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Abstract
Top-down approaches, such as atmospheric inversions, are a promising tool for evaluating
emission estimates based on activity-data. In particular, there is a need to examine carbon budgets
at subnational scales (e.g. state/province), since this is where the climate mitigation policies occur.
In this study, the subnational scale anthropogenic CO2 emissions are estimated using a
high-resolution global CO2 inverse model. The approach is distinctive with the use of continuous
atmospheric measurements from regional/urban networks along with background monitoring
data for the period 2015–2019 in global inversion. The measurements from several urban areas of
the U.S., Europe and Japan, together with recent high-resolution emission inventories and
data-driven flux datasets were utilized to estimate the fossil emissions across the urban areas of the
world. By jointly optimizing fossil fuel and natural fluxes, the model is able to contribute
additional information to the evaluation of province–scale emissions, provided that sufficient
regional network observations are available. The fossil CO2 emission estimates over the U.S. states
such as Indiana, Massachusetts, Connecticut, New York, Virginia and Maryland were found to have
a reasonable agreement with the Environmental Protection Agency (EPA) inventory, and the model
corrects the emissions substantially towards the EPA estimates for California and Indiana. The
emission estimates over the United Kingdom, France and Germany are comparable with the
regional inventory TNO–CAMS. We evaluated model estimates using independent aircraft
observations, while comparison with the CarbonTracker model fluxes confirms ability to represent
the biospheric fluxes. This study highlights the potential of the newly developed inverse modeling
system to utilize the atmospheric data collected from the regional networks and other observation
platforms for further enhancing the ability to perform top-down carbon budget assessment at
subnational scales and support the monitoring and mitigation of greenhouse gas emissions.

1. Introduction

Emissions from fossil fuel combustion remain a
primary cause for the increased CO2 concentration
in the atmosphere (IPCC 2021). With the recurring

increase, the global fossil CO2 emissions have reached
36.1 ± 0.3 GtCO2 in the year 2022 (Liu et al 2023).
Studies reveal that the urban areas are responsible for
a larger fraction of (about 75%) global CO2 emis-
sions; scope 3 emissions (Seto et al 2014), and 78%
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of the total greenhouse gases (GHGs) originate from
anthropogenic activities (IPCC 2014). Therefore, it is
of great importance to estimate fossil emissions with
accuracy to monitor the implementation of mitiga-
tion policies at national/regional scales using inde-
pendent atmospheric data (e.g. Pacala et al 2021,
Deng et al 2022, NASEM 2022, Byrne et al 2023)
and achieve the temperature goal of Paris agreement
(UNFCC 2015).

Monitoring urban CO2 emissions is import-
ant to support the scientific community as well
as subnational climate actions, such as the ones
proposed by the Global Covenant of Mayors for
climate and energy (www.globalcovenantofmayors.
org/). These estimates at the urban scale have widely
been obtained by top-down inversion approaches
(more details in supplementary note 1) based on
atmospheric CO2 measurements (e.g. Lauvaux et al
2020 for Indianapolis; Breon et al 2015 for Paris;
Verhulst et al 2017 for Los Angeles; Mueller et al 2021
for Baltimore–Washington area; Basu et al 2020 for
the United States), which allows independent eval-
uation and identification of potential quality issues
of GHG inventories (Zhang et al 2022). Its applica-
tions in the estimation of anthropogenic GHG were
reported by Manning et al (2011), Lauvaux et al
(2020), and NASEM (2022). But estimating the subn-
ational CO2 budget requires a high–resolution inverse
modeling system that utilizes observations collected
from a dense observation network (Breon et al 2015,
Lauvaux et al 2016, 2020, Super et al 2017, Yadav
et al 2021). Such estimations/analyses are often lim-
ited to a small domain around cities, and model sim-
ulations are implemented at a high spatial resolu-
tion of 1–2 km (Oney et al 2015, Super et al 2017,
Kunik et al 2019, Pisso et al 2019, Nalini et al 2022,
Lian et al 2023). At a larger scale, the observations
can be provided by several satellites currently includ-
ing Greenhouse Gases Observing Satellite (GOSAT),
GOSAT–2, Orbiting Carbon Observatory (OCO)–2,
OCO–3 and TanSat (CarbonSat) (Crisp et al 2018),
that can be utilized to produce large scale emission
estimates.

Promising results were obtained from Lagrangian
models in the estimation of large-scale emissions
using satellite data (Janardanan et al 2016 at global
and continental scale, Zheng et al 2020 over China).
However, IPCC has recently recognized the top-down
approach as a promising tool for evaluating bottom-
up inventories (IPCC2019). Yet, global CO2 inversion
studies targeting biogenic and oceanic sink estim-
ates assume fossil fuel emissions are a better-known
quantity than natural fluxes, i.e., the emission uncer-
tainty associated with fossil fuel emissions is smaller
than that of natural fluxes (Deng et al 2022, Byrne
et al 2023). Consequently, the potential errors eman-
ating from inaccuracies in the fossil fuel emissions
can propagate to natural emissions, while fossil fuel

emissions remain uncorrected. Though, the difficulty
in separating the signals of fossil emissions from nat-
ural fluxes in inversions are known (e.g. Wang et al
2017), optimizing fossil fuel emissions is important
in estimating carbon fluxes, especially at finer tar-
get scales. A possible solution for this is to develop
an inverse modeling system that estimates both fossil
and natural fluxes and applies the same methodo-
logy worldwide, efficiently using all available obser-
vations and operating at resolutions relevant to emis-
sion estimates at the city or provincial to a country
scale.

In response to this need, we have developed
a higher resolution version of the global coupled
Eulerian–Lagrangian inverse model (NIES–TM–
FLEXPART–variational; Maksyutov et al 2021),
which can use observations by multiple platforms
(currently available/planned denser observations,
ground/satellite) and capable to estimate subna-
tional fossil CO2 emissions by separately optimizing
terrestrial biosphere, ocean–atmosphere, and fossil
fuel fluxes. The model can use all available regional
CO2 observations to examine the subnational carbon
budget by estimating fossil and natural fluxes. The
fossil fluxes can be separated from the natural fluxes
with the use of CO2 measurements from sites close to
the fossil CO2 sources.

2. Data andmethods

The inverse modeling system, NIES–TM–FLEXPART
consists of a Lagrangian dispersion model (LPDM)
FLEXPART and a Eulerian model, NIES–TM.
FLEXPART was supplied with the meteorological
fields from the Japanese 55 year Reanalysis (JRA-55;
Kobayashi et al 2015, Harada et al 2016) and NIES–
TM model with hourly meteorology from ECMWF
Reanalysis V5 (Hersbach et al 2020).

The prior fluxes in the inverse model are com-
posed of four flux categories (figure 1): fossil fuel
emissions, provided by the 1 km version of the Open-
Data Inventory for Anthropogenic Carbon dioxide–
ODIAC version 2020 (Oda et al 2018), ocean–
atmosphere exchangemodeled with a neural network
model (Zeng et al 2014, Zeng 2020a), biomass burn-
ing derived from the Global Fire Assimilation System
(GFAS) inventory (Kaiser et al 2012) and emissions
and uptake by vegetation based on combining remote
sensing data and tower fluxes using a machine learn-
ing technique (Zeng et al 2020b, 2020c). Links to data
are available in supplementary table 1. The uncer-
tainty files corresponding to the fossil emissions, eco-
system respiration and ocean–atmosphere exchange
(Valsala andMaksyutov 2010) are also supplied to the
model. However, the biomass burning emissions are
not optimized and are not reflected in uncertainty,
assuming that the ecosystem respiration-based spa-
tial uncertainty pattern provides the necessary degree
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Figure 1. The prior fields of (A) fossil fuel emissions of January 2018 from ODIAC, (B) biomass burning emissions of January
2018 from GFAS, and (C) GPP of April 2018 from Zeng et al (2020b). Fluxes are downscaled from original datasets to model
resolution of 0.025◦ × 0.025◦. (A), (C) shows the Tokyo region and (B) shows the African country Ghana. Units in g C m–2 d–1.

of freedom for adjusting the net CO2 flux at a large
scale. The model estimated fossil emissions are com-
pared with regionally available inventories such as
Environmental Protection Agency (EPA) (US states;
EPA 2020) and TNO-CAMS (Europe and UK; Denier
van der Gon et al 2017) as well as the estimated
natural (terrestrial biosphere and ocean–atmosphere)
fluxes with the outputs of CarbonTracker model
(CT2019b; Jacobson et al 2020) andOCO-2modeling
intercomparison project (MIP) experiments (Byrne
et al 2023).

The CO2 mole fractions from the sites of
urban CO2 observation projects in the USA, Japan,
and Europe and observations from background
sites were also used in this study (supplement-
ary figure 1 shows the location of sites included
in the inversions). The data sources include the
National Institute of Standards and Technology
(NIST) Northeast Corridor; NEC (Karion et al
2019, 2020), Los Angeles Megacity Carbon Project
network (hereafter L. A.; Verhulst et al 2017, Kim
et al 2021), Salt Lake City CO2 measurement net-
work, Indianapolis Flux Experiment (INFLUX Davis
et al 2017, Miles et al 2017, Richardson et al 2017),
Atmospheric Carbon and Transport—America
(ACT–America; Miles et al 2018, Wei et al 2021),
ChinaMeteorological Administration (CMA),World
Data Centre for Greenhouse Gases (WDCGG),
National Institute for Environmental Studies (NIES),
European Integrated Carbon Observation System
(ICOS), and Observation Package–CO2 (ObsPack–
CO2) GLOBALVIEWplusV7.0 (Schuldt et al 2021).
The observations under the NOAA aircraft pro-
gram (available in ObsPack) and Comprehensive
Observation Network for TRace gases by AIrLiner
(CONTRAIL) (Machida et al 2018) were used as
an independent dataset for validating the optimized
fluxes. These data were not included in the inversion

analysis. Details on the downscaling of prior fluxes,
preparation of prior uncertainty, surface CO2 obser-
vations and aircraft observations are given in sup-
plementary note 2. Additional details on observation
sites are in supplementary tables 2 and 3.

2.1. Tracer transport modeling
A coupled transport model was used to simulate
CO2 transport at high resolution. The CO2 mix-
ing ratios from the above-mentioned urban areas
and background sites, along with the meteorological
parameters from JRA-55 reanalysis data were used
in Lagrangian model FLEXPART v.8.0 (Stohl et al
2005) to prepare the surface flux footprints on a
0.025◦ × 0.025◦ grid. These footprints are consist-
ent with each observation and are produced from
the model run in a backward mode. The 3D con-
centration field and the surface flux footprint from
FLEXPART model are then coupled to the Eulerian
model within a coupling time of 2–3 d before each
observation event and are mapped to NIES-TM
model grids (5◦ × 5◦ resolution). The Eulerianmodel
is run in forward mode to obtain the surface flux cor-
responding to the simulated concentrations. The sum
of concentrations from the Eulerian and Lagrangian
model gives the total concentration. More details on
the procedure are given in supplementary note 3.

2.2. Inverse model and the experiment setup
We use a combination of the coupled transport
model NIES–TM–FLEXPART with the variational
optimization algorithm (Maksyutov et al 2021),
which constitutes the inverse modeling systemNIES–
TM–FLEXPART–VAR (NTFVAR or NIES–TM–
FLEXPART–variational). The inversion algorithm
was tested by Maksyutov et al (2021) for the prob-
lem of finding the best fit to the CO2 observations
provided by the ObsPack dataset by optimizing the
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corrections to the terrestrial biosphere and ocean
fluxes. These optimized fluxes were compared to
other CO2 inverse models in an intercomparison
study by Byrne et al (2023) using practically the same
base prior flux set as in this study. But this model
was modified to optimize fossil fuel emissions addi-
tionally. The horizontal flux correlation distance was
kept at 100 km, as the study focuses on the subna-
tional/regional scale fossil emissions. Further details
are available in supplementary note 3.

Two sets of inversions were carried out from 2015
to 2019. In the first set (optimizing two flux cat-
egories), only the fluxes corresponding to terrestrial-
biosphere and ocean–atmospheric exchanges (nat-
ural fluxes) were optimized. Whereas, in the second
set (three flux categories) of inversions, fossil fuel
fluxes were optimized in addition to natural fluxes
for investigating the added benefit of optimizing
fossil fuel emissions in representing the urban CO2

concentrations. The high-resolution prior fluxes
(0.025◦ × 0.025◦) utilized in the inverse model were
also tested by changing themodel parameters, includ-
ing horizontal flux covariance distance and prior flux
uncertainty. Here, we present the results from two
cases with different uncertainties; base case (C1; prior
fossil fuel flux uncertainty set to 30% of monthly cli-
matology) and with flux uncertainty inflated by a
factor of 1.5 (C2; prior flux uncertainty set to 45%).

To estimate flux errors, a set of inversions were
conducted for the year 2018 with case C2 using the
ensemble of pseudo datasets of terrestrial ecosys-
tem respiration (RECO) fluxes, fossil fuel fluxes, and
observations as described in Chevallier et al (2007).
They were prepared by adding random noise to the
datasets. The uncertainty in the posterior fluxes is
estimated as the standard deviation of the posterior
flux ensemble. Finally, the evaluation of the model
with independent datasets was carried out using a set
of aircraft observations in prior and posterior forward
simulations.

3. Results

Aswe are focusing in this study on the emissions from
fossil fuels, the improvements in additionally optim-
izing fossil fuel fluxes (three-category inversion) are
compared to the results from optimizing only natural
fluxes. The relative error (in percentage) of concentra-
tions from the two sets of inversions were compared
(supplementary figure 2). The corrections from three
category inversions were found to be 1%–3% higher
at many sites of Indiana and across the NEC network
(21 sites), with slightly higher corrections on a few
sites for caseC1,while the sites in LosAngeles have got
the highest correction of 9%–12%. Over Germany,
France, and England, the optimized corrections were
in the 1%–3% range, for both cases C1 and C2. From
the results, it was found that the present model could
effectively reduce root mean square error (RMSE) in

simulated concentrations by additionally optimizing
fossil fuel fluxes. Hence, the results are discussed only
for the three category inversions for the two cases C1
and C2.

3.1. Optimized natural fluxes and comparison to
CarbonTracker and OCO2-MIP
The results from the natural fluxes are evaluated for
the 22 TransCom-3 regions (Baker et al 2006). The
optimized terrestrial biosphere fluxes are mainly con-
tributed from tropical Asia and America (supple-
mentary figures 3(a) and (b)), whereas the optim-
ized values over tropical oceans are small compared
to other regions. Generally, the annual net fluxes from
NIES model are within the multi-model spread when
compared to other models (supplementary figures
4(a) and (b)) in the OCO2-MIP (Baker et al 2023).
Such divergence of regional fluxes can be the mani-
festation of the transport model differences. In most
cases it is difficult to assign which process is respons-
ible when deviations from themodelmean ormedian
are noticeable, like for Boreal North America or
Temperate Eurasia, where our model still does not
disagreewith the range of alternative estimates of land
sinks (Deng et al 2022). Some impact of strong prior
ocean sink may drive land fluxes higher in Australia.
Better understanding of the processes responsible for
differences in the estimated fluxes can be achieved by
analyzing the fluxes in connection with the simula-
tion of reference tracers like SF6, radon (Krol et al
2018) and COS (Remaud et al 2023).

The large-scale net flux estimates were evalu-
ated by comparing the mean monthly optimized
fluxes with CT2019b fluxes. The optimized fluxes
are found to represent the seasonal cycle well and
their magnitudes over the land regions have similar
variations as in CT2019b (figure 2). The fluxes over
Northern America and Europe (Regions 1, 2, and 11)
are well constrained by the observations, and there-
fore have a reasonable agreement between the mod-
els, whereas the summer variations over the Asian
Tropical (Region 9) region are not well captured by
themodel, as can be seen from the spread of the estim-
ates. For ocean fluxes, the posterior is not signific-
antly different from the prior, except for the Southern
Ocean and North Pacific Temperate regions. The
ocean flux uncertainty values are seemingly too tight
to adjust the oceanic flux, while the model chooses to
adjust the land fluxes that have larger uncertainties.
Hence the ocean flux corrections are mostly insigni-
ficant. However, since the focus of this study is on
fossil fuel flux estimates, theweights of relative adjust-
ments to land and ocean fluxes are less important.

3.2. Estimated fossil fuel fluxes and evaluation with
regional inventories
The annual mean maps of (averaged over the period
2015–2019) posterior fossil fuel flux are shown in
figures 3(A) and (B). One of the distinct features
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Figure 2.Mean monthly prior (pri) and optimized fluxes of C2 (model) case for the terrestrial biosphere and ocean–atmosphere
exchanges along with the fluxes of CT2019b (ctr). Units in gC m–2 d–1.

of the model is the use of high-resolution uncer-
tainty data along with the smoothed scaling factors,
by which the model picks up the finer scale fea-
tures of fluxes in the estimation of flux corrections.
Although the horizontal covariance length is chosen
to be 100 km, the corrections are found to coincide
with the regions of higher anthropogenic activities
(figures 3(A) and (B)), such as the USA, Europe, and
Asian countries (mainly Japan, China, and India).
The spatial patterns are well represented over regions
with numerous observations, especially in the U.S.’s
urban areas such as Indiana, Colorado, Connecticut,
and New York. But the difference between the optim-
ized fluxes between two cases, C1 and C2 shown in
figure 3(C), indicates that the estimated fluxes from
case C2 was higher than C1 except over California,
Northeastern states of America, and Northwest Italy.

The estimated fossil fuel fluxes were also evalu-
ated regionally. For which, the subnational/regional
scale fossil fuel CO2 fluxes were compared against
inventories for selected states in the U.S., countries
in the U.K., and the E.U., where alternatives to prior
regional fossil fuel emission inventories are available.
It would be interesting to have flux estimates at a lar-
ger scale, like the U.S., but the top-down fossil emis-
sion estimate is likely to be more uncertain at such
a scale, as observation coverage is sparse over many

important regions with considerable emissions. The
annual estimated fossil fuel fluxes for 2015–2018 are
compared with the EPA inventory, as the U.S. EPA
updates the inventory regularly and it is the authority
to report the U.S. GHG emissions to the UNFCCC
(Basu et al 2020). The ratio of EPA and optimized
fluxes (C1, C2) to ODIAC are shown in (figure 4(A)
and (B)). Themodel-estimated fossil fluxes show bet-
ter agreement with the state-level estimates of EPA.
We consider this as an impact of using urban meas-
urements in the inversion system as these estimates
are constrained by the numerous urban observations,
which are usually not included in global inversions.
This is obvious over the states of Indiana, New York,
Massachusetts, Connecticut, Maryland, and Virginia,
which are mainly covered by the NEC and INFLUX
network. The only difference between cases C1 and
C2 is over the state of Wyoming. The estimates over
the east coast and the west coastal regions are well
constrained by the observations. However, the dis-
crepancy between EPA and model estimates over the
southcentral coast could be due to insufficient meas-
urements over the region.

Figure 5(a) shows the state-wide fossil fuel emis-
sion estimates for selected states/regions along with
uncertainty values. The optimized values are higher
than the prior, attaining a correction in the right
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Figure 3. Annual mean posterior fossil fuel CO2 flux averaged over 2015–2019 for (a) C1, (b) C2 and (c) the difference between
C2 and C1 in units of gC m–2 d–1.

Figure 4. The ratio of CO2 emissions from (a) EPA to ODIAC, (b) optimized C1 to ODIAC, and (c) optimized C2 to ODIAC over
the states of the U.S.

direction for California, Massachusetts, New York,
Connecticut, Virginia, and Maryland. The estimates
from case C2 for California, New York, and Virginia
are closer to EPA inventory, whereas, over Maryland
and Connecticut, the estimates were not very differ-
ent for C1 and C2 cases. The prior over the state of
Indiana was 7% higher than the EPA inventory, but

on optimization, the estimates were closer to EPA
(less by 7%) inventory with enhanced corrections
from case C2 (46.97 Tg C yr–1) compared to case C1
(44.20 Tg C yr–1). Over California, the estimates are
33% lower than the EPA inventory, partly contributed
by the lower emissions from ODIAC (Hedelius et al
2018) and themodel’s difficulty in capturing seasonal
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Figure 5. Comparison of prior, posterior (C1 and C2), and inventory data of (EPA/TNO–CAMS) fossil fuel fluxes (Tg C yr–1) for
the selected states of (a) USA and (b) countries of the E.U. and the U.K. The uncertainty estimates of case C2 for the year 2018 are
also shown.

variations over the region. Comparisons with similar
regional studies (supplementary note 4) and estim-
ates are available in supplementary table 4.

The annual mean fossil flux estimates for selec-
ted countries of the E.U. are compared to the invent-
ory from TNO–CAMS (figure 5(b)). The inventory
for the most recent available year, 2014, was used.
Positive corrections are obtained over the U.K. and
France, but the adjustments are not sufficient for the
posterior tomatch the TNOdata and hence the estim-
ates are less than the inventory. Flux corrections for
individual countries in the U.K. suggest emissions
closer to the inventory than the prior emissions. Over
Germany, the posterior is less than the prior, result-
ing in a lower estimate than inventory. The estimates
for selected E.U. countries are given in supplement-
ary table 4. The estimation of posterior flux uncer-
tainty is carried out for the year 2018, but only for case
C2, due to its improved performance over most of the
regions.

3.2.1. Uncertainty estimates of posterior fluxes
The uncertainty analysis reveals that the posterior
uncertainty is less over the regions where dense obser-
vations are available. Over USA (figure 5(a)), the
uncertainties are high over Indiana and California,
which could be due to the strong influence of veget-
ation and large fossil flux correction from prior
(ODIAC), respectively. However, for the two cases,
C1 and C2, the spread of flux estimates is within the
uncertainty values. On average, the flux corrections
(chi-square of 1.22 over U.S.) for several U.S. regions
appear somewhat larger than the posterior uncertain-
ties (estimated as the spread of posterior ensemble
fluxes), which could indicate the need for revising the
method of posterior uncertainty estimation.

3.3. Comparison of prior and optimized forward
simulations with observations
The time series of optimized, forward, and observed
concentrations for sites dominated by natural fluxes
as well as fossil fuel emissions were examined to check
the ability of the model to represent the seasonal vari-
ability. The seasonal changes of selected sites such
as Syowa (SYO), Pallas (PAL), Lampedusa (LMP),
and Hyytiälä (SMR) are dominated by natural flux
(N.F.) and Arlington_VA (ARL), Norunda (NOR),
Stockholm_NJ (SNJ) and Trainou (TRN), are sites
dominated by urban CO2 emissions (F.F.). The sea-
sonal variations at these sites are well represented
by the model, and the optimized model show (sup-
plementary figure 5) clear improvements compared
to prior in simulating observed concentrations irre-
spective of their location. The RMSE and bias for the
prior and optimized forward for the cases C1 and
C2 for representative sites are given in supplement-
ary table 5. The model performance for all the sites
in the urban network is discussed using the statist-
ics RMSE and bias for cases C1 and C2 (figure 6).
The RMSE is found to have decreased relative to the
prior, and the values of bias are close to zero. But a
few exceptions are noticed, especially over California
with large negative bias and higher posterior RMSE.
The reduction in the posterior bias is contributed by
the bias reduction from the natural as well as fossil
fuel flux components. However, over California the
bias from natural fluxes is reduced considerably, but
there seems no contribution from fossil fluxes. The
bias correction seemed to be appreciable only in some
of the background sites and not over the urban sites
of California. Since the variability over this region
is poorly captured by the model, the model misfit
and bias are high. This may be partly due to complex

7
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Figure 6. RMSE and bias of prior (red dots) and optimized simulations for the sites from megacity projects for the cases C1 (blue
bars) and C2 (orange bars). Stations are grouped based on the representing region demarcated by unique background color and
are labeled on the right side of the figure.

topography, wind patterns and the lower prior fluxes
(ODIAC) supplied to the model. The higher bias in
sites of California is also reported by Brophy et al
(2019). They explain the bias is high during Oct-Nov
months and showed that highest bias is noticed at
CIT. In this study the urban sites such as CIT, FUL,
FRA,US2,US1 andONThave high bias, of whichCIT
has got the highest bias.

The coefficient of determination (r2) between the
prior forward and observation was found to be 0.71,
which has increased to 0.77 (C1) and 0.79 (C2) for
optimized simulations. The statistics for all sites in

urban networks are given in supplementary table 6.
The RMSE for the sites in urban network (except Los
Angeles) was reduced to 4.8 ppm from 5.15 ppm and
the bias reduced to −0.20 ppm from 1.29 ppm on
optimization.

To interpret the regional difference in the CO2

emission estimates, the analysis is extended to three
subcontinental regions of the USA, U.K. and E.U.
Over the USA, the site of Indiana shows a good
model to observations fit, with an average RMSE of
3.84 for case C1 (3.74 for case C2) ppm of 0.033 (–
0.03) ppm. Over Connecticut, the RMSE and bias

8
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Figure 7. The vertical profile of observations (obs), prior forward (pri), forward simulations with optimized natural fluxes (opt-
nat. flux) and forward simulations with optimized natural and fossil fluxes (opt- nat.+ fossil flux) using independent aircraft
observations over the U.S. (a), the U.K. and the E.U. (b) The data are averaged for every 300 m/500 m altitude bins respectively.
An offset 0.6/0.8 ppm is subtracted from the respective prior concentration to show the improvements of the optimized profile
from prior.

are 4.71 (4.64) and –0.27 (–0.32 ppm), respectively.
But over California, though higher RMSE is obtained,
there is still an improvement from the prior. The time
series plots of prior, posterior simulations, and obser-
vations for the regions of study are shown in supple-
mentary figures 6–8.

Over Japan, only two data sites are present: Kisai,
Saitama (KIS) and Tokyo (TOK), with sparse data.
For KIS (supplementary figure 9), the prior RMSE
of 6.52 ppm reduced to 6.46 (6.49) ppm, whereas
the prior bias of −0.98 has become stronger [–2.34
(–2.44) ppm for cases C1 and C2 respectively]. The
mean RMSE and mean bias for selected countries
of the U.K/ the E.U. (details in supplementary table
7) are; for England 3.13 for case C1 (3.07 for case
C2) and−0.22 (−0.17), for Germany 4.32 (4.27) and
−0.18 (−0.20); for France 3.38 (3.34) and 0.46 (0.45)
respectively. The time series plots are given in sup-
plementary figures 10–12. It is to be noted that the
seasonal variations are well represented, and the sim-
ulated concentrations are in good agreement with the
urban observations.

3.4. Model evaluation using independent
observations
To evaluate the inverse model, an independent set
of aircraft data was utilized along with the prior
and optimized fluxes to obtain the simulated CO2

concentration. The concentration obtained from the

simulations of the prior and posterior forward model
for optimized natural fluxes (opt-nat. fluxes) as well
as for natural and fossil fluxes (opt-nat. + fossil
fluxes) were averaged and compared with observa-
tions at every 300 m altitude over the U.S. and for
every 500 m over the U.K. and the E.U. (figures 7(a)
and (b)). The simulations are carried out only for the
C2 case due to its better performance compared to
C1 case. The optimized model shows (figure 7(a))
clear improvements over the prior and is closer to
the observations for the entire vertical column up
to 5 km altitude. The prior concentrations (simu-
lated with prior fluxes) were higher by around one
ppm than the observations, which was adjusted by
the model to obtain a better agreement of optimized
values with the observations. Over the U.K. and the
E.U. corrections from the prior are noticeable and
the model estimates are closer to observed concen-
trations. The model reduced the higher concentra-
tions of prior (∼1.2 ppm) to obtain the optimised val-
ues. Up to 3000 m, stronger corrections are observed
which is being reflected from the seasonal pattern for
the spring and winter. It is to be noted that optim-
izing the fossil fluxes additionally to biogenic/natural
ones produces only aminor impact on themodel fit to
observations in the vertical profile (figure 7). This can
be explained by the biogenic fluxes being several times
stronger over large regions than the fossil fluxes espe-
cially in summer leading to a dominant role of land

9
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biogenic fluxes in reducing the model-observations
misfit. While the corrections to the fossil signals are
noticeable near urban sources, the impact of biogenic
fluxes is significantly stronger elsewhere.

4. Discussion

The top-down approach based on atmospheric obser-
vations is a promising tool to estimate GHG emis-
sions at a national/subnational scale as it can effect-
ively use the atmospheric GHG observations. Several
developments at regional scale inversions success-
fully separate the fossil fluxes from natural fluxes and
provide reasonable fossil emission estimates based on
the measurements from an urban network. But, at a
larger scale, the carbon budget is estimated by con-
sidering fossil emissions as a known quantity and the
natural fluxes are estimated by subtracting the prior
fossil emissions from the posterior. However, this
approachwill leave a residual of fossil emissions in the
posterior (Oda et al 2019, Wang et al 2020), in addi-
tion to the errors from top-downmethods (Chevallier
et al 2006, Angevine et al 2020). Therefore, measure-
ments from a denser observation network and a high-
resolution inverse model are required for resolving
fluxes at higher spatial scales and achieving a robust
estimation of natural and fossil fluxes. The cost in set-
ting up a denser network and resources required for
such a high-resolution model remains a challenge.

In this study, a high-resolution global CO2 inverse
model was used and its capability in estimating subn-
ational/regional scale CO2 emissions, using all avail-
able ground measurements was examined and dis-
cussed. While previous research works in the field
are concentrated at continental or national scale,
this study is an exception by employing a global
model to estimate CO2 emission at a regional scale.
Furthermore, the existing regional inversion stud-
ies to estimate fossil emissions are limited to smaller
regions/countries of interest (Lauvaux et al 2020, Lian
et al 2023). The recent inversion intercomparison
studies (Deng et al 2022, Byrne et al 2023) also sup-
ports this argument. Thus, the concept of using high-
resolution global inversionmodel to estimate regional
(province-scale/country) natural and fossil emissions
(CO2 budget) is first-hand. Additionally, large-scale
Bayesian inversions are limited with the use of selec-
ted backgroundmeasurements, but this inversion sys-
tem can use allmeasurements (surface/satellite) of the
globe to disseminate CO2 emission estimates.

The emission estimates from this model are
optimized separately to comprehend the contribu-
tions from each flux category and the model is suc-
cessful in reproducing the seasonal cycle at all back-
ground sites and most urban areas of North America
and Europe. Though the natural fluxes are large or
comparable to fossil emissions at sites like ICOS or
NOAA-ESRL (Levin and Karstens 2008, Shiga et al
2014), in the present study the observations are taken

closer to the sources by the urban networks in order
to avoid weakening of the fossil signal by horizontal
mixing. Thus, the signals of fossil emissions can be
separated from natural fluxes by using the measure-
ments from regional networks. In addition, a reas-
onable agreement of category-wise flux estimates
with regional independent inventories imply that the
estimated fluxes are well constrained by observations
in urban regions. The evaluation with independent
aircraft data also confirms that the overall flux adjust-
ments are in the desired direction.

5. Conclusions

The present study demonstrates the use of a global
high-resolution inverse model to estimate CO2

budget at subnational scale by utilizing the region-
ally available ground measurements. This approach
suggests a promising way to independently evaluate
national/subnational emission inventories. The bio-
spheric flux estimates from themodel are comparable
to establishedmodels and the estimates of fossil emis-
sions are comparable to the reference estimates from
regional inventories over Europe and the U.S. The
estimates from the inverse model are constrained by
measurements in urban areas with dense observa-
tions and the flux adjustments are verified using an
independent observation. We demonstrated that for
many the U.S. states, fossil flux corrections at least
partially compensate for the difference between prior
(ODIAC) and reference (EPA) emission datasets.

The inverse model can be tuned further with the
inclusion of high-resolution meteorological drivers
and satellite CO2 data that would enable flux cor-
rections over data-sparse regions in the global sur-
face observation network. Further improvements in
the transportmodel simulations (mostly FLEXPART)
should also improve flux estimates from the model.
Thus, the proposed inverse modeling system is a
promising tool to independently assess fossil emis-
sions at desired scales by using numerous atmo-
spheric observations and thereby considered as a step
towards a system to regularly monitor emissions and,
eventually, their trends.

Data availability statements

All data that support the findings of this study are
included within the article (and any supplementary
files). The links to the dataset are given below.

Prior fluxes
Biomass burning—https://confluence.ecmwf.int/

display/CKB/CAMS%3A+Global+Fire+Assimilation
+System+%28GFAS%29+data+documentation

ODIAC (version 2020)—www.nies.go.jp/doi/10.
17595/20170411.001–e.html

Ocean Flux—www.nies.go.jp/doi/10.17595/2020
1020.001–e.html
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Vegetation uptake, respiration—www.nies.go.jp/
doi/10.17595/20200227.001–e.html.

CO2 Observations
China—https://data.mendeley.com/datasets/

w3bwmr6rfg/1
ICOS—http://icos-cp.eu/data-products/atmos

phere-release
INFLUX—http://doi.org/10.25925/20210801
ACT–America—http://doi.org/10.25925/

20210801
NIES—www.nies.go.jp/doi/10.17595/20210510.

003–e.html
NIST–Los Angeles—http://doi.org/10.18434/

mds2–2388
NIST—Northeast Corridor—https://data.nist.

gov/od/id/mds2–2491
Obspack—http://doi.org/10.25925/20210801.
Salt Lake City—http://doi.org/10.25925/2021

0801, http://doi.org/10.7289/V50R9MN2
WDCGG—https://urn:x–wmo:md:jp.go.jma.

wis.dcpc–wdcgg::0065–2017–1001–01–01–9999
https://gaw.kishou.go.jp/search/file/0065-2017-

1001-01-01-9999
CONTRAIL—http://doi:10.17595/20180208.001

Inventories
EPA (2020)—www.epa.gov/statelocalenergy/state

–co2–emissions–fossil–fuel–combustion
TNO–CAMS—10.5281/zenodo.112889.

Model comparison
CT2019—http://ftp://aftp.cmdl.noaa/gov/

products/carbontracker/CT2019B/
OCO-2 v10 MIP gridded fluxes IS—https://gml.

noaa.gov/ccgg/OCO2_v10mip/.
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