, the specific tim-
ing of UIBs formation varies. In our study, the onset
of UIBs was different at each mooring site. This was
likely associated with differences in light availability
between each site, which is considered the primary
limiting factor for phytoplankton growth in theArctic
Ocean during spring when sea ice is present (Hill et al
2018, Ardyna and Arrigo 2020). The sea ice concen-
tration at mooring sites during the onset of UIBs was
mostly similar, with values exceeding 85%. On the
other hand, the melt pond fraction around the SCM
layer at KAMS1 and KAMS4 ranged between 8 and
9%, and between 15 and 17%, respectively. In lay-
ers below the SCM, such as the lower part at KAMS1
and KAMS2, the melt pond fraction exceeded 20%
(table S1). The difference in light availability may
be attributed to variations in sea ice conditions at
each mooring site, leading to variability in the onset
of UIBs. Using the year-round Chl-a concentration

observed in mooring systems under sea ice, our study
unequivocally confirmed the occurrence of UIBs in
the northern Chukchi Sea 1–2 months before the sea
ice retreats, rather than bloom initiation starting in
ice-free areas andmigrating to higher-latitude regions
(Perrette et al 2011, Johnsen et al 2018). Furthermore,
this UIB phenomenon could be a signal not only
from pelagic algae but also possibly from sympagic
ice algae, and the presence of sympagic ice algae may
vary at different mooring sites (Gal et al 2022). Rapid
climate change-induced alterations in sea ice distri-
bution are expected to considerably affect future UIB
changes in the Arctic Ocean. Therefore, continuous
UIB observations would enhance our understand-
ing of seasonal phytoplankton dynamics and primary
productivity in this region.

Identifying the exact seasonal cycles of primary
producers in the Arctic Ocean is essential to under-
stand future changes in primary production, food
webs, and carbon cycles. In the Arctic Ocean, the
retreat of sea ice generally intensifies surface strati-
fication. This, in turn, limits the additional nutrient
supply and leads to surface nitrogen depletion, which
is required for phytoplankton growth (Ardyna and
Arrigo 2020). Consequently, this process leads to a
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Figure 5. Time gaps of initiation (yellow bars), peak (green bars), and termination (blue bars) of phytoplankton bloom
determined using (a) Global and (b) Arctic Ocean Biogeochemistry Analysis and Forecast datasets from observed data (OBS) at
individual Korean Arctic Mooring System (KAMS) stations. A positive value indicates the time estimated from analysis data
delays from the observed ones (in weeks). Two fluorometers were installed at KAMS1; U and L represent the upper and lower
fluorometer, respectively.

formation of a SCM during summer (Ko et al 2020,
Bruyant et al 2022). After sea ice retreat at KAMS1 and
KAMS4, the Chl-a concentration near the SCM layer
reached its maximum after 2–4 weeks, indicating a
period of SCM layer formation (figure 2 and table 1).
During SCM layer development, nutrient availabil-
ity in the SCM layer at KAMS1 was higher than that
at KAMS4 (Gal et al 2022, Ko et al 2022). This dif-
ference may contribute to variations in maximum
Chl-a concentration between the two mooring sites
(3.04 ± 0.71 vs. 1.63 ± 0.29 mg m−3). Meanwhile,
the onset times of the lower parts of KAMS1 and
KAMS2 began on July 29 (±20 d) and June 24,
respectively, approximately one month later than
that observed near the SCM layer. Bloom termina-
tions occurred in mid-October, resulting in a bloom

period of approximately 10–16 weeks below the SCM
layer. These bloom periods were slightly shorter than
17 weeks of the average bloom period near SCM
(table 1). As the SCM layer is typically formed at a
depth of approximately 1%–5% of the surface light
intensity (Martin et al 2012), the environment below
the SCM layer can encounter limited or low-light con-
ditions. These light conditions may have contributed
to the delay and shorter bloom period of Chl-a sig-
nals in the lower parts. Our continuous multi-year
observations also indicated that the actual growing
period of phytoplankton in the northern Chukchi
Sea lasted for approximately four months, which was
longer than the open water period (table S1). One
of the major advantages of our approach is that it
provides insights in to the precise seasonal changes in
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phytoplankton beyond the open-water period when
satellite observations are possible.

Our results revealed that the seasonal Chl-a
peaks from the two biogeochemical analysis data-
sets occurred approximately 6–10 weeks after the
observed peak timing (figures 4 and 5). In other
words, these analysis datasets did not represent the
occurrence ofUIBs, resulting in a significant delay not
only in the peak timing but also in the termination
time of blooms. This discrepancy between the obser-
vations and these analysis datasets is probably due to
the failure of the biogeochemical model to properly
simulate light conditions within the water column
prior to sea-ice retreat and the inadequate paramet-
erization of Arctic phytoplantkon in the under-ice
environment (Schourup-Kristensen et al 2018). Sea
ice cover exhibits various forms, such as bare ice,
snow-covered ice, and ponded ice, resulting in vary-
ing degrees of light transmittance (Perovich 1990,
Frey et al 2011). In the Arctic Ocean, light trans-
mittance begins to increase owing to snowmelt in
spring and continues to rise until melt ponds are
formed (Katlein et al 2019). Additionally, Arrigo et al
(2014) reported that the light transmittance of pon-
ded ice was more than four times higher than that
of bare ice (46.7%–58.6% vs. 12.7%–17.5%, respect-
ively) on the continental shelf of the Chukchi Sea in
July 2011. Because the sea ice status in spring sig-
nificantly influences light distribution in the water
column, we compared the simulated sea ice condi-
tions of the model with satellite sea ice data to assess
their accuracy. Although satellite data for March and
April exhibited relatively higher SIT (1.7 ± 0.1 vs.
1.5± 0.2m, respectively) or lower snow cover (16± 1
vs. 17 ± 3 cm, respectively) compared to the simu-
lated sea ice conditions, simulated sea ice concentra-
tions were consistent with satellite data (figure S2).
These sea-ice conditions alone cannot account for the
differences in the timing of phytoplankton blooms
in the biogeochemical data. Matthes et al (2020)
reported that enhanced light transmission through
sea ice melt ponds could trigger the initiation of
UIBs. In addition, it has been reported that a 10%
melt-pond fraction in the first-year ice provides suf-
ficient transmitted light to support phytoplankton
growth (Palmer et al 2013). However, the biogeo-
chemical analysis data used in this study did not
provide melt pond fractions and thus could not be
compared. Our results show that the melt pond frac-
tion during the initiation of the phytoplankton bloom
within the SCM layer ranged from approximately 8%
to 17% (table S1), indicating that the conditions for
UIB formation had already beenmet. Accurately sim-
ulating light distribution under sea ice in biogeo-
chemical models is crucial for understanding the sea-
sonal dynamics of phytoplankton in the ArcticOcean.
Yumruktepe et al (2022) reported an increase in the
difference in Chl-a concentrations between the field

and ECOSMO, the biological model used in AOBAF,
as the depth increased. This result is similar to the sig-
nificant differences in Chl-a concentrations between
the observations and the two biogeochemical analysis
datasets near the SCM in our study. The cause of this
mismatch might be attributed to the lack of consid-
eration for variability in the carbon to Chl-a ratio
under low light conditions (Anugerahanti et al 2021).
The vertical distribution of summer phytoplankton
should be enhanced through improved parameter-
ization for high-latitude phytoplankton functional
groups (Schartau et al 2017). Thus, improvement of
the deficiency of the model addressed in this context
can potentially ensure substantial progress in com-
prehending and forecasting the ecological dynamics
of Arctic phytoplankton.

The key findings of our research are presented
by the confirmation of the occurrence mechanism of
Arctic Ocean UIBs, accurate seasonal cycles, and dis-
crepancies in observation and analysis data. Our con-
tinuous monitoring of Chl-a concentration revealed
that UIBs are a common phenomenon in the Arctic
Ocean and canmanifest in various regions. Seasonally
ice-free conditions in the Arctic Ocean could poten-
tially accelerate the shrinking snow cover of sea
ice and the formation of melt ponds (Kwok 2018,
Stroeve and Notz 2018). This allows for increased
light transmission and provides favorable condi-
tions for phytoplankton growth at an earlier time
(Horvat et al 2017). Moreover, 20% of productiv-
ity in the Arctic Ocean could occur in ice-covered
areas (Schourup-Kristensen et al 2018). Therefore,
the importance of UIBs and the actual phytoplank-
ton growth period should be further emphasized for
phytoplankton dynamics and primary production in
the Arctic Ocean. These critical insights should be
integrated into biogeochemical models. We anticip-
ate that our valuable data will enhance the under-
standing and predictive capabilities of biogeochem-
ical modelers regarding the dynamics of the food web
and carbon cycle in the Arctic Ocean by improving
their models.
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