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Abstract 

Atmospheric carbon dioxide (CO2) concentrations have increased as a direct result of human 

activity and are at their highest level over the last 2 million years, with profound impacts on the 

Earth system. However, the magnitude and future dynamics of land and ocean carbon sinks are 

not well understood; therefore, the amount of anthropogenic fossil fuel emissions that remain in 

the atmosphere (the airborne fraction) is poorly constrained. This work aims to quantify the 

sources and controls of atmospheric CO2, the fate of anthropogenic CO2 over time, and the 

likelihood of a trend in the airborne fraction. We use Hector v3.0, a coupled simple climate and 

carbon cycle model with the novel ability to explicitly track carbon as it flows through the Earth 

system. We use key model parameters in a Monte Carlo analysis of 15,000 model runs from 

1750 to 2300. Results are filtered for physical realism against historical observations and CMIP6 

projection data, and we calculate the relative importance of parameters controlling how much 

anthropogenic carbon ends up in the atmosphere. Modeled airborne fraction was roughly 52%, 

consistent with observational studies. The overwhelming majority of model runs exhibited a 

mailto:leeya.pressburger@gmail.com
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negative trend in the airborne fraction from 1960-2020, implying that current-day land and ocean 

sinks are proportionally taking up more carbon than the atmosphere. However, the percentage 

of atmospheric CO2 derived from anthropogenic origins can be much higher because of Earth 

system feedbacks. We find it peaks at over 90% between 2010-2050. Moreover, when looking 

at the destination of anthropogenic fossil fuel emissions, only a quarter ends up in the 

atmosphere while more than half of emissions are taken up by the land sink on centennial 

timescales. This study evaluates the likelihood of airborne fraction trends and provides insights 

into the dynamics of anthropogenic CO2 in the Earth system.
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Introduction 

We are witnessing unprecedented changes to the climate. In 2019, atmospheric CO2 levels 

were the highest they have been in the last two million years (Masson-Delmotte et al., 2021). 

Global surface temperature has increased faster between 1970-2020 than in any other 50 year 

period in the last two thousand years (Masson-Delmotte et al., 2021). Both anthropogenic 

emissions and atmospheric CO2 concentrations are rising, with the latter increasing to 

approximately 412 ppm in 2020 (Friedlingstein et al. 2020). These changes are affecting all 

major components of the climate system (Masson-Delmotte et al., 2021).  

 

As the Earth warms, the proportion of CO2 taken up by natural ocean and land sinks is expected 

to decrease, resulting in more anthropogenic emissions in the atmosphere  (Masson-Delmotte 

et al., 2021). The airborne fraction is an estimate of the amount of anthropogenic CO2 emissions 

that accumulate in the atmosphere, as opposed to emissions that are transferred to the land 

and oceans. The airborne fraction has long been a focus of study as it is a useful summary 

statistic reflecting human influence on CO2 concentrations. Several studies suggest that around 

45% of anthropogenic CO2 remains in the atmosphere and that this figure has remained 

relatively constant over the last several decades, noting that there is significant uncertainty in 

establishing a trend (Ballantyne et al., 2012; Poulter et al., 2011; Jones et al., 2013; van Marle 

et al., 2022). However, we may soon approach a point where natural sinks are not able to take 

up as much CO2 as is emitted into the Earth system. This would result in additional CO2 in the 

atmosphere and therefore, heightened climate impacts (Jones et al., 2013; van Marle et al., 

2022).  

 

Likely future changes in the airborne fraction, and behavior of the ocean and land sinks that 

drive it, can be analyzed with carbon and climate models. Such models are a primary aid for 

studying the Earth system and vary in computational power and resolution. More complex 

https://paperpile.com/c/6BOfgy/izMK
https://paperpile.com/c/6BOfgy/izMK
https://paperpile.com/c/6BOfgy/LJPI
https://paperpile.com/c/6BOfgy/LJPI
https://paperpile.com/c/6BOfgy/izMK
https://paperpile.com/c/6BOfgy/izMK
https://paperpile.com/c/6BOfgy/izMK
https://paperpile.com/c/6BOfgy/0Ag5+W8Ll+e01v+miE6
https://paperpile.com/c/6BOfgy/0Ag5+W8Ll+e01v+miE6
https://paperpile.com/c/6BOfgy/e01v+miE6
https://paperpile.com/c/6BOfgy/e01v+miE6
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coupled Earth System Models (ESMs) are a powerful tool in Earth system science, although 

they are computationally expensive (Nicholls et al., 2021). In contrast, reduced complexity or 

simple climate models are computationally efficient with a lower spatial and temporal resolution 

than ESMs, meaning they can be run quickly and used for large ensembles of multiple 

scenarios (Nicholls et al., 2020). Many simple climate models, including the model used in this 

study, exist that operate in good agreement with results from Coupled Model Intercomparison 

Project phase 6 (CMIP6) ESM runs (e.g. MAGICC, Meinshausen et al., 2011; RCMIP, Nicholls 

et al., 2021; OSCAR, Quilcaille et al., 2022; FAIR, Smith et al., 2018; Hector, Hartin et al., 

2015).  

 

This analysis uses the open-source, object-oriented, simple global carbon cycle climate model 

Hector (Hartin et al., 2015). We use Hector v3.0’s novel carbon tracking feature to understand 

the sources of current and future atmospheric CO2, the destination of anthropogenic CO2 on 

centennial timescales, what factors control how much CO2 ends up in the atmosphere, and the 

uncertainties on the trend and robustness of airborne fraction as a metric for studying carbon 

cycle feedbacks. 

Methods 

Model description 

Hector is an open-source, object-oriented, simple global carbon cycle climate model, one of 

many reduced complexity climate models (Nicholls et al. 2021). As a simple climate model, 

Hector runs very quickly while still representing the most critical global Earth system processes. 

Hector can accurately reproduce historical trends and model future projections of atmospheric 

CO2, radiative forcing, and global temperature change under the RCPs and SSPs in addition to 

other user-defined scenarios. Hector v2.0 improved the model’s vertical ocean structure, heat 

uptake, and surface temperature response to radiative forcing and incorporated a semi-

https://paperpile.com/c/6BOfgy/FZTV
https://paperpile.com/c/6BOfgy/gMXX
https://paperpile.com/c/6BOfgy/FZTV+ehc0+BhB3+CV4b
https://paperpile.com/c/6BOfgy/FZTV+ehc0+BhB3+CV4b
https://paperpile.com/c/6BOfgy/FZTV+ehc0+BhB3+CV4b
https://paperpile.com/c/6BOfgy/FZTV+ehc0+BhB3+CV4b
https://paperpile.com/c/6BOfgy/FZTV+ehc0+BhB3+CV4b
https://paperpile.com/c/HNRPeQ/5BXP
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empirical model based on global temperature to calculate global sea level change (Vega-

Westhoff et al., 2019). For a more comprehensive model overview, please reference the 

supplementary material S1. 

Hector v3.0 incorporates several scientific advances and introduces new features to the model, 

including a permafrost implementation, user-defined land-ocean warming contrast, and a carbon 

tracking feature. Hector v3.0’s default parameter set is calibrated against the observational 

record: the model is run by an optimizer that varies key input parameters and attempts to 

minimize the error between the model and historical CO2 and temperature observations; this is 

described in Dorheim et al. (in prep). Calibration procedures vary widely for simple climate 

models, but such an approach is common (Tsutsui 2020; Meinshausen et al. 2011). 

Carbon tracking 

This analysis leverages the carbon tracking capability introduced in Hector v3.0, which allows 

the user to trace the flows of carbon as the model runs without affecting model behavior. 

Tracking only considers atmospheric carbon in the form of CO2, not other greenhouse gases. At 

a user-defined “start-tracking” date, the model marks all carbon in each of its pools as self-

originating, meaning at that point, for example, the soil pool is deemed to be composed of 100% 

soil-origin carbon. As the model runs and carbon is exchanged between the various pools, the 

origin of all carbon is retained. At the end of a run, one can extract detailed information about 

the composition of each pool at each time point, including what fraction of the pool is sourced 

from which other pools. Hector traces carbon through eight atmospheric, terrestrial, and oceanic 

pools; a ninth pool, “earth_c”, represents CO2 from fossil sources injected into the carbon cycle 

as anthropogenic emissions. In this analysis, “anthropogenic emissions” refers only to fossil fuel 

and industrial emissions and does not include land use change.  

 

https://paperpile.com/c/6BOfgy/vAyU
https://paperpile.com/c/6BOfgy/vAyU
https://paperpile.com/c/HNRPeQ/MySk+5H4K
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Parametric uncertainty 

We create random parameter draws from Hector default parameters and a priori uncertainties 

from literature and perform a 15,000 run Monte Carlo simulation, a procedure used in other 

simple climate model experiments (Smith et al., 2018; Quilcaille et al., 2022). We explore model 

results in the Tier 1 joint SSP-RCP scenarios outlined in O’Neill et al., 2016; we broadly refer to 

these as “scenarios” or “SSPs” hereafter. We consider a run to be one Hector model run from 

1750 - 2300 with a unique combination of parameter values. All runs are emission-driven, i.e. in 

which the model must compute the atmospheric concentration of greenhouse gas from 

anthropogenic emissions accounting for Earth system feedbacks, rather than operate from 

prescribed concentrations (Meinshausen et al. 2020); it thus provides a more stringent test for 

the model. Hector runs with an annual timestep and for the setup used here, there is a single 

global biome with no further spatial resolution. Note that carbon tracking was turned on in 1750 

for each run. The parameters and their assumed distributions are given in Table 1.  

 

Table 1. Hector model parameters included in the Monte Carlo uncertainty analysis, where the 

distribution represents the mean value ± the standard deviation. These are standard parameters 

for simple global climate models (Meinshausen et al., 2011). For each model run (per-scenario 

N = 3,750), a random value for each parameter was drawn from its corresponding distribution. 

Parameter Description Units Distribution Source of 

uncertainty 

AERO_SCALE Aerosol forcing scaling 

factor 

unitless 1.0 ± 0.23 

Normal 

Smith et al. 

(2020) 

Parameter Description Units Distribution Source of 

uncertainty 

β CO2 fertilization factor, unitless 0.55 ± 0.10 Jones et al. 

https://paperpile.com/c/6BOfgy/CV4b+BhB3
https://paperpile.com/c/6BOfgy/oXMf
https://paperpile.com/c/HNRPeQ/GbWo
https://paperpile.com/c/6BOfgy/A34v
https://paperpile.com/c/6BOfgy/iTLp/?noauthor=1
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the degree to which 

plant productivity 

increases under 

elevated CO2 as 

photosynthesis 

becomes more efficient 

and less water-limited 

Normal (2013) 

ECS Equilibrium climate 

sensitivity 

°C 3.0 ± 0.65 

Lognormal 

Sherwood et al. 

(2020) 

LUC_SCALE Land use change 

emissions scaling factor 

unitless 1.3 ± 0.2 

Lognormal 

Friedlingstein et 

al. (2020) 

κeff Ocean vertical 

diffusivity 

cm2 s-1 1.18 ± 0.23 

Normal 

Vega-Westhoff 

et al. (2019) 

NPP0 Pre-industrial net 

primary productivity 

Pg C yr-1 56.2 ± 14.3 

Normal 

Ito et al. (2011) 

Q10 Temperature sensitivity 

of heterotrophic 

respiration 

unitless 2.16 ± 1.0 

Lognormal 

Davidson and 

Janssens (2006) 

TT Thermohaline 

overturning 

m3 s-1 7.2e+07 ± 

7.2e+06 

Normal 

Hartin et al. 

(2015) 

TU High-latitude 

overturning 

m3 s-1 4.9e+07 ± 

4.9e+06 

Normal 

Hartin et al. 

(2015) 

Parameter Description Units Distribution Source of 

uncertainty 

TWI Warm-intermediate m3 s-1 1.25e+07 ± Hartin et al. 

https://paperpile.com/c/6BOfgy/at0s/?noauthor=1
https://paperpile.com/c/6BOfgy/2Ppv/?noauthor=1
https://paperpile.com/c/6BOfgy/UhL31/?noauthor=1
https://paperpile.com/c/6BOfgy/ehc0/?noauthor=1
https://paperpile.com/c/6BOfgy/ehc0/?noauthor=1
https://paperpile.com/c/6BOfgy/ehc0/?noauthor=1
https://paperpile.com/c/6BOfgy/6C1k/?noauthor=1
https://paperpile.com/c/6BOfgy/hv5I/?noauthor=1
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exchange 1.25e+06 

Normal 

(2015) 

TID Intermediate-deep 

exchange 

m3 s-1 2e+08 ± 2e+07 

Normal 

Hartin et al. 

(2015) 

 

We introduce a land use change (LUC) emissions scaling parameter to account for large 

uncertainties in LUC emissions. Friedlingstein et al. (2020) found that cumulative CO2 emissions 

from LUC for 1850-2020 totaled 200 ± 65 GtC, although when looking at a spread of models, 

values ranged from 140 GtC to 270 GtC (Friedlingstein et al., 2020). In Hector, cumulative LUC 

emissions over the same period total ~168 GtC for our central setup. To scale this value to align 

with the range above, we chose a lognormal distribution (to exclude any negative or near-zero 

values) of 1.3 ± 0.2. LUC emissions in Hector were then multiplied by the randomly-drawn 

scaling parameter value for each Hector run. 

 

In the real world, some of the processes described by the parameters in Table 1 are likely to 

covary (Forest et al., 2002; Sansó and Forest, 2009), reflecting coupling or feedbacks that exist 

but are not well understood. Rather than attempt to define a priori the shape and strength of 

these covariances (e.g. Leach et al. 2021), we elected to vary each parameter independently of 

the others, i.e. without any predefined correlations, and then used a stringent run-filtering step to 

ensure that the model runs used in the analysis were physically realistic, following e.g. Goodwin 

(2016). That is, the effect of any parameter correlations would emerge as the posterior 

ensemble was generated. 

Filtering model runs for physical realism 

Particular combinations of parameters can produce physically unrealistic runs, i.e., outputs that 

diverge greatly from either the observational record or the broad envelope of CMIP6 future runs. 

https://paperpile.com/c/6BOfgy/UhL31/?noauthor=1
https://paperpile.com/c/6BOfgy/UhL31
https://paperpile.com/c/6BOfgy/DVfJ+r3Iv
https://paperpile.com/c/HNRPeQ/87oY/?prefix=e.g.
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This problem is common in random ensembles of simple model runs (Nicholls et al. 2021), and 

procedures for extracting the posterior ensemble from the prior ensemble vary considerably 

(Goodwin 2016; Leach et al. 2021). Following studies such as Dvorak et al. (2022), we 

subjected model runs to a four-part filter by comparing them against CO2 concentrations, 

temperature, land-atmosphere carbon exchange, and ocean-atmosphere carbon exchange: 

● We use historical data to constrain CO2 concentration. Minimum and maximum 

“acceptable” bounds were set for the historical period (1959-2014) by adding and 

subtracting the standard deviation of CMIP6 runs to the NOAA observational historical 

mean (Tans and Keeling 2023). We do not use future CO2 as a filter primarily due to 

limited emissions-driven projection data. 

● For the global temperature anomaly, we use the mean, minimum, and maximum values 

of the CMIP6 runs from 1850-2014 (historical) and 2015-2100 (future). We use the 

CMIP6 mean in lieu of global temperature observations to constrain historical 

temperature because the mean reproduces historical temperature very well (Arias et al., 

2021; Papalexiou et al. 2020; Fan et al. 2020).  

● Two additional filters were the land-atmosphere and land-ocean carbon exchange 

values from the Global Carbon Project (Friedlingstein et al. 2022). These are model 

results, not observations; use LUC assumptions that differ significantly from those of 

Hector, which are consistent with the RCMIP project (Nicholls et al. 2021); and, 

importantly, are driven by observed climate. The ensembles thus have a very small 

range that, when coupled with the year-to-year variabilities of these carbon sinks, meant 

that essentially no Hector run could “pass” these particular filters. For this reason, we 

multiplied the GCP-reported standard deviations by 3.0, an arbitrary value but one that 

produced a model spread comparable to the others described above while still providing 

a stringent filter for physical realism. 

https://paperpile.com/c/HNRPeQ/5BXP
https://paperpile.com/c/HNRPeQ/YwME+87oY/?noauthor=0,0
https://paperpile.com/c/6BOfgy/LEou/?noauthor=1
https://paperpile.com/c/6BOfgy/uGMl
doi:10.1017/9781009157896.002
doi:10.1017/9781009157896.002
https://doi.org/10.1029/2020EF001667
https://iopscience.iop.org/article/10.1088/1748-9326/abb051
https://paperpile.com/c/HNRPeQ/1QgQ
https://paperpile.com/c/HNRPeQ/5BXP
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In all filter steps, if more than 50% of values from a particular Hector run fell outside the 

minimum and maximum bounds, the run was considered unrealistic and removed from the 

dataset. Each run needed to pass all four filters to be included in our results. Such an 

‘accept/reject’ step is commonly used, although more sophisticated approaches involving 

weighting of model runs also exist (e.g. Goodwin and Cael 2021). The combination of these 

tests results in 70% of total runs being excluded (10,538/15,000). Table 2 details the number 

and percent of runs that failed by each filter, and Figure 1 illustrates our approach. 

 

Table 2. A summary of the number and percent of runs that fail by each filter. 

Filter Number of runs failing Percent of runs failing 

Historical CO2 5,987 40.1% 

Historical temperature 178 1.2% 

Future temperature 504 3.4% 

Land sink 10,326 69.2% 

Ocean sink 4,555 30.5% 

 

https://paperpile.com/c/HNRPeQ/zGVs/?prefix=e.g.
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Figure 1. A summary of the model filtering process. Model output runs were compared to target 

ranges across the five parameters and either “passed” or “failed” depending on the percentage 

of the run that fell within the bounds over time. The black dots represent the CMIP6 projections 

or GCP observations. Blue lines represent passing runs while brown lines represent failing runs; 

the legend indicates what fraction of the run falls out of bounds.  

CMIP6 data 

The CMIP6 data used in this analysis included 20 models for the temperature data and nine 

models for the CO2 concentration data from the ScenarioMIP project.1 A different number of 

                                                 
1
 CMIP6 temperature models include: ACCESS-CM2, AWI-CM-1-1-MR, BCC-CSM2-MR, CAMS-CSM1-

0, CanESM5, CAS-ESM2-0, CESM2-WACCM, CESM2, CMCC-CM2-SR5, CMCC-ESM2, FGOALS-g3, 
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models were used between the two metrics due to how many models were found with 

consistent output. All data used was derived from emissions-driven runs. The data was 

downloaded and processed using Pangeo, a software ecosystem designed to enable Big Data 

geoscience research (Abernathey et al. 2017). For the full processing workflow, please 

reference this repository: https://github.com/JGCRI/hector_cmip6data. 

Statistical analysis 

We use the R package relaimpo (v2.2.6; Groemping, 2006) to calculate variance decomposition 

and analyze the levels of control of the individual parameters over the destination of 

anthropogenic emissions. We fit the “destination fraction” of emissions to a linear model and 

apply a function that extracts the relative importance. This metric refers to the R2 contribution of 

each regressor, averaged over the different potential combinations of regressor order to 

eliminate dependence on regressor order. The contributions are normalized to sum to 1, 

meaning the influence of different parameters can be directly compared (Groemping, 2006).  

Airborne fraction calculation 

To determine the airborne fraction, we follow convention and compute the change in the amount 

of atmospheric CO2 divided by the sum of emissions over the same period (van Marle et al., 

2022; Ballantyne et al., 2012; Knorr, 2009). This work only uses the sum of anthropogenic 

emissions and does not account for LUC emissions, as the former represents truly new carbon 

being injected into the global carbon cycle (Ballantyne et al., 2012). Separately, because 

airborne fraction is commonly used as an estimate for the fraction of anthropogenic emissions 

remaining in the atmosphere (van Marle et al., 2022; Ballantyne et al., 2012; Knorr, 2009; 

                                                                                                                                                          
GISS-E2-1-G, IITM-ESM, MIROC-ES2L, MIROC6, MPI-ESM1-2-HR, MPI-ESM1-2-LR, MRI-ESM2-0, 
TaiESM1, and UKESM1-0-LL.  
 
CMIP6 CO2 models include: BCC-CSM2-MR, BCC-ESM1, CESM2-FV2, CESM2-WACCM-FV2, CESM2-
WACCM, CESM2, CNRM-ESM2-1, GFDL-ESM4, and MRI-ESM2-0. 

https://paperpile.com/c/6BOfgy/6fFp
https://github.com/JGCRI/hector_cmip6data
https://paperpile.com/c/6BOfgy/LUszL/?prefix=v2.2.6%3B
https://paperpile.com/c/6BOfgy/LUszL
https://paperpile.com/c/6BOfgy/miE6+0Ag5+QUHb
https://paperpile.com/c/6BOfgy/miE6+0Ag5+QUHb
https://paperpile.com/c/6BOfgy/0Ag5
https://paperpile.com/c/6BOfgy/miE6+0Ag5+QUHb+W8Ll+uMax
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Poulter et al., 2011; Keenan et al., 2016), we use carbon tracking to compute this 

approximation. Because the airborne fraction equation does not account for anthropogenic CO2 

that cycles through terrestrial or oceanic reservoirs before returning to the atmosphere, it is not 

a perfect estimate of this metric. We use tracking data to trace carbon emitted from the human 

emissions pool and calculate the fraction that resides in the land, ocean, and atmosphere pool. 

In contrast to airborne fraction, this provides an unambiguous tracing of anthropogenic carbon 

movement in the Earth system. Over short timescales, this method approximates airborne 

fraction, and over longer timescales, it precisely resolves the routing and destinations of 

anthropogenic carbon. 

 

This analysis was performed in R 4.1.0 (R Core Team, 2021) using Hector v3.0 (Dorheim et al., 

in prep, DOI 10.5281/zenodo.7617326). The repository for Hector can be found here: 

https://github.com/JGCRI/hector. The data and code supporting this study’s findings are openly 

available at the following URL: https://github.com/JGCRI/trackingC and permanently archived at 

[DOI upon acceptance].  

 

Results 

Sources of atmospheric CO2 

Hector’s carbon tracking feature allows the user to trace carbon as it flows through the model’s 

carbon cycle. Figure 2 highlights this capability and shows the composition of the atmosphere 

by source pool over time. For clarity, we only show SSP2-45 as a “middle of the road” scenario, 

although patterns are broadly consistent across scenarios. The atmosphere’s “anthropogenic 

emissions” pool is the only one that increases in the long term, meaning future atmospheric 

carbon is increasingly anthropogenic in origin. We find this trend consistent across scenarios 

(Figure 3). In a low emissions scenario, anthropogenic emissions may compose 38% of the 

https://paperpile.com/c/6BOfgy/miE6+0Ag5+QUHb+W8Ll+uMax
https://paperpile.com/c/6BOfgy/Qaeir
https://paperpile.com/c/6BOfgy/zLRm
https://paperpile.com/c/6BOfgy/zLRm
https://paperpile.com/c/6BOfgy/zLRm
https://github.com/JGCRI/hector
https://github.com/JGCRI/trackingC
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atmosphere, but in a high emissions case, the atmosphere pool could contain over 93% 

anthropogenic carbon by 2300, as CO2 from emissions is repeatedly cycled through the Earth 

system and back to the atmosphere. 

 

Figure 2. Fraction of CO2 in the atmosphere by source pool in SSP2-45. The lines show the 

median; darker shaded areas show ±1 s.d. of median and lighter areas show the minimum and 

maximum of the ensemble. For each run, the values of the different source pools sum to one at 

any point in time. We show data beginning in 1800 instead of 1750 due to an artifact that 

appears as the model calibrates immediately after tracking is turned on. 
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Figure 3. Fraction of atmospheric CO2 from anthropogenic emissions over time across 

scenarios. The line shows the median and the shaded areas show ±1 s.d. of the median. 

Destination of anthropogenic emissions 

In addition to using carbon tracking to analyze the composition of one individual pool, we can 

track the destination of carbon from a particular pool. By tracking the destination of human 

emissions (Figure 4), we find that the land sink consistently takes up most of this carbon, with 

the atmosphere and ocean taking up roughly comparable amounts (62%, 21%, and 17% 

respectively for SSP2-45 in 2300; Table 4). In the long term, the ocean pool begins to increase 

as a sink, with a delayed response as carbon cycles more slowly with the ocean.  
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Figure 4. Destination pools of anthropogenic emissions averaged over all runs for each of the 

four scenarios. 

 

We then analyze which of Hector’s parameters has the greatest influence in controlling how 

much anthropogenic carbon ends up in the atmosphere over time (Figure 5). Pre-industrial net 

primary productivity (NPP0) dominates until about 2100. Q10, the sensitivity of soil respiration to 

temperature, exhibits a larger relative importance across scenarios after about 2100. The CO2 

fertilization factor (β), equilibrium climate sensitivity (ECS), and LUC emissions also have a 

nontrivial influence. The remaining parameters do not have an appreciable influence on these 

timescales. 
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Figure 5. Relative importance of model parameters (cf. Table 1) over time in controlling what 

fraction of anthropogenic emissions are in the atmosphere, by scenario. The importance metric 

is scaled 0-1 (Groemping, 2006); for example, pre-industrial NPP is responsible for about 75% 

of the variability in 2000. 

Airborne fraction and anthropogenic CO2  

Airborne fraction is defined as the change in atmospheric carbon divided by the sum of 

emissions in the same period (Ballantyne et al., 2012). However, airborne fraction is commonly 

referred to as the fraction of emissions that remain in the atmosphere, as opposed to the 

land/ocean sinks. We use carbon tracking to compute this. Figure 6 displays the atmospheric 

anthropogenic CO2 across scenarios, calculated conventionally and by using the carbon 

tracking outputs.  

http://paperpile.com/b/6BOfgy/LUszL
https://paperpile.com/c/6BOfgy/0Ag5+W8Ll+e01v+miE6
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Figure 6. Atmospheric anthropogenic CO2 over time, by scenario. The blue line and band show 

the amount of anthropogenic emissions remaining in the atmosphere from the model’s carbon-

tracking mechanism, whereas the brown line and band show the actual airborne fraction 

computed following Ballantyne et al., 2012. 

 

We find that the definition of airborne fraction does not align with the colloquial expression (“the 

fraction of emissions remaining in the atmosphere”), as a fraction cannot be larger than one and 

the results diverge if there are no emissions in a timestep. The airborne fraction calculation 

assumes monotonically increasing emissions, which is not a given. We see this variation most 

dramatically in SSP1-26 and SSP2-45.  

 

Following van Marle et al. (2022), we compute the airborne fraction decadal trend between 1960 

and 2020 across all runs. We determine the mean airborne fraction trend to be -0.01 ± 0.01 

https://paperpile.com/c/6BOfgy/0Ag5+W8Ll+e01v+miE6
https://paperpile.com/c/6BOfgy/miE6/?noauthor=1
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decade-1, and Hector overall overwhelmingly returns a negative airborne fraction trend (Figure 

7); 89% of the runs return a negative value.  

 

 

Figure 7. The distribution of airborne fraction decadal trend values (1960-2020) across all runs 

and scenarios. We find a mean trend of -0.01 ± 0.01. 

Discussion 

Sources of atmospheric CO2  

We find that anthropogenic CO2 will comprise approximately 39% to 88% of the atmosphere in 

2100, depending on the SSP. This variation is due to the differences within the scenarios 

themselves, as there are higher emissions from SSP1-SSP5, which result in a higher 

anthropogenic fraction. Table 3 summarizes the mean percentages of atmospheric CO2 by 
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scenario. Additionally, across scenarios, the only pool that increases as a source is the 

anthropogenic emissions pool. By 2100, anthropogenic emissions are the majority source of 

atmospheric CO2 for all scenarios except SSP1-26. These model results are generally 

consistent with isotopic analyses of the atmosphere (Ghosh and Brand, 2003; Graven, 2015). 

 

Table 3. Mean percent of atmospheric CO2 sourced from anthropogenic emissions by scenario. 

Note that while 2015 is a historical year, the slight variation in output is due to the parametric 

variability across scenarios stemming from the initial random draws. 

Year SSP1-26 SSP2-45 SSP3-70 SSP5-85 

2015 40.4% 40.5% 40.4% 40.2% 

2050 45.9% 59.0% 64.4% 68.1% 

2100 38.7% 60.0% 80.6% 87.6% 

2300 38.3% 59.7% 88.1% 92.7% 

 

Destination of anthropogenic emissions 

The land sink takes up most of the anthropogenic carbon across scenarios while the ocean 

increases as a sink in the long term. For an overview of CO2 destination by sink and scenario in 

2300, see Table 4. We find that 38-93% of the atmosphere is sourced from anthropogenic 

emissions in 2300. However, only 19-36% of anthropogenic emissions have the atmosphere as 

a destination in 2300. In a model intercomparison study, Archer et al. (2009) found that 20-35% 

of contemporary anthropogenic CO2 ultimately remains in the atmosphere after equilibrium with 

the ocean. Our 2300 values align with the lower end of that range in higher emissions 

scenarios, although with the caveat that Hector has not yet reached equilibrium in 2300 and that 

the ocean may proportionally take up more CO2 with time. We find that the land sink takes up 

42-68% of anthropogenic CO2 in 2300. With Hector’s carbon tracking feature, we can 

https://paperpile.com/c/6BOfgy/EFU1+JSj1
https://paperpile.com/c/6BOfgy/I3Mv/?noauthor=1
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distinguish between sources that aren’t isotopically differentiable, such as the soil and 

vegetation pools. This allows for a more detailed analysis of terrestrial carbon cycle dynamics 

and highlights the importance of future work in this area. 

 

Table 4. Destination of anthropogenic CO2 in 2300 by sink and scenarios. Percentages across 

scenarios may not sum to 100% exactly due to rounding. 

 Atmosphere Land Ocean 

SSP1-26 18.5% 68.3% 13.2% 

SSP2-45 21.3% 61.6% 17.1% 

SSP3-70 34.5% 42.2% 23.2% 

SSP5-85 35.9% 42.0% 22.1% 

 

The pre-industrial level of terrestrial net primary production (NPP0) was the dominant control on 

how much CO2 ended up in the atmosphere until about 2100, with the temperature sensitivity of 

heterotrophic respiration (Q10) dominating in the long term. In general, CO2 fertilization (β), 

equilibrium climate sensitivity (ECS), and LUC emissions were of limited importance. Other 

parameters had a much smaller influence.  

 

The initial large influence of NPP0 can be partially attributed to its uncertain distribution (Table 1; 

Ito, 2011) with a large standard deviation at nearly 25% of the mean. This allowed for a wide 

range of values in the Monte Carlo simulation, thereby amplifying its influence. That is not to 

diminish the importance of NPP0, as it is still one of the largest carbon fluxes in the Earth 

system, albeit with a wide uncertainty range (Friedlingstein et al., 2020). 

The limited effects of β are due to the empirical form of the β formulation used in Hector that, by 

design, saturates as CO2 increases (Hartin et al., 2015). Conversely, the effect of Q10 increases 

exponentially with temperature; as the planet warms, there is a large increase in the rate of 

https://paperpile.com/c/6BOfgy/6C1k
https://paperpile.com/c/6BOfgy/UhL31
https://paperpile.com/c/6BOfgy/ehc0
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heterotrophic respiration, contributing to a positive climate feedback (Davidson and Janssens, 

2006). Furthermore, a slowdown in the CO2 fertilization effect in recent decades has been 

suggested (Wang et al. 2020; Winkler et al. 2021), which is consistent with the β effect 

attenuation over time as represented in Hector for the late 21st century (Figure 5).  

 

ECS, a measure of the amount of warming after a doubling of CO2 emissions, begins to 

increase in relative importance past 2100 as emissions increase. LUC emissions remain 

relatively constant in their importance, although for high emissions scenarios where the 

importance of other parameters increases more dramatically, LUC emissions become 

proportionately less influential.  

Airborne fraction 

The mean airborne fraction trend from 1960-2020 is -0.01 decade-1, and the spread of results 

indicates that a trend for contemporary airborne fraction is highly likely to be negative. This is 

consistent with Keenan et al. (2016), who infer a similarly declining trend for the post-2000 

period. Vakilfard et al. (2022) found a declining late-21st-century airborne fraction trend during 

the negative or zero emission phase of the scenario. Additionally, van Marle et al. (2022) 

reported that airborne fraction has decreased slightly since 1959 with a trend of −0.014 ± 0.010 

per decade from 1960-2020. However, there is still significant uncertainty around airborne 

fraction trends. Neither Knorr (2009) nor Friedlingstein et al. (2020) found any significant trend 

in the contemporary airborne fraction over the same period, with the latter calculating a 1960-

2020 mean airborne fraction of ~45% with large interannual variability. We compute a mean of 

52% across all runs and scenarios over the same period; the divergence could be due to 

Friedlingstein et al. (2020) including LUC emissions in the calculation of airborne fraction 

whereas we do not. 

https://paperpile.com/c/6BOfgy/hv5I
https://paperpile.com/c/6BOfgy/hv5I
https://paperpile.com/c/6BOfgy/AFUa+BQs8
https://paperpile.com/c/6BOfgy/AFUa+BQs8
https://paperpile.com/c/6BOfgy/AFUa+BQs8
https://paperpile.com/c/6BOfgy/uMax/?noauthor=1
https://paperpile.com/c/6BOfgy/tPkV/?noauthor=1
https://paperpile.com/c/6BOfgy/miE6/?noauthor=1
https://paperpile.com/c/6BOfgy/QUHb/?noauthor=1
https://paperpile.com/c/6BOfgy/LJPI/?noauthor=1
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Figure 6 illustrates the limitations of the definition of airborne fraction, which breaks down as 

emissions go to zero. In our approximation metric, we see an average value of around 0.5 with 

some variation across scenarios, and a spike in contemporary years (~1950-2050). This is due 

to a sudden increase in the rate of emissions in a short time span, which would not allow for 

CO2 to be taken up by the land or ocean. With time, the CO2 can enter the rest of the carbon 

cycle, and the approximation returns to lower values, more consistent with the range of values 

usually quoted for contemporary airborne fraction (e.g., Knorr, 2009). 

Limitations and caveats 

One factor in computing airborne fraction is whether or not to include LUC emissions in the 

calculation. Including LUC emissions allows for a more comprehensive representation of carbon 

and anthropogenic influences in the Earth system, while excluding LUC allows for a sharper 

focus on fossil fuel and industrial emissions. For the latter reason, we do not account for LUC 

emissions in the airborne fraction. However, LUC emissions have historically contributed 

substantially to changes in atmospheric CO2 (Reick et al., 2010), and Ballantyne et al. (2012) 

found that trends in airborne fraction are highly sensitive to the inclusion of LUC emissions. 

For this reason, our corresponding land-borne and ocean-borne fractions over the historical 

period differ from those of Friedlingstein et al. We calculate these fractions to be 15% and 33%, 

respectively, while Friedlingstein et al. (2020) reports values of 30% and 25% when including 

LUC emissions. With differing computation methods, this is not a direct comparison, and we 

expect some divergence; it is beyond the scope of the manuscript to explore this further, 

although this may be an interesting area of future work.  

 

The above leads to further questions about the definition of airborne fraction, as there is a 

distinction between the calculation of airborne fraction and how the term is used as “the fraction 

of emissions that remains in the atmosphere.” The debate over the inclusion or omission of LUC 

https://paperpile.com/c/6BOfgy/QUHb/?prefix=e.g.%2C
https://paperpile.com/c/6BOfgy/FUeO
https://paperpile.com/c/6BOfgy/0Ag5/?noauthor=1
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emissions further complicates this, as computed airborne fraction values (or ocean- and land-

borne fractions) may differ between studies depending on the system boundary used. 

Furthermore, non-trivial land-atmosphere feedbacks that are not accounted for in the airborne 

fraction equation further contribute to the non-alignment between the definition and colloquial 

use of airborne fraction. As such, there needs to be greater standardization and clarity as to 

how each author defines airborne fraction.  

 

An additional limitation concerns Hector, as like all models, it has areas of strength and 

weakness. Hector is a simple global model running on an annual timestep, meaning that we are 

not able to examine potentially illuminating seasonal dynamics relevant to airborne fraction and 

the carbon cycle (e.g. Bastos et al. 2019). Hector’s ocean component solves for the solubility 

pump without accounting for the presence of biological carbon fluxes or the response of ocean 

circulation and physical ventilation to climate change. This requires higher values for our ocean 

parameters that relate to volume transport and ventilation than those used in the CMIP6 

models, compounded by the need to compensate for the lack of carbon transferred to the ocean 

interior by the biological carbon pump.  
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