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Abstract
Wildfires play a crucial role in northern boreal peatland ecosystems, influencing the functioning of
these ecosystems by affecting vegetation composition and biomass, peat accumulation patterns,
and soil carbon stocks. Northern peatland ecosystems are under pressure due to climate warming
and increasing anthropogenic stress. The frequency and severity of wildfires is predicted to increase
in the coming years. Therefore, understanding long-term natural fire dynamics and their effect on
peatland functionality will provide crucial information for peatland management and preservation
policies. To investigate the long-term fire history of Western Canada and its effect on peat
accumulation and vegetation succession, we analyzed macroscopic plant remains and charcoal
within peat cores taken from five peatlands in the region. Records of the most recent fire events
were derived from fire scars and documented fires in the study area. Regional long-term peatland
fire patterns were examined by pooling together macroscopic charcoal records and calculating
100 year moving averages. All studied sites, except the northernmost one, demonstrated repeated
fires throughout the past 1500 years, suggesting that fires have been an integral part of the peatland
ecosystem in Western Canada. Compiled charcoal records indicated a peak in fire activity, with the
highest abundance of charcoal for the period from the 1300s to the 1550s and decreasing fire
activity during recent centuries. The clear and consistent post-fire increase in the abundance of
Sphagnummosses suggests a relatively rapid recovery of peatland ecosystems after burning. The
regeneration pattern, where pre-fire vegetation repeatedly re-establishes, suggests that from a
long-term perspective, fires do not necessarily have a negative effect on peatland functioning and
peat accumulation. In conclusion, peatlands could remain as effective carbon sinks if their natural
state is secured.

1. Introduction

Northern peat-accumulating wetlands and peatlands
play a crucial role in the global carbon cycle. These
ecosystems cover ca. 4 million km2 and, based on
different estimates, store 400–600 Pg of carbon (C)
(e.g. Loisel et al 2014, Hugelius et al 2020). Predicted

and ongoing warming is placing high-latitude boreal
peatlands under increasing pressure by accelerating
permafrost thaw (e.g. Hugelius et al 2020, Treat et al
2021), altering hydrological balance (e.g. Zhang et al
2018a, 2022, Swindles et al 2019) affecting peat and
carbon accumulation dynamics (e.g., Garneau et al
2014, Gallego-Sala et al 2018, Zhang et al 2018b, Piilo
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et al 2022), and increasing wildfire risk (e.g. Turetsky
et al 2015, Holloway et al 2020). In boreal North
America, forested peatlands are commonly forested
by black spruce (Picea mariana) and the high above-
ground biomass on the top of peat layers makes them
particularly susceptible to intense fires (Johnston et al
2015, Beaulne et al 2021).

Fire is a key ecological and environmental factor
influencing the functioning of ecosystems in the
boreal zone. Changes in the fire regime (e.g., fre-
quency, size and severity) thus alter the functioning of
the boreal ecosystem (Zoltai et al 1998, Turetsky et al
2015). In the short term, fires can reduce C stocks and
directly release CO2 into the atmosphere (Wieder et al
2009). However, in the long term, fires may poten-
tially have a profound effect on forested permafrost
peatland carbon storage by altering the hydrology
(Holloway et al 2020 and references therein, Ackley
et al 2021), vegetation composition and successional
pathways (Magnan et al 2012), peat accumulation
(Turetsky et al 2015), and by promoting permafrost
thawing (Gibson et al 2018). Centennial dendro-
chronological records demonstrate a decrease in fire
activity from the nineteenth century to the twen-
tieth century in Western Canada (Wallenius 2011).
However, in turn, during recent years, fire frequency
and severity have increased in boreal Canada (Hanes
et al 2019, Ali et al 2020) and this increase is predicted
to continue (Flannigan et al 2005). An increase in fire
frequencymay have significant implications for soil C
stocks; for example, through the release of preserved
old soil carbon (Mack et al 2011, Turetsky et al 2015,
Walker et al 2019).

Previous estimates of the effects of wildfires on
peatland carbon stocks in Alaska (Turetsky et al 2011)
andWesternCanada (Turetsky et al 2002) have shown
increased carbon losses due to increased fire fre-
quency, ultimately decreasing the peatland carbon
stock. However, these estimates are limited to the
past decades or to the past few centuries at the most,
while wildfires have occurred repeatedly throughout
the Holocene in Canadian boreal peatlands (Zoltai
1998). So far, the length of the temporal scale used
for estimating the fire frequency and impact has been
limited by available data sources, which have mainly
been based on satellite data (Giglio et al 2013), his-
torical records (Turetsky et al 2004, 2015, Kasischke
and Turetsky 2006) and dendrochronological records
(Larsen 1996, Heyerdahl et al 2007, Wallenius et al
2011). Dendrochronological methods, such as map-
ping of forest stand ages and fire-scarred trees (e.g.
Lageard et al 2000, Wallenius 2011, Aakala et al
2018), have extended fire frequency records up to sev-
eral hundreds of years beyond the range of histor-
ical records and satellite images. However, extending
records of fire frequency even further back in time
requires the use of paleological archives of sediment-
ary charcoal from lake and peat deposits (Whitlock

and Larsen 2002). Furthermore, combining dendro-
chronological and sedimentary records allows more
comprehensive reconstructions of the long-term fire
history (Stivrins et al 2019, Kuosmanen et al 2020,
Edvardsson et al 2022). It is particularly import-
ant to understand the interlinked historical fire and
vegetation dynamics and the subsequent effect on the
long-term carbon storage in forested peatlands under
the changing climate and predicted increase in fire
frequency.

Although Holocene wildfire history patterns in
the boreal zone are to some extent already extens-
ively studied and well understood (Holloway et al
2020), dendrochronological studies have mainly con-
centrated on Northern Europe and Southern and
Eastern Canada (Margolis et al 2022). However, there
are relatively few long-term fire records, covering sev-
eral centuries or millennia, from boreal peatlands in
Western Canada. As long-term records could enhance
the understanding of the potential effects of fires
on the forested peatlands in a region that is cur-
rently experiencing increasing fire activity inWestern
Canada, we aim to fill this data gap by (1) reconstruct-
ing the fire history of five forested peatlands located in
the sporadic permafrost zone based on macroscopic
charcoal records and local dendrochronological fire
reconstructions, (2) calculating the peat accumu-
lation rates (PeatAR), and (3) assessing the effect
of fires on post-fire regeneration and vegetation
succession.

2. Methods andmaterials

2.1. Study area and sites
The study area in Western Canada belongs to
the discontinuous permafrost zone (figure 1).
Of the five studied peatlands, three are located
in British Columbia, namely BC1 (N57◦08′52′′,
W120◦39′5′′), BC2 (N25◦25′55′′, W120◦7′10′′) and
BC3 (N58◦51′8′′, W122◦25′22′′), and one site is
in the Northwest Territories (NWT) (N61◦50′45′′,
W122◦24′0′′). These four sites are located in the
southern part of the Taiga Plains ecozone, while
one study site in Alberta (ALB) (N57◦17′46′′,
W115◦20′45′′) is located in the northwestern part
of the Boreal Plains ecozone (Ecological Framework
of Canada 2014). The mean annual temperature is
approximately−0.2 ◦C (Environment Canada 2014).
In the study region, 35%–55% of the land area is
covered by wetlands, which makes it one of the
densest wetland areas in Canada (Environment and
Climate Change Canada 2016). Studied peatlands are
forested bogs with black spruce as the main tree spe-
cies, with ericaceous vegetation (e.g., Rhododendron
groenlandicum, Vaccinium vitis-idaea and Vaccinium
oxycoccos) forming the field layer of the dry hab-
itats. Sphagnum mosses form the ground layer with
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Figure 1. (a) Permafrost distribution showing permafrost zones in Canada (data source: Natural Resources Canada 2022), (b)
map of the study area with study sites marked with yellow stars (map data: Google Earth © 2022, Image Landsat/Copernicus),
(c) study site BC2 showing typical vegetation on the studied peatlands (photo: TuomoWallenius).

Sphagnum fuscum as the dominant taxon. Themicro-
topography consists of low-relief hummocks and
lawns.

2.2. Dendrochronological fire records and fire
statistics
The latest fire events at the study sites were determ-
ined using fire scars on trees, forest stand ages and
snags killed and charred by fire. Disks and wedges,
including fire scars, were sawn from up to seven living
and dead trees per site. For a more detailed descrip-
tion of the methods used see Wallenius et al (2011).
In addition, fire statistics includingmapped fire poly-
gons were derived from Boulanger et al (2014).

2.3. Collection of the peat cores
The peat profiles were collected in summer 2009. Two
replicate peat profiles (A and B) were cored from each
site in British Columbia coded as: BC1A (53 cm) and
BC1B (50 cm), BC2A (51 cm) and BC2B (48 cm), and
BC3A (107 cm) andBC3B (99 cm). In addition, a peat
profile was collected from the sites in ALB (109 cm)
and NWT (49 cm), respectively. Coring was conduc-
ted with a Russian peat corer, with a cylinder of 50 cm
long and 5 cm in diameter. Coring points represent
dry hummock habitats.

2.4. Core chronology and peat accumulation
Core chronologies were secured by AMS 14C
dates with a minimum of three dates per peat
profile. Plant macrofossil samples were dated by the
Poznań Radiocarbon Laboratory (Poland), and one
sample by the Finnish Museum of Natural History
(LUOMUS, Helsinki, Finland). Some peat records
appeared to be young (younger than 1950 CE) and
the 14C calibration procedure did not always yield
robust-enough results for the top peat sections.
Therefore, in those cases, we applied local/regional
dendrochronological data as a supportive element.
The age of the latest known fire on the study site
in question, determined from dendrochronological
data and fire statistics, was used as a chronological
control point for the top part of each peat record.
The age of this latest known fire event was treated as
the assumed age of the most recent charcoal peak in
the peat record. In other words, the dendrochrono-
logically determined youngest fire age was adapted
to date the youngest charcoal peak. This depth and
age, which linked the tree and peat records, were
then included in the age–depth models created for all
cores using Bayesian age–depth modeling (BACON)
(Blaauw and Christensen 2011) with IntCal20 curve
in R programming software (R Core Team 2019).
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PeatAR (mm yr−1) for each core was calcu-
lated based on the constructed age–depth models. As
young incompletely decomposed Sphagnum growth
affects the PeatAR, the average PeatAR (mmyr−1)was
calculated separately for the period of 1000–1900 CE,
for the last 100 years (1900–2009 CE), for the whole
core up to 1900 CE and for the whole length of each
core.

2.5. Macroscopic charcoal analysis
Macroscopic charcoal analysis was performed from
5 cm3 samples in 1–2 cm intervals to reconstruct past
fire events. In a few caseswhere lessmaterial was avail-
able, a smaller subsample size was used. Samples were
gently cleaned under running water using a 140 µm
mesh and analyzed on a Petri dish under a stereo-
microscope. A maximum of 50 particles >1 mm in
size were counted from each sample and then count-
ing was stopped. To assess the long-term changes in
regional fire activity, charcoal records from all cores
were pooled together and the number of charcoal
particles was divided by the number of samples in
each period. This method is similar to the method
used in dendrochronological fire history reconstruc-
tions; instead of fire scars on tree trunks (either
present or not present in each year and sample, see
Niklasson and Granström 2000), we used the mac-
roscopical charcoal particle count (varying between
0 and 50) as an indicator of the occurrence of fires. A
running 100 year mean of this fire activity index was
compared to annually burned area reconstruction by
using dendrochronological methods from the same
area (Wallenius et al 2011). This allowed us to com-
pare the pattern of the different fire history recon-
structions for the latest two centuries (the common
period) and relate the fire activity index values to
annually burned areas in the region.

2.6. Plant macrofossil analysis
To reconstruct vegetation succession related to fires,
plant macrofossil analysis was performed using the
same samples as the macroscopic charcoals. The
analysis method followed Väliranta et al (2007).
Macrofossil plant identification followed the liter-
ature; Eurola et al (1992), Piippo (1996), Bastien
and Garneau (1997), Mauquoy and Van Geel (2007),
Flora of North America (2014) and Laine et al
(2009). The percentage share of each component
estimated under a Petri dish represents the relat-
ive abundance of the compound or taxon from the
sample volume; all main components adding up to
100% per subsample. The main identified compon-
ents were Cyperaceae vegetative remains, Ericales
vegetative remains, Sphagnum moss and other bry-
ophytes; liverworts, wood matter and unidentified
organic matter were also found. Taxonomic iden-
tification and determination of relative abundances
of bryophytes were conducted under a high-power
microscope.

Table 1. Fire history for sites BC1, BC2, BC3, ALB and NWT sites
fromWestern Canada based on dendrochronological (Wallenius
et al 2011) and fire statistics data (Boulanger et al 2014). Time
since the last fire is counted to the sampling year of year 2009.

Site Known fires

Time since
last known
fire (years) Source

BC1 A 1950 59 Fire statistics
BC1 B 1950 59 Fire statistics
BC2 A 1980 29 Fire scars and

statistics
BC2 B 1980 29 Fire scars and

statistics
BC3 A 1895 114 Tree ages
BC3 B 1895 114 Tree ages,
ALB 1844, 1863, 1982a 27 Tree ages, fire

statistics
NWT 1975 34 Death years of

trees killed by
fire

a This fire was located 1.1 km from the coring site according to

mapped fire areas in the Canadian Large Fire Data Base (Bosch et

al 2004).

3. Results

3.1. Fire history from tree-ring records and fire
statistics
Based on the dendrochronological and fire statistic
data, sites BC1, BC2, BC3 andNWThave burned only
once during the last 200 years and site ALB three times
with earliest fire in 1845 CE and the latest fire in 1982
CE in the study region (table 1).

3.2. Peat profile chronologies
The time period covered by the analyzed peat cores
varied notably from 660 cal yr BP (BC1B) to
7500 cal yr BP (BC3B) (table 2, figure 2). All but one
core covered more than the last millennia, provid-
ing information on the long-term development of
the peatland fire history in the study area. The 14C
ages of the top samples that resulted in modern ages
were inconsistent with the control point ages determ-
ined by the last known fire event at the study site in
question based on dendrochronological data and fire
statistics. Therefore, modern radiocarbon ages were
excluded from the age–depthmodels and the respect-
ive chronologies were constructed by using a combin-
ation of the chronological control ages derived from
the last known fire (table 2) and the radiocarbon dates
below this control horizon. In this study, we present
the results covering the last 1500 years.

3.3. PeatAR
The PeatAR values vary notably during the last
millennia and between the studied cores (table 3
and figure 3). Common in all records is a rel-
atively stable PeatAR until an increase during the
last century (table 3), reflecting the incomplete peat
decomposition process. For the BC1 site, the PeatAR
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Table 2. Radiocarbon dating results and the chronological control age determined from dendrochronological and fire statistics data.

Site Depth (cm) Laboratory ID

14C age BP± error and
calendar ages (CE) Remark

BC1A 21 — 1950 Control age
BC1A 28 Poz-119268 163.35± 0.43 pMC (modern)a

BC1A 39 Poz-122604 106.59± 0.33 pMC (modern)a

BC1A 53 Poz-36335 2425± 35 BP

BC1B 19 Poz-122605 117.01± 0.35 pMC (modern)a

BC1B 21 — 1950 Control age
BC1B 28 Poz-119269 137.26± 0.39 pMC (modern)a

BC1B 50 Poz-36334 660± 30 BP

BC2A 18 — 1980 Control age
BC2A 23 Poz-119270 106.78± 0.33 pMC (modern)a

BC2A 37 Poz-122606 5± 30 BP
BC2A 47 Poz-119271 625± 30 BP
BC2A 52 Poz-36332 1805± 30 BP

BC2B 19 Poz-122608 101.08± 0.33 pMC (modern)a

BC2B 21 — 1980 Control age
BC2B 24 Poz-119275 100.59± 0.34 pMC (modern)a

BC2B 39 Poz-119276 360± 30 BP
BC2B 49 Poz-36333 1425± 30 BP

BC3A 53 Poz-119278 100.14± 0.35 pMC (modern)a

BC3A 57 — 1895 Control age
BC3A 88 Poz-122607 800± 30 BP
BC3A 107 Poz-36330 2820± 30 BP

BC3B 26 Poz-119279 102.01± 0.32 pMC (modern)a

BC3B 31 — 1895 Control age
BC3B 71 Poz-122609 1660± 30 BP
BC3B 94 Hela-2569 4874± 42 BP
BC3B 100 Poz-36329 7000± 40 BP

ALB 27 Poz-122610 125.05± 0.37 pMC (modern)a

ALB 42 — 1982 Control age
ALB 45 Poz-122611 101.09± 0.33 pMC (modern)a

ALB 65 Poz-122612 80± 30 BP
ALB 87 Poz-122614 405± 30 BP
ALB 105 Poz-122615 1330± 30 BP

NWT 1 — 1975 Control age
NWT 9 Poz-77236 280± 30 BP
NWT 32 Poz-77239 670± 30 BP
NWT 35 Poz-91297 810± 30 BP
NWT 38 Poz-91298 865± 30 BP
NWT 50 Poz-77240 1130± 30 BP
a Modern ages were excluded from the age–depth models.

Note: pMC: percent Modern Carbon.

remains stable around 0.11 mm yr−1 in BC1A and
around 0.46 mm yr−1 in BC1B until 1800 CE, after
which it increases in both cores first to 1 mm yr−1

around the 1950s and then to 5 mm yr−1 during
the last century. The BC2 site peat cores demon-
strate differing PeatAR. The BC2A core shows a
stable PeatAR (<0.1 mm yr−1) until 1600 CE, after
which the PeatAR varies between 0.45 mm yr−1 and
0.83 mm yr−1 until an increase up to 5–10 mm yr−1

during recent decades. The BC2B core shows a stable
PeatAR around 0.22 mm yr−1 until 1400 CE, with
a decrease to 0.10 mm yr−1 and then an increase
up to 5–10 mm yr−1 during recent decades. In site

BC3, the PeatAR in core BC3A stays <0.1 mm yr−1

until 1000 CE, after which there is increase and
stable PeatAR around 0.43 mm yr−1 until an increase
to 2–5 mm yr−1 the last century. The BC3B core
shows a stable PeatAR of around 0.25 mm yr−1

until 1800 CE, after which there is an increase up
to 3 mm yr−1 during the last two centuries. For the
ALB core, the peat accumulation rate varies between
0.21 mm yr−1 and 0.43 mm yr−1 until 1500 CE, with
an increase to 1.0 mm yr−1 and a further increase up
to 10 mm yr−1 from 1940 CE. At site NWT, PeatAR
stays relatively low, varying between 0.29 mm yr−1

and 0.59 mm yr−1.
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Figure 2. Age–depth models for all eight peat cores based on 14C dating and control age from dendrochronological and fire
statistic data (light green marks) created with the Bayesian ‘rbacon’ -modeling tool in R using the IntCal20 calibration curve.
Purple marks show the range of the calibrated radiocarbon ages.

Table 3. Average peat accumulation rates (mm yr−1) for all study sites for selected time periods (CE).

Site 1900–2009 CE 1000–1900 CE Whole core up to 1900 CE Whole core (basal age cal yr BP)

ALB 9.02 0.70 0.66 5.27 (1230)
NWT 0.29 0.50 0.50 0.48 (2530)
BC1A 4.05 3.03 0.11 1.99 (1063)
BC1B 3.74 0.42 0.42 0.42 (668)
BC2A 5.83 0.49 0.44 3.37 (1422)
BC2B 7.71 0.20 0.20 4.14 (1335)
BC3A 5.35 0.66 0.48 2.89 (2970)
BC3B 2.79 0.34 0.22 0.20 (7470)

6



Environ. Res. Lett. 18 (2023) 094051 N Kuosmanen et al

Figure 3. Diagrams for all eight cores showing peat accumulation rate (note the logarithmic scale), macroscopic charcoal record,
presence of charred plant remains and fires reconstructed from dendrochronological records and fire statistics (marked by
calendar years).

3.4. Macroscopic charcoal and plant macrofossil
record
All British Columbia records (BC1, BC2, BC3)
demonstrate that during the last 1500 years, fires
have occurred regularly on these sites (figures 3–
6). However, there is notable variability in the fire
records between the sites and the cores coming
from one individual site. Records from BC1 show a
decrease in charcoal abundance towards the present.
The BC1A record shows a high charcoal abundance
(>50 particles per samples) until 1000 CE, around
1700−1800 CE and at 1950−1970 CE. The BC1B

charcoal values are high until 1600 CE, followed
by a decrease with a low charcoal abundance (<10
particles per sample). In both records, the increase in
the proportion of Sphagnummosses, accompanied by
a decline in vascular plant remains, coincides with a
decrease in charcoal abundance (figure 4).

The BC2 records show a decrease in macroscopic
charcoal abundance from 1000 CE onwards coin-
ciding with the increase in Sphagnum abundance
and a decrease in woody material (figures 3 and 5).
In the BC2A record, a peak with >50 particles per
sample occurs at 1450 CE and there is an increase in

7
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Figure 4. Diagrams for site BC1 in British Columbia showing the macroscopic charcoal record and selected plant macrofossils
plotted against depth (cm) for two different peat cores, BC1A and BC1B.

Figure 5. Diagrams for site BC2 in British Columbia showing the macroscopic charcoal record and selected plant macrofossils
plotted against depth (cm) for two different peat cores, BC2A and BC2B.

Figure 6. Diagrams for site BC3 in British Columbia showing the macroscopic charcoal record and selected plant macrofossils
plotted against depth (cm) for two different peat cores, BC3A and BC3B.

charcoal abundance from 1970CE. The proportion of
Sphagnum remains high regardless of the increase in
charcoal abundance. In the BC2B record, high char-
coal abundances (>50 particles per sample) occur

between 1550 CE and 1650 CE, after which the values
remain low until 1960 CE, when there is an increase
in charcoal abundance. As charcoal abundance
rises, there is a corresponding decline in Sphagnum

8
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Figure 7. Diagrams for sites in the North Western Territories and Alberta showing the macroscopic charcoal record and selected
plant macrofossils plotted against depth (cm).

proportions; however, following a peak in charcoal
levels, there is an immediate increase in the propor-
tion of Sphagnum.

The BC3 records demonstrate different fire his-
tories when compared to the BC1 and BC2 records.
In general, the BC3A record shows low charcoal val-
ues with a few exceptions with peak values (>50 char-
coal particles per sample) at 1460–1490 CE, at 1700
CE and at 1850–1900 CE. The Sphagnum propor-
tion decreases (<20%) with higher charcoal abund-
ances. However, there is a clear increase in Sphagnum
proportions (>80%) between the charcoal-rich peri-
ods (figures 3 and 6). The BC3B charcoal record
shows three periods of higher charcoal abundances
(>50 particles per sample) at 700–750 CE, at 1200–
1400 CE and at 1750–1850 CE. There is no not-
able decrease in Sphagnum proportions around the
charcoal peak at 700–750 CE, but a clear decrease is
seen during the two latter periods of high charcoal
abundances.

At theALB site,macroscopic charcoal abundances
are high (>50 particles per sample), with the excep-
tion of lower abundances (<10 particles per sample)
between 1550–1600 CE, at 1670 CE and at 1800–1860
CE (figures 3 and 7). In general, the Sphagnum pro-
portion remains relatively high during the high char-
coal abundances. Exceptions for this are periods of
low Sphagnum proportions that coincide with a high
proportion of woody material during 1500–1700 CE
and 1860–1980 CE. After 1980 CE, the proportion
of Sphagnum increases and the charcoal abundance
decreases.

At the NWT site, only the top-most samples had
relatively low amounts of macroscopic charcoal (5–
20 particles per sample) between 1940 CE and 1975
CE (figures 3 and 7). Charred plant material is found
in the same samples with simultaneous decline in
Sphagnum proportion and increase in other bry-
ophytes, dwarf shrub roots and woody material.

3.5. Regional fire history
The regional fire history from all peat records pooled
together with 100 year moving averages shows three
different phases during the last millennia. During
the first 300 years, charcoal abundances are relatively
stable varying mainly between 16 and 22 charcoal
particles per sample (figure 8). The second period
between 1300 CE and 1550 CE shows the highest
charcoal abundances, indicating increasing fire activ-
ity. The third period from 1550 CE to the present
demonstrates decreasing fire activity with an excep-
tional peak in charcoal abundances at 1850 CE. After
this, charcoal abundances decrease rapidly from 1900
CE onwards.

4. Discussion

4.1. Fire history inWestern Canada
Records from five forested peatlands demonstrate
that reoccurring fires have been part of the perma-
frost peatland ecosystems in Western Canada in the
past. Although fire patterns vary between individual
sites, the overall regional trend demonstrates sim-
ilar fire activity during 1000–1300 CE correspond-
ing to the medieval warm period (MWP) and the
later part of the little ice age (LIA) 1600–1800 CE
(figure 8) (Hughes and Diaz 1994, Luckman and
Wilson 2005). The MWP is globally connected to
increased biomass burning due to warmer and drier
conditions (Marlon et al 2012). However, some stud-
ies suggest that regardless of warmer temperatures
during the MWP, the growing season conditions may
not have been notably dry; for instance, around the
Rocky Mountains area due to the precipitation pat-
terns under La Niña conditions (Edwards et al 2008,
Holmquist et al 2016 and references therein). This
could partly explain the lower fire activity in our
study region. Furthermore, in the BC1 and BC3
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Figure 8. Reconstruction of the general trend in fire activity in the study region derived from all eight charcoal records pooled
together and compared with the annually burned proportion based on fire scar analysis (Wallenius 2011). MWP: medieval warm
period; LIA: little ice age.

sites, the studied two records from each site demon-
strate varying fire histories indicating that local site-
specific factors such as vegetation composition (fuel
load) and hydrological conditions (water table level)
may have played crucial roles in controlling the
peatland fire occurrence by creating divergent fire-
prone conditions (Flannigan et al 2009, Magnan et al
2012, Ronkainen et al 2013, Kuosmanen et al 2014,
Feurdean et al 2022).

The more intense period of fires during 1300–
1550 CE corresponds to climate reconstructions
based on oxygen isotopes (Edwards et al 2008) and
tree-ring records (Luckman and Wilson 2005) that
have suggested drier climatic conditions at that time.
These known drier hydrological conditions overlap
with the expansion of Sphagnum mosses (S. fuscum
as the main taxon) and declining Cyperaceae abund-
ances suggesting development towards drier peat sur-
face conditions. Recent studies have shown similar
ecohydrological shifts in northern peatlands towards
drier hummock-type habitats where fen-sedge com-
munities are replaced by Sphagnum communities as
a response to changes in climate (e.g. Swindles et al
2019, Zhang et al 2020, Magnan et al 2022, Piilo et al
2022). Furthermore, charred Picea mariana needles
indicate the presence of forest cover, which may have
increased the available fuel load and accelerated the
spread of fires (Flannigan et al 2009, Magnan et al

2012, Ronkainen et al 2013, Johnston et al 2015). It is
noteworthy that the fire activity is fairly similar dur-
ing the relatively different climate periods, i.e. MWP
and LIA. Due to this apparent similarity in fire pat-
terns, it could be speculated that in addition to cli-
matic factors, other drivers such as vegetation com-
position (fuel load), site-specific ecohydrology and
human impact may have affected the fire regimes.

Although it is clear that boreal forest can burn
only when the weather conditions are favorable
for the spread of fires, it is plausible that increas-
ing human impact and changes in land-use prac-
tices of indigenous communities may have altered
regional vegetation structure and fire-ignition pat-
terns (Larson et al 2021). Fire has been an important
management tool for indigenous people in manipu-
lating vegetation and forest structure for wild game,
food resources (berries, fruits, etc.) and clearing the
land for settlement purposes already existed in pre-
cultivation cultures (Dey and Guyette 2000, Carter
et al 2021). The larger populations over the area of
the northeastern plains of Manitoba during medi-
eval times, combined with lower food resources due
to drought during the MWP, have been documented
to result in a northward migration during 1200–
1400 CE pushing human activities towards the boreal
regions (Flynn 2002). It is also estimated that the indi-
genous population peaked between 1100 cal yr BP
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and 500 cal yr BP in the Pacific Northwest, where
higher levels of biomass burning were observed in
inland areas (Walsh et al 2015). Therefore, it is pos-
sible that increased population size may have caused
migration towards the northern boreal regions res-
ulting in a period of more intense fires in our study
region through burning around campsites and for
hunting purposes.

A notable feature is the detected declined regional
fire trend during the last 400–500 years with excep-
tions of short-term increases in mid-nineteenth cen-
tury. A similar declining trend in regional biomass
burning was recorded by Gaboriau et al (2020)
from the MWP. In addition, a regional fire history
reconstruction from the same study region based
on dendrochronological data demonstrates a declin-
ing trend in annually burned areas during the last
200 years (Wallenius et al 2011). A recent work
that combined several dendrochronological studies
showed that, spatially, the same phenomenon has
occurred over most of boreal Canada (Chavardes et al
2022). Gaboriau et al (2020) connects the decline
partly with a change in forest composition with more
mixed conifer-broadleaf forest where deciduous tree
taxa are less prone to fires. However, the decline in
fire activity also coincides with the cooling temper-
atures of the LIA and might be partly explained by
less favorable climate conditions (Edwards et al 2008).
One possible explanation for the decrease in fire activ-
ity could be a decline in indigenous populations in the
Americas, soon after the first contact with European
settlers in 1492 (Decker 1991, Carlos and Lewis 2012,
Koch et al 2019). Conclusively, it is plausible that
the general decrease in fire activity is not caused by
any individual driver but several simultaneous factors
influencing the fire regime, i.e. the cooler andmoister
climate creating less fire-prone conditions, the less
fire-prone forest composition and the lower human
impact that initiated fewer fires.

During the declining trend in fire activity, two
notable peaks emerged from the regional fire record,
namely around mid-nineteenth century and around
the 1930s. The population of European settlers star-
ted to grow at the beginning of the nineteenth cen-
tury as the Hudson Bay Company and missionaries
established several settlements in the region, e.g. Fort
Vermilion in 1788, Fort Nelson in 1805 and Fort
Providence in the 1860s. It is possible that the increas-
ing movement of trappers, tradesmen, missionaries
and settlers in the region contributed to the mid-
nineteenth century peak in fire activity. According to
early ecologists, the use of fire by European immig-
rants was careless and extensive in North American
forests during the nineteenth century (Sargent 1884,
Bell 1888).

In the early twentieth century, the peak in the
fire record corresponds with the recorded historical
fires. These fires could be connected to the severe
drought periods over North America (Stahle et al

2007). Regardless of the general declining trend in fire
activity during the last two centuries, the Canadian
fire regime has been suggested to have shifted towards
increasing fire activity during recent decades. This
may also make forested peatlands more susceptible to
burning.

4.2. Regeneration of peatland ecosystem after fires
The increase in the abundance of Sphagnum after
the fire periods suggests the effective recovery of the
peatland ecosystems after a fire disturbance. Similar
post-fire recovery of Sphagnum-dominated dry hum-
mock communities has been recorded from boreal
peatlands in Northern Europe (Sillasoo et al 2011,
Marcisz et al 2019) and in ALB (Lukenbach et al 2015,
Kettridge et al 2017). The relatively quick regenera-
tion of hummock vegetation communities to pre-fire
conditions is in line with the notion that in Canadian
bogs the microtopography affects the burning pat-
terns and hummocks, which can retain more mois-
ture due to their dense structure, are actually less
severely burned (Benscoter et al 2005a, 2005b). The
relatively quick recovery of Sphagnum-dominated
hummock communities seen at all studied sites sug-
gests low-intensity fires in the studied peatlands, sim-
ilarly to the findings of Benscoter et al (2005b).

Rather stable peat accumulation regardless of the
reoccurring fires suggests that in the long-term, low-
intensity fires do not strongly affect the net peat accu-
mulation. Fire events also release nutrients and it
is possible that the re-establishing vegetation after a
fire event boosts peat accumulation and hence main-
tains the carbon storage capacity (Mathijssen et al
2016, Marcisz et al 2019). Turunen et al (2002) repor-
ted similar results from boreal peatlands in Western
Siberia, where they did not record any significant net
losses in peat accumulation and carbon storage due
to fires. However, human-induced climate change can
have multiple effects on these ecosystems, threaten-
ing their role as carbon sinks (Loisel et al 2021).
Increasing fire frequency together with a warming cli-
mate can promote drying of peatlands, creating more
fire-prone conditions and resulting in more severe or
more frequently occurring fires (Kettridge et al 2019,
Walker et al 2019), which can accelerate the release of
carbon from permafrost soils in particular (Post and
Mack 2022). Furthermore, frequent fires may initi-
ate peatland regime shifts towards plant communities
that less effectively accumulate carbon, such as shrub-
grass ecosystems, thatmay also increase the flammab-
ility of boreal ecosystems (Kettridge et al 2015, Jones
et al 2022).

5. Conclusions

We demonstrate here that reoccurring fires have been
a natural part of the sporadic permafrost zone peat-
land ecosystems in Western Canada over the last
1500 years. The most intense period of fire activity
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took place from the 1300s to the 1550s, with decreas-
ing fire activity over recent centuries.

The variability of the fire records between the
sites and even between the cores from the same site
demonstrates that fires can be very localized and cer-
tain parts of large peatlands might have experienced
burning, while other portions remained untouched
by fire. This information is important in understand-
ing the recovery processes and the significance of
peatland carbon sink capacity. The unburned parts
of the peatland ecosystem may act as small refuges
and starting points for recovery and vegetation suc-
cession. The evident variation in nearby fire records,
coupled with our findings indicating comparable
regional fire occurrences during both the MWP and
the LIA, marked by distinct temperature conditions,
suggest that in addition to climate, site-specific factors
such as vegetation succession and ecohydrological
conditions may play crucial role in fire regulation in
boreal forested peatlands. Thus, to predict the future
fate of peatland dynamics under changing environ-
mental conditions, it is important to acknowledge
not only temperature, but also changes in precipita-
tion and the effect of peatland microtopography and
hydrological conditions.

The detection of a clear and consistent post-
fire increase in the abundance of Sphagnum mosses
implies the rapid recovery potential of peatland
ecosystems after low-intensity fires. The regenera-
tion pattern where pre-fire vegetation repeatedly re-
establishes suggests that fires do not necessarily have
a negative effect on long-term peat accumulation,
which may remain relatively stable in a natural fire
regime with low-severity fires. In conclusion, fores-
ted peatlands play a valuable role as carbon sinks and
storage, and it appears that low-severity fires do not
notably affect these key ecosystems if peatlands are
allowed to undergo natural succession after fire.
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