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Abstract
Over the past decades, ecological restoration initiatives in China have made great progress in
restoring degraded forests and increasing vegetation coverage, yet the carbon sequestration effects
of these initiatives in the context of climate change are not clear. In this study, we assessed the
effects of vegetation restoration on gross primary production (GPP) in China’s forestry
engineering areas, where large-scale vegetation restoration programmes were launched, during
2001–2020 by disentangling the respective roles of land cover change (LCC), CO2 fertilization, and
climate changes using a two-leaf light use efficiency model. We found that LCC attributed by the
vegetation restoration dominantly accelerated the increase of GPP in seven out of the eight areas,
and CO2 fertilization played a near-equivalent role in all areas. By contrast, the changes in different
climate factors contributed to GPP variations diversely. The solar radiation variation greatly
inhibited the vegetation GPP over time in seven out of these areas, and the changes in air
temperature and vapor pressure deficit regulated GPP inter-annual variations without clear trends
in all areas. This study advances our understanding of the contribution of China’s afforestation on
its forest GPP in a changing climate, which may help to better manage forests to tackle the
challenge of the climate crisis in the future.

1. Introduction

Terrestrial gross primary production (GPP), as the
largest component of the global terrestrial car-
bon budget, plays an important role in the global
carbon cycle (Ichii et al 2005, Zhao et al 2005,
Piao et al 2009, Ahlström et al 2015). GPP is
vulnerable to changes in climate and atmospheric
CO2 concentration and disturbances from human

activities (Friedlingstein et al 2010, Li et al 2015).
Thus, it is of great importance to investigate the fate
of regional GPP in a changing climate with human
interferences.

The changing climate and the rising atmospheric
CO2 concentration affect vegetation growth and car-
bon cycle strongly. They alter the physiological con-
straints on plant photosynthetic rates (Nemani et al
2003, Zhao and Running 2010, Piao et al 2013,
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Chen et al 2019). The increase in CO2 concentra-
tion increases the intercellular CO2 content and thus
promotes leaf photosynthesis (Piao et al 2013, Jiang
and Ryu 2016, Chen et al 2019). Solar radiation (Rad)
is considered to be the main driver of the negat-
ive effect of global GPP from 1982 to 2015 (Sun
et al 2018). Warming further reduces the pressure of
air temperature (Ta) to increase GPP in the north-
ern high latitude cold regions (Nemani et al 2003),
while increasing Ta can increase vapor pressure defi-
cit (VPD) and thus exacerbate drought stress (Liu et al
2019), leading to a decrease in GPP (Ciais et al 2005,
Zhao and Running 2010, Anderegg et al 2015).

In the late 20th century, the Chinese govern-
ment launched large-scale vegetation restoration pro-
grammes, including the Global Canopy Program and
natural forest conservation projects, to mitigate land
degradation, desertification and soil erosions (Yang
et al 2014, Li 2021). Through these projects, vegeta-
tion cover on land surface has increased significantly,
effectively limited soil erosion (Xin et al 2011, Liu
et al 2012a, Sun et al 2015) and contributed signific-
antly to regional and global carbon sinks (Guo et al
2013, Fang et al 2014, Li et al 2015, Xiao et al 2015).
The Three-North Shelter Forest Program, initiated
in 1978 (Zhang et al 2016), has contributed to an
increase of 8.05% in forest cover and a slight increase
in GPP (Xie et al 2020). The Pearl River Shelter Forest
Program has brought significant changes in forest
cover since 1996 (Hasan et al 2019, Xiao et al 2019)
and land cover change has become the main contrib-
utor to forest GPP increase since 2011 (Zhang et al
2022). The forestry engineering areas in China have
different climate change characteristics (Yang et al
2014, Li 2021), GPP could be affected differently by
LCC, CO2 and climate change in individual ecolo-
gical areas, but existing studies are often incomplete
in the consideration of impacting factors with empir-
ical attribution frameworks (e.g. by linear regres-
sions), hampering our understanding on the capacity
of vegetation to sequester carbon. Thus, a systematic
understanding of the effects of China’s vegetation res-
toration initiatives over time in the context of chan-
ging climate is urgently needed.

In this study, we assess the effects of the veget-
ation restoration on GPP in China’s forestry engin-
eering areas during 2001–2020 by disentangling the
respective roles LCC, CO2 fertilization, and climate
changes using a two-leaf light use efficiency (TL-LUE)
model with scenario simulations. The objectives of
this study are: (1) to characterize the dynamic of the
GPP in eight forestry engineering areas with differ-
ent vegetation types since 2001; (2) to disentangle
and quantify the individual and combined effects
of changes in LCC, CO2 and climate factors (Rad,
Ta and VPD) on the GPP of eight forestry areas in
China.

2. Data andmethod

2.1. Data
2.1.1. Remote sensing data
Land cover data were obtained from the MODIS
LandCover productMCD12Q1 v006 dataset (https://
lpdaac.usgs.gov/products/mcd12q1v006/) with an
annual temporal resolution and a spatial resolu-
tion of 500 m × 500 m (Sulla-Menashe et al 2019)
from 2001–2020 with the International Geosphere-
Biosphere Programme classification system. Leaf area
index (LAI) data from GlobMap LAI version V3 for
2001–2020 were obtained by inversion of MODIS
surface reflectance data (Deng et al 2006, Liu et al
2012b) with a temporal resolution of 8 d and a spatial
resolution of 500 m× 500 m. The long-term LAI was
compared with fieldmeasurements, showing an error
of 0.81 on average (Liu et al 2012b).

2.1.2. Meteorological and CO2 concentration data
The daily meteorological data were interpolated from
753 meteorological stations across the country for
the period of 2001–2020 with a spatial resolution
of 500 m × 500 m. The climate variables include
solar radiation (Rad), air temperature (Ta) and rel-
ative humidity. Both daily Rad and daily Ta are in
good agreement with the tower observations, and
Ta showed high agreement with the 0.5◦ monthly
air temperature data from the China Meteorological
Administration (http://cdc.cma.gov.cn) (Liu et al
2016).

Monthly CO2 concentration was used in the sim-
ulation which was obtained from direct measure-
ments at the Mauna Loa Observatory in Hawaii
(https://gml.noaa.gov/ccgg/trends) calculated from
hourly observations.

2.1.3. Study area
The spatial distribution and specific information
of the eight areas in China (www.resdc.cn/data.
aspx?DATAID=138) are shown in figure 1 and table 1.

2.1.4. Flux data for model validation
To test the performance of TL-LUE model in sim-
ulating GPP (GPP_TL), the model was validated at
both site and regional scales. At site scale, monthly
GPP data from 12 sites (91 site years) of ChinaFlux
were selected, including 4 forest sites, 2 wetland sites,
5 grassland sites, and 1 cropland site (supplementary
table 1).

To assess the performance of the TL-LUE model
to simulate GPP at a regional scale, FluxSat GPP
(https://avdc.gsfc.nasa.gov/pub/tmp/FluxSat_GPP/,
Schaaf et al (2002)) and GOSIF GPP (http://
globalecology.unh.edu/data/GOSIF-GPP.html, Li
and Xiao (2019)) during the period 2001–2020 were
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Figure 1. Spatial distribution of eight forestry engineering areas (a). I is the Three-north shelterbelt program (TNSP), II is the
afforestation program for Taihang mountain (THSP), III is shelterbelt program for Liaohe river (LRSP), IV is the shelterbelt
program for middle reaches of Yellow river (YRSP), V is shelterbelt program for Huaihe river and Taihu lake (HRSP), VI is
shelterbelt program for upper and middle reaches of Yangtze river (YRSP), VII is shelterbelt program for Pearl river (PRSP), VIII
is coastal shelterbelt program (CSP). Land cover data of from MCD12Q1 v006 in eight areas in 2020 (b). ENF, EBF, DNF, MF, CS,
OS, WS, SAV, GRA, WET, CRO and NOV means evergreen needle leaf forest, evergreen broadleaf forest, deciduous needle leaf
forest, mixed forest, open shrubland, woody savannas, savannas, wet, cropland, grassland, non-vegetation, respectively.

Table 1. Information of eight forestry engineering areas.

Area Name Lon (◦) Lat (◦)
Area

(×10 000 km2)
Startup
Time

I Three-north shelterbelt
program (TNSP)

69.95◦–128.83◦E 31.65◦–50.85◦N 261.06 1978

II Afforestation program
for Taihang
mountain(THSP)

110.59◦–116.48◦E 34.55◦–40.95◦N 13.03 1986

III Shelterbelt program for
Liaohe river (LRSP)

116.51◦–126.29◦E 40.70◦–46.23◦N 16.91 1994

IV Shelterbelt program for
middle reaches of Yellow
river(YRSP)

104.73◦–112.89◦E 33.99◦–40.89◦N 18.47 1996

V Shelterbelt program for
Huaihe river and Taihu
lake(HRSP)

112.17◦–122.21◦E 30.39◦–36.53◦N 17.72 1997

VI Shelterbelt program for
upper and middle
reaches of Yangtze
river(YRSP)

90.35◦–120.06◦E 23.76◦–36.46◦N 120.15 1989

VII Shelterbelt program for
Pearl river(PRSP)

102.39◦–116.31◦E 21.01◦–26.71◦N 28.12 1996

VIII Coastal shelterbelt
program(CSP)

108.09◦–124.76◦E 17.12◦–42.13◦N 15.41 1990

used. They have been shown to have high accuracy in
GPP estimation and are widely used in carbon cycle
studies (Joiner et al 2018, Li and Xiao 2019, Bai et al
2021, Byrne et al 2021). In this study, FluxSat GPP
and GOSIF GPP datasets with a spatial resolution of
0.05◦ × 0.05◦ were accumulated to a monthly scale
and resampled to 500m× 500m. Although no direct
item was used to describe the impacts of CO2 fertiliz-
ation effects, the FluxSat and GOSIF GPP data were
derived directly from flux and SIF observations (data-
driven), respectively, which indirectly reflect the CO2

fertilization effects on vegetation through vegetation
variables.

2.2. Method
2.2.1. TL-LUE model
The latest version of the TL-LUEmodel (Bi et al 2022)
simulates GPP as follows:

GPP= (εmsu ×APARsu + εmsh ×APARsh)

× f(VPD)×g(Ta)×c(CO2) (1)

where εmsu and εmsh denote the maximum LUE of
sunlit and shaded leaves in the vegetation canopy,
respectively; f (VPD), g (Ta ) and c(CO2) were reg-
ulation scalars of VPD, Ta and atmospheric CO2

concentration, respectively, which were described in

3
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Table 2. Scenario simulations.

Scenario simulation Land cover+ LAI CO2 Rad Ta VPD

I 2001–2020 2001–2020 2001–2020 2001–2020 2001–2020
II 2001 2001–2020 2001–2020 2001–2020 2001–2020
III 2001–2020 2001 2001–2020 2001–2020 2001–2020
IV 2001–2020 2001–2020 2001 2001–2020 2001–2020
V 2001–2020 2001–2020 2001–2020 2001 2001–2020
VI 2001–2020 2001–2020 2001–2020 2001–2020 2001

Bi et al (2022) and Zhou et al (2016); APARsuand
APARsh are the PAR absorbed by sunlit and shaded
leaves, respectively, which were calculated as:

APARsu = (1−α)×
[
PARdir×

cosβ

cosθ

+
PARdif −PARdif,u

LAI
+C

]
× LAIsu (2)

APARsh= (1−α)×

[(
PARdif −PARdif,u

)
LAI

+C

]
×LAIsh

(3)

where α denotes albedo, which varies among vegeta-
tion types; β is the leaf inclination angle (60◦); θ is the
solar zenith angle; C denotes the multiple scattering
term of Rad inside the vegetation canopy; PARdif, u is
the scattered Rad below the vegetation canopy; PARdir

and PARdif are the direct solar Rad and scattered Rad.
The calculation of C, PARdif, u, PARdir, PARdif, and R
refers to He et al (2013), Zhou et al (2016) and Bi et al
(2022). As for scaling from hourly scale to daily scale,
we followed the method by Chen et al (1999). Firstly
daily averaged solar declination was calculated, then
daily averaged solar zenith angle was calculated, and
finally daily averaged PARdir and PARdif were calcu-
lated according to equations (2) and (3).

2.2.2. Simulation setup
Six scenarios were simulated to quantify the impact
of changes in LCC, CO2 and meteorological factors
on GPP over the period of 2001–2020 (table 2).

In Scenario I, the TL-LUE model was driven by
the observed data of land cover, LAI, CO2 and met-
eorological factors (Rad, VPD and Ta) that followed
the historical changes or the period of 2001–2020 to
simulate GPP.

In Scenario II, the TL-LUE model was driven by
the same datasets of CO2 and meteorological factors
(Rad, VPD and Ta) as in Scenario I, except the land
cover and LAI dataset. The land cover and LAI data
are kept at 2001 levels.

In Scenario III, the same datasets of land cover,
LAI and meteorological factors (Rad, VPD and Ta) as
in Scenario I, and CO2 in 2001 was used to drive the
TL-LUE model to explore the effects of CO2 changes
on vegetation GPP after 2001.

In Scenario IV, the same land cover, LAI, CO2,
Ta and VPD datasets as in Scenario I, except Rad,
which is kept at 2001 levels to analyze the effect of Rad
changes on vegetation GPP over two decades.

In Scenario V, the same land cover, LAI, CO2, Rad
andVPDdata sets were used as in Simulation I, except
Ta, which is kept in 2001 to analyze the effect of Ta
changes on vegetation GPP over the last 20 years.

In Scenario VI, the same land cover, LAI, CO2,
Rad and Ta data sets were used as in Simulation I,
except VPD, which is kept in 2001 to analyze the
effect of VPD changes on vegetation GPP over the last
20 years.

2.2.3. Calculating the effects and cumulative effects of
impact factors on GPP
The differences between dynamic and static simula-
tions on vegetation GPP was used according to the
equation:

∆GPP= GPPDynamic −GPPStatic (4)

whereGPP_Dynamic is theGPP in Scenario I, GPP_Static
is the GPP results from Scenarios II–VI, and∆GPP is
the dynamic effect of changes in LCC, CO2, Rad, Ta
and VPD on vegetation GPP, respectively.

The cumulative impact of each factor on GPP is
expressed as:

Cumulative_∆GPP=
∑j

2001

∑
i
∆GPP (5)

where j is the year ranging from 2001 to 2020; i was
the the ith pixel.

3. Results

3.1. Model validation and evaluation
The site-scale validation showed that TL-LUE model
was able to track the seasonal and inter-annual vari-
ations of GPP (figure 2). The R2 ranged 0.67–0.96
for the 12 sites. We also evaluated our simulation
with two other GPP products (GPP_Fluxsat and
GPP_GOSIF) at the regional scale (supplementary
figure S1). 98.57% of the vegetation areas had a signi-
ficant positive correlation between monthly GPP_TL
and GPP_Fluxsat (p < 0.05) with an average R2 of
0.78. And monthly GPP_TL was significantly posit-
ively correlated with GPP_GOSIF (p < 0.05) with

4
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Figure 2.Monthly scale comparison of flux station observed GPP (GPP_EC) and TL-LUE simulated GPP (GPP_TL).

an average R2 of 0.80 in 99.40% of the vegetation
areas.

3.2. The spatial distributions of annual mean GPP
and its impacting factors
Figure 3(a) shows the spatial distribution of the
annual mean GPP from 2001 to 2020 in the eight
engineering areas. Overall, GPP showed a clear gradi-
ent of low to high form the north to the south.
Among these areas, the highest annual GPP was
in Area VII (1927.19 g C m−2 yr−1), followed by
Area VIII (1502.15 g C m−2 yr−1) and in Area VI
(1288.57 g C m−2 yr−1). The lowest annual GPP
was in Area IV (629.81 g C m−2 yr−1) and Area I
(479.03 g C m−2 yr−1).

In general, LCC and CO2 fertilizations have
positively impacted the GPP over the eight areas
(figures 3(b) and (c)). The largest impacts of LCC
on GPP were mainly in northeast and southern
China (figure 3(b)). The impact of CO2 fertiliza-
tion on GPP varies significantly in spatial distri-
bution, decreasing from the southeast coast to the
northwest inland. The largest impacts were mainly
in southern China, with the impact on GPP up to
30 g C m−2 yr−1, while the least impacts were mainly
in southwest, northwest and north China, with less
than 3 g C m−2 yr−1(figure 3(c)).

Differently, the climate factors have both neg-
ative and positive effects over different engineering
areas, mostly playing negative roles (figures 3(d)–
(f)). Most vegetation GPP was negatively affected by
Rad variations, with the largest impacts exceeding
−100 g Cm−2 yr−1, mainly in Northeast and Central
China. Only a small proportion of vegetation GPP

was positively affected by Rad variations, mainly in
the south-west China (figure 3(d)). In addition, the
positive effect of Ta change on GPP locates in the
high GPP areas which exceed 15 g C m−2 yr−1 except
the Sichuan Basin (figure 3(e)). Notably, the GPP in
areasVI andVIIwereweakened byVPDchangesmost
strongly (figure 3(f)).

3.3. Long-term trends of annual GPP and
contributions of LCC and CO2 fertilizations over
different engineering areas
Firstly, the annual total GPP and long-term trends
in the eight areas from 2001 to 2020 were analyzed
(figures 4(a) and (b)). Among these areas, the largest
total annual GPP locates at Area VI, which has an
average of 1.49 PgC yr−1. This ismainly because, Area
VI is located in the south of China, where has abund-
ant forest and grassland with vegetation-friendly cli-
matic environment. This area also has the largest
increasing trend, with a value of 0.0106 Pg C yr−2.
In terms of total annual GPP, it was followed by Area
VII (0.53 Pg C yr−1) and Area I (0.50 Pg C yr−1). The
mean total annual GPP in Area I was slightly lower
than that in Area VII, but the growth rate was higher
(0.0065 and 0.0078 Pg C yr−2, respectively), result-
ing in a decreased difference in total annual GPP over
time. In comparison, areas VIII, V, IV, III and II had
relatively low annual GPP and trends.We further ana-
lyzed the contributions of total annual GPP by dif-
ferent vegetation types (supplementary figure S2(a)).
The average annual GPP for forest, cropland, and
grasslands for each area were ranged from 1.97× 106

to 4.96× 108, from5.09× 107 to 3.23× 108, and from
3.35× 107 to 1.38× 109 T C yr−1, respectively.

5
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Figure 3. Spatial distribution of mean GPP in eight areas in China from 2001 to 2020 (a), and spatial distribution of annual mean
value of impact of LCC (b), CO2 (c), Rad (d), Ta (e) and VPD (f) on GPP from 2001 to 2020.

Then, the impacts of LCC on GPP in the
eight areas during 2001–2020 were investigated
(figures 4(c) and (d)). Overall, the areas VI, I and
VII were subjected to higher impacts of LCC on
GPP, with average values of 22.50, 18.46, 17.04
and 18.82 Tg C yr−1, respectively. Their impacts
were also significantly increased, with 3.26, 2.59 and
3.06 Tg C yr−2, respectively. This was followed by the
areas IV and II (7.77 and 6.76 TgC yr−1, respectively),
whose impacts on GPP were moderately increased
(1.13 and 1.02 TgC yr−2, respectively). It implied that
vegetation GPP was less affected by LCC in areas IV
and II, albeit that GPPwas affected by higher LCC per
unit area in areas IV and II. In comparison, the GPP

in Area III, VIII and V were less affected by LCC, with
averages of 1.98, 0.84 and −1.67 Tg C yr−1, respect-
ively, and trends in total annual impact were 0.34,
0.28 and−0.22 Tg C yr−2, respectively. The impact of
LCC on average annual GPP for forest, cropland, and
grasslands for each area were ranged from 1.05× 105

to 1.18 × 107, from −1.77 × 106 to 4.02 × 107, and
from 7.42 × 105 to 1.29 × 107 T C yr−1, respectively
(supplementary figure S2(b)).

Lastly, the impacts of CO2 changes on GPP in
the eight areas during 2001–2020 were investigated
(figures 4(e) and (f)). The GPP in Area VI affected
by CO2 changes during 2001–2020 was relatively
higher, with an average value of 20.10 Tg C yr−1. Its

6
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Figure 4. Long-term trend of the annual GPP (a) and that of the contributions of LCC (c) and CO2 (e) on GPP, and average value
of vegetation GPP per unit area (b) and the impact of LCC (d) and CO2 (f) change on GPP per unit area in eight areas from 2001
to 2020. T-test was used to analyze the significance of the different factors on GPP variations. The symbols ‘∗∗’ and ‘∗’ represent
significance levels at p< 0.01 and 0.05< p< 0.01, respectively.

increasing trend of the impact was also high, with
2.34 Tg C yr−2. It was followed the areas VII and I,
with means of 8.29 and 6.19 Tg C yr−1, respectively.
However, the increasing trendsweremoderate, at 0.93
and 0.71 Tg C yr−2, respectively, which showed that
the GPP in areas VII and I was positively affected
by lower CO2 changes. In comparison, the GPP in
areas VIII, V, IV, III and II were minimally affected by
CO2 changes, with averages of 3.13, 2.75, 1.55, 1.48
and 1.42 Tg C yr−1, respectively, and the increasing
trends of annual sums of impacts were low, with 0.
35, 0.30, 0.19, 0.17 and 0.17 Tg C yr−2, respectively.
The impact of CO2 changes on average annual GPP
for forest, cropland, and grasslands for each area were
ranged from 2.80× 104–6.00× 106, from 4.92× 105–
1.88× 107, and from 7.19× 105–4.91× 106 T C yr−1

(supplementary figure S2(c)).

3.4. Impact of the change of climate factors on
long-term GPP over different engineering areas
The impact of the changes of different climate factors
(i.e. radiation, air temperature, and VPD) on long-
term GPP over different engineering areas were
investigated. Firstly, we analyzed the impact of radi-
ation change on GPP (figures 5(a) and (b)). It shows
that the GPP in areas I and VI were negatively affected
by Rad changes during 2001–2020, with the averages
of−19.31,−18.5 and−36.27 Tg C yr−1, respectively,
and the increasing trends of the negative impacts were
−1.81,−1.00 and−1.14 Tg C yr−2. Areas V, III, II, IV
andVIII were subject to low total annualGPP impacts
of Rad changes, with 20 year averages of −9.31,
−5.46, −4.31, −2.60 and −1.65 Tg C yr−1, respect-
ively, and the trends of the impact were not stat-
istically significant, with 0.13, −0.19, −0.03, −0.12
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Figure 5. Long-term trend of the annual impact of Rad (a), Ta (c) and VPD (e) on GPP, and the impact of change of Rad (b), Ta
(d) and VPD (f) on GPP per unit area in eight areas from 2001 to 2020. T-test was used to analyze the significance of the different
factors on GPP variations. The symbols ‘∗∗’ and ‘∗’ represent significance levels at p< 0.01 and 0.05< p< 0.01, respectively.

and−0.17 Tg C yr−2, respectively. Area VII was pos-
itively influenced by Rad changes on GPP, and the
20 year mean value of the positive influence was
7.98 Tg C yr−1, with a trend of −0.79 Tg C yr−2.
The impact of Rad variations on average annual GPP
for forest, cropland, and grasslands for each area
were ranged from −6.90 × 105–1.89 × 106, from
−1.61 × 107–9.51 × 106, and from −1.18 × 107–
1.05× 106 T C yr−1 (supplementary figure S2(d)).

Then, we analyzed the impact of Ta on GPP
(figures 5(c) and (d)). It shows that Ta changes had a
positive effect on GPP in Area VI from 2001 to 2020,
with 20 yearmean values of 17.60 and 9.87 Tg C yr−1,
respectively, and the increasing trends of the impact
were slightly higher, with 1.04 and 1.10 Tg C yr−2,
respectively. The GPP in areas I, IV and II were
affected by Ta changes with relatively low total annual
values of 1.36, 1.13 and 0.12 Tg C yr−1, respectively,

and the increasing trends of the impact were relat-
ively low at 0.11, 0.08 and 0.01 Tg C yr−2, respect-
ively, showing that the vegetation GPP in areas I,
IV and III were less affected by Ta changes. Areas
VIII, V, VII and III were negatively affected by Ta
changes on GPP, with 20 year means of −1.95,
−0.60, −0.49 and −0.33 Tg C yr−1, respectively,
but the trends of the impact were not prominent,
at −0.08, −0.07 and −0. 07 Tg C yr−2 respectively.
The impact of Rad variations on average annual GPP
for forest, cropland, and grasslands for each area
were ranged from −2.38 × 105–7.35 × 106, from
−1.71 × 106–1.95 × 107, and from −9.55 × 105–
7.61× 105 T C yr−1 (supplementary figure S2(e)).

Lastly, we analyzed the impact of VPD on GPP
(figures 5(e) and (f)). It shows that the GPP in areas
VI and VII were negatively affected by VPD changes
during 2001–2020, and the total annual value of

8
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Figure 6. Cumulative effects of five impact factors (LCC, CO2, Rad, Ta and VPD) on GPP in eight areas from 2001 to 2020.

negative impact was obvious, with 20 year mean val-
ues of −11.80 and −5.41 Tg C yr−1, respectively.
The trend of total annual impact was also more pro-
nounced, with −0.32, and −0.21 Tg C yr−2, sug-
gesting that vegetation GPP was more negatively
affected by changes in VPD. In areas VIII and V,
GPP were negatively impacted by changes in VPD,
with the 20 year annul mean values of −1.05 and
−0.83 Tg C yr−1, respectively. In areas I, IV, II and
III, GPP were positively affected by changes in VPD,
with 20 year means of positive impacts of 3.93, 2.08,
0.94 and 0.44 Tg C yr−1, respectively. The impact
of VPD variations on average annual GPP for forest,
cropland, and grasslands for each area were ranged
from −2.47 × 106–3.72 × 105, from −1.37 × 107–
3.44 × 106, and from −1.50 × 106–1.04 × 106 T C
yr−1 (supplementary figure S2(f)).

3.5. Cumulative impact of impact factors on
vegetation GPP during 2000–2020
The cumulative impact of changes in LCC, CO2, Rad,
Ta and VPD on GPP during 2001–2020 were ana-
lyzed for the eight areas (figure 6 and table 3). In Area
I, LCC mainly dominated the increase in GPP, with
a cumulative effect of up to 369.16 Tg C by 2020.
In contrast, CO2, VPD and Ta have a comparatively
lower positive cumulative impact on GPP. However,
the positive effects of the LCC, CO2, Ta and VPD
changes on GPP were offset by 2012 as a result of
the Rad changes, which had a cumulative effect of
−386.21 Tg C on GPP. Similarly, in Area II, LCC
mainly dominated the increase in GPP, with a cumu-
lative effect of up to 135.20 Tg C by 2020. CO2, VPD
andTa had the lowest cumulative impact onGPPwith
28.47, 18.77 and 2.47 Tg C respectively, contributing
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Table 3. Cumulative impact of five impact factors on GPP in eight areas from 2001 to 2020.

Aare LCC (Tg C) CO2 (Tg C) Rad (Tg C) Ta (Tg C) VPD (Tg C)

I 369.16 123.83 −386.21 27.27 78.59
II 135.20 28.47 −86.22 2.47 18.77
III 39.54 29.59 −109.15 −6.53 8.90
IV 155.50 31.06 −52.09 22.67 41.68
V −33.47 54.94 −186.12 −11.97 −16.55
VI 449.94 401.98 −371.46 351.96 −235.98
VII 340.83 165.77 159.65 −9.85 −108.30
VIII 16.84 62.69 −20.97 −33.10 −38.91

only 21.05%, 13.88% and 1.83% to the cumulat-
ive impact of LCC. Conversely, GPP was negatively
affected by Rad changes with a cumulative effect of
−86.22 Tg C. The positive effects of LCC, CO2, Ta
and VPD changes on GPP were completely offset by
2013. In Area III, the Rad variation mainly domin-
ated the decrease in GPP, with a negative cumulative
effect of up to−109.15 Tg C by 2020. The cumulative
effect of Ta on GPP was also negative. In Area IV, LCC
mainly dominated the increase in GPP, with a cumu-
lative impact of up to 155.50 Tg C by 2020. VPD, CO2

and Ta have the lower cumulative impact on GPP.
Conversely, GPPwas negatively affected by changes in
Radwith a cumulative impact of−52.09 TgC. InArea
V, Rad variation dominated the GPP reduction, with
a negative cumulative effect of up to −186.12 Tg C
by 2020. Meanwhile, the cumulative effects of LCC,
VPD andTa onGPP are also negative, at−33.47 TgC,
−16.55 Tg C and −11.97 Tg C respectively. On the
contrary, only CO2 had a positive cumulative effect
on GPP of 54.94 Tg C. In area VI, LCC, CO2 and Ta
changes dominated the increase of GPP with cumu-
lative effects up to 449.94, 401.98 and 351.96 Tg C by
2020. Until 2012, Ta changes played a decisive role in
the cumulative effect of GPP, followed by CO2 and
LCC, while the dominance of LCC gradually stabil-
ized only after 2017. In particular, changes in Rad and
VPD had a negative impact on GPP, with cumulative
effects of −371.46 and −235.98 Tg C. In fact, each
impact factor significantly changed the GPP of the
vegetation in Area VI. In area VII, GPP was mainly
positively influenced by Rad until 2015, while LCC
replaced Rad to dominate the increase in GPP after
2015, and the cumulative effect of CO2 also exceeded
Rad for the first time by 2020. The cumulative effect
of LCC on GPP in 2020 was calculated to be as high
as 340.83 Tg C, followed by CO2 and Rad with 165.77
and 159.65 Tg C, respectively. Similarly, Ta and VPD
have negative cumulative effects on GPP with −9.85
and −108.30 Tg C, respectively. In area VIII, LCC
dominated the increase in GPP before 2006, while
the cumulative effect of land use changes on GPP
decreased dramatically after 2006, and CO2 took over
as the main driver of GPP growth, with a cumulat-
ive effect of up to 62.69 Tg C by 2020. The cumu-
lative effect of LCC on GPP was also favourable at

16.84 Tg C. The combined cumulative impact of Ta,
Rad andVPDonGPPwas negative at−38.91,−33.10
and−20.97 Tg C, respectively.

4. Discussions

4.1. LCC accelerated GPP increase in most areas
With various transformationmodes, LCC accelerated
GPP increase in most forestry engineering areas. In
Area I, the greening area had largely increased since
1978 and a large portion of grasslands and wastelands
in Northeast China has been converted to croplands
(Ye et al 2009). In Area II, the area for grasslands and
croplands had increased clearly since 2001, contrib-
uting to a large positive influence of LCC on GPP
(figure 3 and supplementary figure S3). In Area III
and IV, the land cover was mainly transformed from
grasslands to croplands and forests (figure 4 and sup-
plementary figure S3). In Area V, cropland and forests
transformed into grasslands and urban, which resul-
ted to the weak negative effects on GPP. In Area VI
and VII, the land cover was mainly transformed from
grasslands and cropland to forests. In Area VIII, the
land cover was mainly transformed from grasslands
and cropland to forests and urban, which is located
in the eastern part of China, and the rapid urbaniza-
tion in the past 20 years has offset partially the positive
impacts of LCC.

The important role of LCC on GPP changes was
also found in the three northern regions over 1982–
2017 (Xie et al 2020), with the fallowing program
(Feng et al 2016 ) and the grazing program (Gang
et al 2018) preventing grassland degradation and con-
tributing more than 1 g C m−2 yr−1 to GPP trends.
Zhang et al (2022) found that in a study of Area VII
for nearly 20 years, the positive impact of LCConGPP
also increased rapidly after 2010 due to the increase in
the number of plantation forests and the rapid growth
of new plantation forests (Zhang et al 2014, Tong et al
2018). Li et al (2017) found that human activities in
Area IV were the main influencing factor of veget-
ation change, with a contribution of 55% and over
60% in some areas. The impact of LCC on GPP has
shown a highly remarkable increasing trend over the
past 20 years, indicating that ecological conservation
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policies in China have made great progress in restor-
ing degraded forests and increasing vegetation pro-
ductivity despite the adverse effects of urbanization
(Chen et al 2021, Yue et al 2021).

4.2. Radiation variation decreased GPP inmost
areas
Rad variation weakened GPP in the eight engineering
areas, except Area VII, with a decreasing trend, in line
with the finding by Chen et al (2021) for the study
area of China. In Area I, which locates in northern
China, the impact of Rad showed a decreasing trend
since 2001 (supplementary figure S4), and vegeta-
tion GPP was positively correlated with PAR (Piao
et al 2006), so this area was increasingly negatively
affected by Rad variation. Similarly, the northeastern
part of Area VI is the area with strong Rad reduc-
tion (figure 4), and the negative effect of Rad change
on GPP per unit area exceeds −100 g C m−2 yr−1

(figure 4), making Area VI more negatively affected
by Rad change. Area VII is located in southern China
with a warm and humid climate and limited Rad due
to cloud cover (Li et al 2017, Feng and Wang 2019).
Enhanced Rad after 2001 led to a longer growing sea-
son, which increased vegetation GPP (Sun et al 2018).
In addition, cloud cover increased the scattered Rad
ratio and thus enhances LUE (Gu et al 2003, Rap et al
2018), which is more conducive to improving veget-
ation productivity (Zhou et al 2020), making Rad
changes promote vegetation GPP in Area VII (Zhang
et al 2022).

4.3. Regulations of Ta and VPD on GPP
inter-annual fluctuation
The response of vegetation GPP to Ta is complex,
since warming extends the vegetation growth period
(Keenan et al 2014), but increases water stress (Reich
et al 2018) that inhibiting GPP as well. The annual
total impact of Ta changes on GPP and its trend var-
ied widely across different regions. Compared with
other factors, GPPwasmore influenced by Ta changes
in Area VI, which was in line with the findings by
Qu et al (2018) and Ye et al (2020). Ta has gener-
ally increased in the Yangtze River basin since 2001,
which accelerated land carbon uptake (Farquhar et al
1980, Piao et al 2013), and the positive effect of Ta
change onGPP is high. AlthoughArea I has the largest
area among the eight areas, it is located in northwest-
ern China and is more restricted by water, which still
increases slightly in the context of increasing deser-
tification (Wang et al 2010), benefiting from human
intervention andmanagement (Xie et al 2020). Area I,
IV, II and III are located in severewater shortage areas,
where decreased VPD had a positive effect on veget-
ation productivity (Tuo et al 2018), coinciding with
the finding by Xie et al (2020). The increased VPD in
Area VI lead to the negative impact on GPP, which
was consistent with the finding by Ye et al (2020).

4.4. Uncertainties of this study
Some uncertainties exist in this study. Firstly, the
CO2 concentration data used in this study for 2001–
2020 are monthly averaged CO2 data measured at the
Mauna Loa Observatory in Hawaii, with the same
value of CO2 concentration for each month glob-
ally. However, the CO2 concentration actually var-
ies in time and space, and such treatment could lead
to uncertainty when disentangling the effect of CO2

on GPP. Secondly, the TL-LUE model does not take
into account the effects of nitrogen deposition and
tree age, which would lead to the inability to quant-
itatively explore the effects of these factors on GPP.
Stand age has a non-linear relationship with forest
carbon sink (Zhou et al 2015). Although some stud-
ies reported that the increasing hydraulic limitations
would reduce GPP in aging forest (Drake et al 2011),
and some suggested that triose phosphate utilization
limitation would lead to decrease of GPP (Barnard
and Ryan 2003), till now it lacks of sufficient obser-
vations to quantifying the effects of tree age in GPP.
Therefore, in future studies, the perturbation func-
tions of other influencing factors should be incorpor-
ated in the model to facilitate such attribution stud-
ies. Thirdly, leaf angle should change with vegeta-
tion types, but there was no dataset for depicting the
spatial distributions of leaf inclination angles, so the
mean leaf inclination angle as 60 degrees was used
in this study, which could lead to some uncertain-
ties of GPP estimation. Fourthly, the approach used
to scale up input variables from instantaneous to daily
scales by simply averaging them may lead to some
uncertainties in GPP simulation. In addition, topo-
graphy affects the surface solar radiation, as terrain
shading can reduce direct radiation, and diffuse radi-
ation can be amplified due to reflected flux from sur-
rounding terrain (Wang et al 2018, Zhang et al 2019),
which further affect the GPP dynamics. In this study,
the effects of topography on GPP variations were not
considered, which should be paid attention in future
studies, especially for mountainous areas.

5. Conclusions

In this study, we disentangled the roles of LCC, CO2

fertilization, and climate changes on GPP in the eight
forestry engineering areas during 2001–2020 using
the TL-LUE model with scenario simulations. The
main findings are:

(1) Among the eight areas, LCC attributed from the
forestry engineering initiatives greatly acceler-
ated the increase of GPP in seven areas except
Area V, in which cropland and forests trans-
formed into grasslands and urban, resulting to
the weak negative effects on GPP. In addition,
CO2 fertilization played a near-equivalent role as
LCC in all areas.
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(2) Rad changes decreased the GPP in seven areas
due to the decrease of radiation during 20 years,
except Area VII. In Area VII, the increased radi-
ation led to the positive effect on GPP.

(3) The increased VPD in the areas V, VI, VII
and VIII affected the GPP negatively and the
decreased VPD in the other four areas impacted
the GPP positively. Compared with other areas,
GPP in Area VI was more influenced by Ta
changes.

These findings could improve our understand-
ing of the contribution of China’s afforestation on its
forest productivity in a changing climate, which may
help to better manage forests to tackle the challenge
of the climate crisis in the future.
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