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Abstract
The ongoing climate change can modulate the behavior of global vegetation and influence the
terrestrial biosphere carbon sink. Past observation-based studies have mainly focused on the linear
trend or interannual variability of the vegetation greenness, but could not explicitly deal with the
effect of natural decadal variability due to the short length of observations. Here we put the
variabilities revealed by remote sensing-based global leaf area index (LAI) from 1982 to 2015 into a
long-term perspective with the help of ensemble Earth system model simulations of the historical
period 1850–2014, with a focus on the low-frequency variability in the global LAI during the
growing season. Robust decadal variability in the observed and modelled LAI was revealed across
global terrestrial ecosystems, and it became stronger toward higher latitudes, accounting for over
50% of the total variability north of 40◦N. The linkage of LAI decadal variability to major natural
decadal climate modes, such as the El Niño–Southern Oscillation decadal variability (ENSO-d),
the Pacific decadal oscillation (PDO), and the Atlantic multidecadal oscillation (AMO), was
analyzed. ENSO-d affects LAI by altering precipitation over large parts of tropical land. The PDO
exerts opposite impacts on LAI in the tropics and extra-tropics due to the compensation between
the effects of temperature and growing season length. The AMO effects are mainly associated with
anomalous precipitation in North America and Europe but are mixed with long-term climate
change impacts due to the coincident phase shift of the AMO which also induces North Atlantic
basin warming. Our results suggest that the natural decadal variability of LAI can be largely
explained by these decadal climate modes (on average 20% of the variance, comparable to linear
changes, and over 40% in some ecosystems) which also can be potentially important in inducing
the greening of the Earth of the past decades.

1. Introduction

The terrestrial biosphere plays an important role in
the global carbon cycle by absorbing about one-third
of the current anthropogenic carbon dioxide (CO2)
emissions (Friedlingstein et al 2022). Understand-
ing the global natural vegetation response to climate

change is essential to evaluate its ability as a car-
bon sink (Tagesson et al 2020), which is critical for
future sustainable ecosystem services and manage-
ment (Keenan and Williams 2018). Decades of satel-
lite remote sensing records make it feasible to invest-
igate how global vegetation responds to the changing
climate on a global scale.
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There has been considerable interest in monit-
oring and understanding the linear trend of global
and regional vegetation greenness using observation-
based evidence (see a review by Piao et al (2020)). For
instance, the general greening trend of the Earth from
1982 to 2009 was reported, mainly explained by CO2

fertilization effects (Zhu et al 2016). The contribu-
tion of climate change to the greening was principally
attributed to anthropogenic warming and regional
linear trends in precipitation (Piao et al 2020).

Interannual variability (IAV) of global vegeta-
tion greenness has also been a focus, which serves
as an important indicator of ecosystem vulnerabil-
ity or resilience to external disturbances, in addition
to long-term trends and averages (see a review by
Thornton et al (2014)). Earlier work (e.g. Keeling
et al 1995; Zeng et al 2005) highlighted the terrestrial
processes in driving the global carbon cycle. Braswell
et al (1997) pioneered investigating the response of
global vegetation dynamics to temperature anom-
alies on interannual timescales, and biome-specific
and response time-specific relations were carefully
considered. Follow-up studies usually include longer
records of vegetation index derived from satellite
remote sensing (e.g. Fensholt et al 2012) and more
climate variables such as precipitation (e.g. Zeng et al
2013) and vapor pressure deficit (He et al 2022); or
focus on the IAV of the global vegetation greenness
itself: it was found to be intensified during 1982–2015
(Chen et al 2019a). Other studies offer insight into the
link between IAV of ecosystems and climate modes
through extremes (Reichstein et al 2013, Liu et al
2017, Bowman et al 2020, Byrne et al 2021). Natural
IAV is mainly contributed by the El Niño–Southern
Oscillation (ENSO), themost prominent year-to-year
source of IAV that takes place in the tropical Pacific
(figure S1(a)) (Timmermann et al 2018, McPhaden
et al 2020) and impacts the global climate through
atmospheric teleconnections (Yeh et al 2018).

Climate’s natural decadal or multi-decadal vari-
ability is attracting increasing attention (see a review
by Deser et al (2010)). Most of these climate modes
arise in the Pacific and the Atlantic, notably the
ENSO decadal variability (ENSO-d) (e.g. An and
Wang 2000, Sun and Yu 2009, Park et al 2020), the
pan-Pacific mode of the Pacific decadal oscillation
(PDO) (Mantua et al 1997), and the Atlantic multi-
decadal oscillation (AMO) (Kerr 2000). The ENSO-d
results from the decadalmodulations of ENSO’s char-
acteristics, such as amplitude, frequency, skewness,
and flavor (spatial pattern). The PDO is character-
ized by anomalous cooling in the central and western
North Pacific and horseshoe-shaped warming along
the west coastline of North America in its warm phase
(figure S1(b)). The PDO phase change was suggested
to exert considerable impacts on marine ecosystems
and climate conditions (Newman et al 2016). The

AMO is characterized by slower sea surface temper-
ature (SST) oscillations in the North Atlantic (figure
S1(c)), and it was suggested to modulate temperat-
ure and rainfall over much of the Northern Hemi-
sphere, in particular in North America and Europe
during summer (Zampieri et al 2017). These decadal
climate modes oscillate at longer timescales than sea-
sonal or interannual climate variability. Given the
fundamental impacts on the global climate by these
climate modes, it is reasonable to assume that they
further lead to decadal timescale variations in global
vegetation growth, exerting lasting effects. In partic-
ular, the AMO shifted from a cold to a warm phase
in the 1990s, which continued into the 2010s (figure
S2(c); e.g. Frajka-Williams et al 2017), and its effects
can be mixed with other long-term climate change
signals. Previous attempts have been made to elu-
cidate decadal climate forcings on global-scale ter-
restrial ecosystem processes, but are limited by eco-
system modeling approaches, and the coincidence of
phase changes of these climate modes and anthro-
pogenic climate changes were not taken into account
(e.g. Ito 2011, Zhu et al 2016, Zhang et al 2018, Park
et al 2020).

In this study, using an observation-based global
leaf area index (LAI) spanning the period from 1982
to 2015, we aim to systematically examine the nat-
ural decadal variability (ENSO-d, PDO, and AMO)
in global vegetation and its linkage to the major
decadal/multidecadal climate modes that originated
in oceans. This period is characterized by widespread
vegetation greenness that has been increasing glob-
ally. The results are compared with a set of historical
(1850–2014) Earth system model (ESM) simulations
to subtract the impacts of the linear climate changes
on vegetation greenness and to estimate the robust-
ness of the natural variability and the contribution to
changes in global vegetation by themodulation of cli-
mate modes.

2. Methods

2.1. Global datasets of LAI
We used the LAI3g product with 1/12◦ spatial resolu-
tion and half-month temporal resolution from 1982
to 2015 (Zhu et al 2016). This product is derived from
the third-generation Global Inventory Modeling and
Mapping Studies normalized difference vegetation
index (NDVI3g) using an algorithm based on feed-
forward neural networks. LAI3g has been widely used
and contributes to studies of the greening/browning
trend across the globe (Zhu et al 2016, Chen et al
2019b) as well as vegetation activities related to IAV
(Piao et al 2014).

Weused integrated growing season LAI anomalies
to represent vegetation growth influenced by decadal
climate modes. The growing season LAI anomaly is
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Figure 1. (a), (b) Decadal (>7 years) and interannual (<7 years) growing season LAI anomaly variability (standard deviation)
estimated using 1982–2015 LAI3g data, as separated by a 7 year running mean filter (section 2.3). (c), (d) the contribution
(fraction) of decadal variability to total variability (interannual+ decadal), for LAI3g data and ESM simulation ensemble mean,
respectively. Growing season is defined as the 6 months with maximum LAI in the mean seasonal cycle, or 12 months if minimal
LAI is larger than 3 (considered as evergreen plants).

estimated by subtracting the mean LAI seasonal cycle
from the LAI time series for each grid cell. The grow-
ing season is defined as the 6 month maximum LAI
in the mean seasonal cycle or the 12 month max-
imum LAI if there are evergreen plants in the grid cell
(considered when the minimal climatological (1982–
2015) LAI is greater than 3).

2.2. Ensemble ESM simulations
Since observation-based LAI3g covers 34 years, which
captures relatively few phase changes of the decadal
climate modes, we used ESM simulations to repres-
ent larger sample numbers of these decadal oscilla-
tions. The model we used is a state-of-the-art ESM
EC-Earth, version 3.3 (Zhang et al 2021, Döscher et al
2022), which is part of the Coupled Model Inter-
comparison Project Phase 6. EC-Earth 3.3 comprises
model components of the atmosphere, ocean, sea-ice,
land surface, and dynamic vegetation. The vegetation
component LPJ-GUESS (Smith et al 2014) is integ-
rated into EC-Earth, and simulated vegetation para-
meters are determined by intrinsic vegetation dynam-
ics and meteorological forcings such as temperature,
precipitation, and radiation from the coupler. In the
ESM configuration (EC-Earth3-Veg), which is ideal
for simulating climate variability and its interactions
with the global vegetation, we expect that the model
can reveal the statistical robustness of such physical
relationships at decadal and longer timescales.

The model has a standard resolution of ∼0.7◦
(∼85 km) for the atmosphere, land, and vegetation
and ∼1◦ (∼100 km) for the ocean and sea ice. The
atmosphere and ocean have 91 and 75 vertical lay-
ers, respectively. The simulationwas initialized from a
pre-industrial equilibrium state and then forced with
transient boundary conditions from 1850 to 2014

(EC-Earth Consortium 2019). There is a total of eight
model ensembles with the same setup. Each ensemble
simulation can be regarded as capable of producing
decadal climate variability (figure S3; figures 1(d)
and 3(a)).

2.3. Decadal variability of LAI
We use standard deviation to quantify the LAI variab-
ility at different timescales. Changes in the standard
deviation can reflect the changes in the amplitude of
the climate mode in growing season LAI variations.
For each grid cell, the LAI variability is calculated as
the standard deviation of growing season LAI anom-
alies (1982–2015), so it is the standard deviation of
34 year values. The LAI anomalies are derived from
the original LAI monthly times series removing the
mean LAI seasonal cycle (over thewhole period), then
averaged for the growing season (to annual resolu-
tion). Then a running mean filter (7 years) is applied
to separate the interannual (shorter than 7 year) and
decadal (longer than 7 year) timescale variability.

We examined both detrended and original grow-
ing season LAI anomalies from LAI3g data because
the data period coincided with the phase change
of AMO. Thus the long-term anthropogenic global
warming effect and AMO-induced warming effect
over this period are mixed. For EC-Earth3-Vegmodel
data that covers 100 year (1915–2014 is used) cli-
mate and global vegetation evolution, we always used
detrended LAI time series and climate mode indices.

2.4. Climate variability mode indices
Three major decadal/multidecadal climate variability
modes were considered, ENSO-d, PDO, and AMO.
These climate modes are indicated by simple annual
indices averaged over monthly data. The following
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Figure 2. (a) Regression coefficients for (a) ENSO-d, (b) PDO, (c) AMO of multiple regression of LAI anomalies onto ENSO-d,
PDO, and AMO indices based on LAI3g. Note that (a) and (b) are derived from regression using detrended data, while (c) is
derived from undetrended data. All time series have been normalized (zscore) and filtered by 7 year running mean to remove
interannual variability. (d), (e) Explained variance R-squared (R2) for linear trend, ENSO-d & PDO, and AMO (more details
in section 2.5 and 2.6). R2 represents the proportion of the variance for LAI that’s explained by climate mode indices in the
multiple regression. A global comparison of highest R2 from the linear trend, ENSOd & PDO, and AMO is given in figure S9.

method was applied to SST observations (exten-
ded reconstructed sea surface temperature (ERSST)
v5 (Huang et al 2017)) and simulated SST to
retrieve these indices. For ENSO-d, a standard ENSO
index was first calculated as the leading empirical
orthogonal function (EOF) of detrended monthly
SST anomalies in the Niño-3.4 region (5 N–5 S,
170 W–120 W). Then, a runningmean filter of 7 years
was applied to the ENSO index to remove interannual
ENSO variability (generally regarded as 1.5–7 years
(Timmermann et al 2018)). The rest of the time
series is labelled as ENSO-d. This index describes the
tropical Pacific Ocean decadal oscillations between El
Niño-like and La Niña-like states at a decadal time
scale. For PDO, we used a common definition, which
is the leading EOF time series of monthly SST anom-
alies over theNorth Pacific (20N–70N, 120E–110W)
after removing the global mean SST anomaly (Deser
et al 2010). The AMOwas derived frommonthly SST
anomalies after removing the globalmean SST anom-
aly in the North Atlantic (20 N–70 N, 80 W–0 W)
(Zhang et al 2021). All climate mode indices were
averaged to an annual resolution to be consistent with
that of the growing season LAI.

2.5. Attribution of decadal climate modes (multiple
regression)
Multiple regression (equation (1) is used to attribute
decadal timescale LAI variability to ENSO-d, PDO,
and AMO (in bold in equation (1). The regression is

done for both detrended and original growing season
LAI3g LAI anomalies and climate mode indices, and
only for detrended modelled LAI anomalies and cli-
matemode indices. These variables are z-scored before
the regression

LAIano = bENSO-d×ENSO-d+ bPDO×PDO
+ bAMO×AMO+ a+ residual. (1)

2.6. Notes on data-model comparison
We used a group of ensemble simulations to isol-
ate the internal model variability from the forced cli-
mate response induced by the boundary conditions
(Kay et al 2015), such as greenhouse gas levels, aero-
sol concentration, and land-use changes. It is difficult
for the model to reproduce consistent spatial pat-
terns (climate modes themselves as well as the atmo-
spheric teleconnections) and to have a case-by-case
comparison (e.g. for positive/negative phases of cli-
mate modes in the same period of 1982–2015) due
to model internal variability. Therefore, our quant-
itative data-model comparison of the global vegeta-
tion decadal variability focused on LAI standard devi-
ation, and its relative change, rather than its absolute
value. We also discussed the decadal fraction of the
total (interannual + decadal) LAI variability, or the
overall contribution of decadal LAI variability from
climate modes (figures 1(d), 3(a) and 2(d)–(f)).

ESM simulation ensemble mean being capable of
reproducing the meridional distribution of decadal
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Figure 3. (a) the zonal mean values of the decadal variability contribution to total variability (its spatial distribution is displayed
in figures 1(c) and (d)). (b) and (c) zonal mean and meridional mean of R2 for linear trend, ENSO-d & PDO, and AMO (their
spatial distribution is displayed in figures 2(d)–(f)).

LAI variability (figure 3(a)) lends credibility to the
use of simulated climate forcing processes on the
vegetation dynamics by the decadal intrinsic climate
modes. The advantage of the ensemble historical sim-
ulations is the length (100-year output can contain
five complete 20-year oscillations), and the possib-
ility of an estimate of model internal variability for
robust statistical results using the ensemblemean and
spread.

We rely on the simulations to identify decadal
variability in simulated growing season LAI anom-
alies and to quantify the forcing effects of simulated
decadal climate modes associated with ocean pro-
cesses. The regression coefficients and R2 showed a
noticeable ensemble spread (figure not shown). Nev-
ertheless, the explained variance of multiple regres-
sion (its ensemble mean) provides an estimate of the
pure effects of decadal climate modes on vegetation
greenness in the model, since both linear trends and
IAV are removed. In principle R2 of ENSO-d, PDO
and AMO cannot be separated, either for observa-
tion/reanalysis or ESM simulations. But a direct com-
parison of the two enables the estimate of R2 of AMO.
By subtracting R2 derived from detrended observa-
tion data (LAI3g, including ENSO-d, PDO effects;
figure 2(e)) fromR2of the ESMensemblemean (ESM

LAI, including ENSO-d, PDO & AMO effects), the
contribution of AMO can be quantified (figure 2(f));
by subtracting R2 derived from undetrended obser-
vation data (LAI3g, including decadal as well as lin-
ear climate forcing effects) from R2 of ESM ensemble
mean, the contribution of linear climate change can
be quantified (figure 2(d)).

2.7. Composite analysis of climate variables based
on climate modes
We analyze the impacts of surface air temperat-
ure (National Centers for Environmental Prediction
(NCEP) reanalysis 2; Kanamitsu et al 2002) and pre-
cipitation (Global Precipitation Climatology Project
(GPCP) data; Adler et al 2018) forcing associatedwith
decadal climate modes on global vegetation growth
by composite analysis (figure 4). We composite tem-
perature and rainfall anomalies during the vegeta-
tion growing season over each land grid cell by posit-
ive and negative phases of each climate mode. These
positive and negative phases are defined by using the
80th and 20th percentiles of the undetrended (oth-
erwise the AMO phase shift is removed) ENSO-d,
PDO and AMO indices (see figure S2) to ensuremore
reprehensive phase changes of climate modes. The
relative importance of temperature and precipitation
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Figure 4. (a1)–(a6) Temperature, (b1)–(b6) precipitation composite for positive and negative ENSO-d, PDO, and AMO phases.
These positive and negative phases are defined by using the 80th and 20th percentiles of the undetrended ENSO-d, PDO and
AMO indices (see figure S2). (c1)–(c3) quantifies the relative importance of temperature and precipitation forcing effects. (c1) log
of correlation coefficient ratio of corr(temperature anomaly, ENSO-d index) and corr(precipitation anomaly, ENSO-d index), the
positive (negative) value indicates potentially stronger temperature (precipitation) forcing effects. (c2),(c3) same as (c1) but using
PDO index and AMO index.

forcing effects can be quantified by comparing how
close the climate variable follows the influences of cli-
mate modes using their correlations. To take ENSO-
d as an example, if the log of correlation coefficient
ratio of corr(temperature anomaly, ENSO-d index)
and corr(precipitation anomaly, ENSO-d index) is
positive, the former correlation is higher which
indicates potentially stronger temperature forcing
effects.

3. Results

3.1. Identification of decadal signals in LAI
Both interannual and decadal timescale variabilit-
ies of growing season LAI anomalies in the satellite
observations are prominent across the global land
ecosystems (figures 1(a) and (b)). Larger variability
generally appears in areas with high vegetation pro-
ductivity, such as tropical forests. The peak of variab-
ility in the tropics decreases toward higher latitudes in
the north and south, reaching minimums in the mid-
latitude deserts and then rebounding in the temperate
and boreal forest regions (figures 1(a) and (b)). The
decadal contribution to total LAI variability shows
that decadal variability is relatively more important
at the mid- and high-latitudes (figures 1(c) and (e)
red line). On average, the decadal variability (stand-
ard deviation) contributes to over 40% of the total
variability, and over 50% for the majority of regions
north of 40◦N (figures 1(c) and (e) red line). In par-
ticular, the high share of decadal-scale variability in
the total variability is dominated by linear trends over
the northern Eurasian continent and in South and
East Asia (figures S4 and S5).

The relatively stronger decadal variability towards
higher latitudes is also pronounced in the model
ensembles (figures 1(d) and 3(a) black line). This
feature is in line with the centers of action of the
major decadal climate modes of PDO and AMO in
the North Pacific and North Atlantic. Interestingly,

however, simulated decadal variability is notably
stronger than satellite observations (detrended) in the
Northern Hemisphere north of 40◦N (figure 3(a) the
black line vs. the red line; figure S4(c)), but in a bet-
ter agreement at Northern Hemisphere (NH) higher
latitudes when the linear trend was kept in the obser-
vations (figure 3(a) the black line vs. the blue line;
figure S4(d)). Indeed, there is a robust greening trend
in this region as seen in the observations which can
dominate the decadal variability if the linear trend
is included (figure S5(c)). This greening is associated
with long-term impacts (can be considered as a lin-
ear trend, e.g. CO2 fertilization effects, anthropogenic
warming, land-use changes; figure S6) or the AMO.
Coincidently, the AMO shifted from a negative phase
to a positive phase throughout the study period of
1982–2015 (figure S2(c)), so when the detrendingwas
applied to the satellite data, the impacts of AMO on
LAI variability north of 40◦N may be diminished.
This situation is different for low-latitudes and South-
ern Hemisphere vegetation decadal-scale changes as
they have a closer agreement with detrended data
(figure 3(a) the black line vs. the red line). This sug-
gests that they aremore closely related to ENSO-d and
PDO, and are thus not affected by the detrending.

3.2. Investigation of the linkage of LAI decadal
variability to climate modes
The global IAV in the terrestrial biosphere (Buermann
et al 2003) can be attributed to the remote impacts
(in contrast to local impacts in the tropical Pacific) of
ENSO that perturb the global climate through atmo-
spheric teleconnections (Liu and Alexander 2007).
It is also influenced by photosynthesis responses to
changes in precipitation between years (Thornton
et al 2014, Ahlström et al 2015) or by a smaller mag-
nitude, biogeophysical soil processes such as legacy
effects (Braswell et al 1997, Wong et al 2021) that
last a few years. However, for periodic variability
with longer timescales, ocean dynamics is likely the
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dominating cause of decadal climate variations (Gill
and Adrian 1982). Next, we analyzed the decadal LAI
variability to its specific triggers and drivers in the
atmosphere and ocean.

We used multiple regression analysis to reveal
the global impacts of three major decadal climate
modes (figure 2). The LAI anomaly pattern regressed
on the ENSO-d index depicts an overall reduction
in LAI during positive El Niño-like SST anomalies
in the tropics stretching across the Amazon, equat-
orial Africa, and themaritime continent (figure 2(a)).
The vegetation response appears more robust in the
tropics (negative LAI anomalies in East Amazon,
equatorial Africa, and the maritime continent in
figures 2(a) and (e)). This is consistent with El Niño
impacts at an interannual timescale reported in a pre-
vious study (Betts et al 2020). Regression coefficients
also suggest that positive El Niño-like climate anom-
alies lead to positive LAI anomalies in Central North
and South America, East Asia, and eastern Australia.

The decadal vegetation response to positive PDO
modulation is the weakest among the studied climate
modes. It is relatively robust in the circum-Pacific and
equatorial African regions, with positive responses in
western Amazon, central America, central Africa, and
the maritime continent and negative responses in the
western US, eastern Amazon, South Africa, and East
Australia. Note that the differences in the regression
of undetrended ENSO-d or PDO are not remarkable
(figures S2(a) and (b)).

The spatial pattern of the regression coefficient
of the LAI decadal anomalies versus AMO is heav-
ily dependent on the detrending of the AMO index
(figure not shown). As mentioned above, the AMO
shifted to a positive state during 1982–2015, indu-
cing North Atlantic basin warming; so, it could be
mixed with the global warming linear trend during
this study period. If the index was not detrended
and the phase change of AMO was retained, the
regression pattern suggests favorable conditions for
vegetation growth in Europe, eastern North America,
Sahel, South Africa, and India under positive AMO,
although these effects can be partly contributed by the
linear trend in climate forcings (figures 2(c) and S6).

The combined effects from these climate modes
as represented by simple indices can be separated
from those long-term (linear) impacts with the help
of ESM simulations (section 2.6). It is found the
decadal climate modes (figures 2(e) and (f)) and the
linear trend (figure 2(d)) have roughly comparable
effects on LAI decadal variability (figures 3(b) and
(c)). Together they explained more than 50% of the
decadal variability (i.e. all variability longer than IAV)
in East Amazon, South Africa, East Australia, and
Indonesia, approximating 20% in all regions with rel-
atively large LAI decadal variability (figures 2(e) and
(f)). In East Asia, Indonesia, East Amazon, North
America, and Europe, LAI decadal variability is more
dominated by the decadal climate modes. In Sahel

and India, the long-term linear trend plays a more
important role. Most of these regions were identi-
fied as greening hotspots in recent decades (Piao et al
2020).

Earlier studies considered lagged responses of the
ecosystem to climate change at interannual timescales
in correlation and regression analyses (e.g. Braswell
et al 1997, Zhou et al 2003). We also performed mul-
tiple regression with a time lag, assuming the decadal
climate modes led the vegetation response by 1 year.
However, global R2 generally decreased (figure S7).
This implies that the LAI decadal variability is dom-
inated by a zero-lagmodulation of the climatemodes.
Previous studies reported that optimal lag ranges
from 0 to 24 months between various climate condi-
tions and the vegetation or carbon flux response (e.g.
Ito 2011, Zhu et al 2017). In our analyses, because of
the annual-resolved time series based on the grow-
ing season average, which already involved poten-
tial lag effects of 1 year or less, the effects of further
delayed responses are not robust and will not be fur-
ther considered.

3.3. Understanding the forcing mechanisms of
climate modes
To understand how different phases of climate modes
affect vegetation growth, we conducted a composite
analysis for the surface air temperature and precipit-
ation anomalies during the vegetation growing sea-
son over each land grid cell, and quantify the rel-
ative importance of temperature and precipitation
(figure 4). The composite temperature and precipita-
tion anomalies overall demonstrate distinctive oppos-
ite changes during positive and negative phases of
these decadal climate modes (figure S2), highlight-
ing the driving effects of decadal timescale climate
oscillations. Note that other potentially important cli-
mate indicators that might be more representative of
regional climate and have strong impacts on specific
ecosystems such as vapor pressure deficit impacts on
tropical forests (Barkhordarian et al 2019, Worden
et al 2021) are not considered in this study. Sim-
ilarly, complex interactions and feedbacks between
terrestrial ecosystems and climate (e.g. Wang et al
2020) involving ecosystem disturbances (such as cli-
mate extremes, wildfires, land-use) are beyond the
scope of this study.

The significant negative tropical LAI anomalies
can be attributed to droughts associated with the
positive phase of ENSO-d (figures 2(a), 4(b1), (b2)
and (c1)), mostly robust in the eastern Amazon and
maritime continent. In comparison, the temperat-
ure effects show a smaller impact, as both cooling
and warming were associated with lower LAI, such as
in equatorial Africa and western Amazon. Increased
precipitation in positive ENSO-d also contributed to
enhanced growing season LAI in central North and
South America, East Asia, and northwestern Australia
(figures 4(b1), (b2) and (c1)).
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Temperature effects were more marked and con-
sistent in PDO modulation of mid/high latitude
LAI. For instance, cooling (warming) in Southeast
Australia (western coast of Canada) could shorten
(extend) the growing season, leading to negative (pos-
itive) LAI (figures 4(a3), (a4) and (c2)). In the tropics
(e.g. equatorial Africa), the higher LAI can be induced
by cooler temperatures and reduced heat stress (Kim
et al 2017), while the impacts of dry conditions were
not obvious.

For AMO, temperature and precipitation
composites show sub-continental-scale changes
(figures 4(a5), (a6), (b5) and (b6)). However, they
were superposed by the long-term linear changes
in temperature and precipitation during 1982–2015
(figures S5(a) and (b)) due to the coincident phase
shift of AMO. Model simulations suggest that there
might be less distinctive decadal variability associated
with temperature changes compared to precipitation
changes (figures S8(e) and (f)). Earlier studies docu-
mented decreased summer (which can be approxim-
ately regarded as the growing season here) precipit-
ation and warmer temperatures in the United States
and increased summer precipitation in Europe dur-
ing positive AMO phases (Sutton and Hodson 2005,
Lyu and Yu 2017, O’Reilly et al 2017), which is partly
consistent with our study. The highly positive impacts
of warm AMO phases on vegetation growth, which
are robust in western and eastern Europe, the Sahel,
South Africa, and India, can be attributed to more
rainfall in these regions, and warmer temperatures in
eastern Canada (figure 4(c3)).

4. Summary and discussion

Our results indicate the importance of decadal times-
cale changes in global LAI, with the increasing mag-
nitude of anomalies toward higher latitudes. These
changes were modulated by climate modes embed-
ded in natural slow ocean processes. Quantified by
simple indices, the ENSO-d, PDO, andAMO together
explained on average 20% of the decadal variability in
LAI and∼40% for parts of northern North America,
the eastern Amazon, Europe, South Africa, Northeast
Australia, India, and Indonesia. The oscillations of the
climate modes exerted overall distinct climate condi-
tions across the globe and induced vegetation green-
ing/browning. The relative importance of climate for-
cing from temperature and precipitation anomalies
depends on the specific climate mode and the local
climate. For ENSO-d, large parts of tropical land are
characterized by a precipitation-vegetation relation-
ship. For PDO modulation, cooling effects in the
tropics and extra-tropics result in opposite vegetation
responses, attributed to the reduced negative impact
of warming (e.g. heat stress and shortened growing
season growth). The AMO effects are more complex
as they are mixed with the long-term linear trends in
our 34 year study period, and increased precipitation

in Canada, western and eastern Europe, the Sahel,
South Africa, and India induced vegetation greening
in these regions. Studies on the impacts of ongoing
climate changes on global vegetation growth should
consider not only the linear trend and IAVbut also the
natural decadal climate modes. Our study improves
the understanding of the linkages between these cli-
mate modes and the terrestrial ecosystems and has
useful implications for long-term ecosystemmanage-
ment and services.
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