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Abstract
Remote sensing is a powerful tool for understanding and scaling measurements of plant carbon
uptake via photosynthesis, gross primary productivity (GPP), across space and time. The success of
remote sensing measurements can be attributed to their ability to capture valuable information on
plant structure (physical) and function (physiological), both of which impact GPP. However, no
single remote sensing measure provides a universal constraint on GPP and the relationships
between remote sensing measurements and GPP are often site specific, thereby limiting broader
usefulness and neglecting important nuances in these signals. Improvements must be made in how
we connect remotely sensed measurements to GPP, particularly in boreal ecosystems which have
been traditionally challenging to study with remote sensing. In this paper we improve GPP
prediction by using random forest models as a quantitative framework that incorporates physical
and physiological information provided by solar-induced fluorescence (SIF) and vegetation indices
(VIs). We analyze 2.5 years of tower-based remote sensing data (SIF and VIs) across two field
locations at the northern and southern ends of the North American boreal forest. We find (a)
remotely sensed products contain information relevant for understanding GPP dynamics, (b)
random forest models capture quantitative SIF, GPP, and light availability relationships, and (c)
combining SIF and VIs in a random forest model outperforms traditional parameterizations of
GPP based on SIF alone. Our new method for predicting GPP based on SIF and VIs improves our
ability to quantify terrestrial carbon exchange in boreal ecosystems and has the potential for
applications in other biomes.

1. Introduction

Uncertainty in future climate projections is largely
driven by terrestrial ecosystem feedbacks on the car-
bon cycle (Friedlingstein et al 2014). A major con-
tributor to terrestrial ecosystem feedbacks is plant
carbon uptake via photosynthesis. Plant carbon

uptake can be estimated locally at the tower/site level,
as gross primary productivity (GPP), but remote
sensing is necessary to scale and understand carbon
exchange across space and time (Anav et al 2015).
This is especially relevant in arctic-boreal ecosys-
tems which play a major, but highly uncertain, role
in the global carbon cycle (Bonan 2008, Thurner
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et al 2014). Arctic-boreal carbon cycle uncertainty
can be attributed to unevenly distributed field obser-
vations and challenges in using remote sensing (e.g.
high sun angles, snow cover, short growing seasons,
persistent greenness) (Nelson et al 2022). There-
fore, improvements must be made in how we con-
nect remotely sensed measurements to GPP in arctic-
boreal ecosystems.

GPP can be described using the light-use-
efficiency model (Monteith 1972):

GPP = PAR×f PAR× LUEP (1)

where PAR is the photosynthetically active radi-
ation, f PAR is the fraction of photosynthetically act-
ive radiation absorbed by chlorophyll, and LUEP is
the light-use-efficiency of photosynthesis. Proposed
remote sensingmetrics for approximating GPP typic-
ally track either the physical (f PAR) or the physiolo-
gical (LUEP) components of this equation.

Solar-induced chlorophyll fluorescence is an
especially powerful remote sensing metric for under-
standing GPP over a variety of ecosystems (Sun et al
2017, 2018) and across a variety of scales (Yang et al
2017, Mohammed et al 2019, Magney et al 2020,
Porcar-Castell et al 2021, Pierrat et al 2022) due to its
connection to both the physical (PAR × f PAR) and
the physiological (LUEP) components of GPP. Solar-
induced fluorescence (SIF) can be described using the
light-use-efficiency model:

SIF = PAR×f PAR× LUEF× fesc (2)

where LUEF is the light-use-efficiency of fluorescence,
and f esc is the fraction of emitted SIF photons which
escape the canopy. SIF and GPP share the physical
drivers PAR × f PAR, which largely explains the rela-
tionship between SIF and GPP in cropping systems
(Dechant et al 2020). Equations (1) and (2) can be
combined to eliminate the absorbed photosynthetic-
ally active radiation (APAR= PAR× f PAR):

GPP = SIF× LUEP
LUEF× fesc

. (3)

The physiological component of SIF, LUEF co-
varies with LUEP under moderate light conditions
(Porcar-Castell et al 2014, van der Tol et al 2014) and
averaged over broad spatio-temporal scales (Magney
et al 2020, Pierrat et al 2022). This is the basis for
SIF as a proxy for GPP when measured from space
across a broad range of ecosystems (Sun et al 2017,
2018). However, these conditions are not necessarily
always met (Marrs et al 2020), especially in the boreal
forest where complex canopy structure and diver-
gence between the light and carbon fixation reac-
tions of photosynthesis can complicate these signals
(Maguire et al 2020, Pierrat et al 2022). Therefore,

a more nuanced relationship between SIF and GPP
that takes into consideration divergence between vari-
ations in LUEF, LUEP, and f esc will further improve
the utility of SIF as a proxy for GPP. Additional
reflectance-based remotely sensed metrics, i.e. veget-
ation indices (VIs), can provide more information
on both the structural and physiological processes
impacting GPP and can therefore improve our ability
to track and understand GPP with remote sensing.

Physically, SIF and GPP are impacted by illumin-
ation conditions and canopy structure (i.e. the com-
bined effects of leaf-area index (LAI), vertical distri-
bution of LAI, leaf orientation, clumping, etc) which
mediate both f PAR and f esc. At a constant PAR and
LUEP, GPP amplifies under cloudy sky conditions
because a higher diffuse fraction allows light to pen-
etrate deeper into the canopy, thus increasing f PAR
(Gu et al 2002, Alton et al 2007, Durand et al 2021).
Although the amplification of GPP under diffuse
skies has been well documented, it is often not con-
sidered when approximating GPP with remote sens-
ing proxies.

Canopy structure is often approximated using
greenness based VIs which are sensitive to chloro-
phyll content in an instrument field of view. Thus,
they are generally a good approximation for f PAR.
The normalized difference vegetation index (NDVI)
effectively tracks vegetation productivity in ecosys-
tems where chlorophyll content and carbon uptake
are closely correlated (i.e. larger variations in f PAR
than LUEP) (Tucker 1979, Yang et al 2017, Wang
and Friedl 2019). This is not the case in the boreal
forest where changes in carbon uptake do not cor-
relate with changes in chlorophyll content (Sims et al
2006, Garbulsky et al 2010, Gamon et al 2013). Addi-
tionally, NDVI is extremely sensitive to the presence
of snow cover (Pierrat et al 2021a, 2022). The near-
infrared reflectance from vegetation (NIRv) expands
onNDVI bymultiplyingNDVI by the total sceneNIR
reflectance, thereby amplifying the vegetated signal.
NIRv has shown stronger correlations with f PAR and
GPP than NDVI alone (Badgley et al 2017, 2019).
NIRv can also be used as a proxy for f esc (Zeng et al
2019). Both NDVI and NIRv provide useful informa-
tion on the physical/structural influences on SIF and
GPP, however, it is unclear how sensitive these indices
are to changes in f PAR and f esc and if there exists a
universal relationship across ecosystems.

Physiologically, the light-use-efficiencies of both
fluorescence and photosynthesis are mediated by
non-photochemical quenching—a heat dissipation
mechanism that plants utilize to avoid damage from
excess sunlight (Raczka et al 2019, Walter-McNeill
et al 2021). The extent to which non-photochemical
quenching is necessary to protect plant tissue
depends on a host of environmental controls
that determine a plant’s ability to photosynthesize
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(Demmig-Adams and Adams 2006). Of particular
relevance in this respect is plant’s sensitivity to
temperature. Freezing over winter or heat waves
over summer create stress conditions which sub-
sequently impact LUEP. Monitoring the extent
of non-photochemical quenching thus provides
insight into LUEP (Adams et al 2004), and likely
LUEF, although those dependencies are not yet well
quantified.

Non-photochemical quenching manifests in two
forms of photoprotection in boreal ecosystems, both
of which can be detected with remote sensing meas-
ures (Gamon et al 1997, 2016, Demmig-Adams et al
2008). The first is rapidly reversible and therefore
important under short-term high light stress. It can
be detected using the photochemical reflectance index
(PRI). Therefore, PRI tracks changes in LUEP over the
diurnal cycle (Gamon et al 1997, Wong and Gamon
2015a, 2015b). The second form is sustained and thus
important over longer time periods such as winter in
regions where freezing temperatures limit the abil-
ity for plants to photosynthesize (Verhoeven 2014).
This form can be tracked using the chlorophyll-
carotenoid index (CCI) (Gamon et al 2016). CCI has
successfully tracked variations in GPP over the sea-
sonal cycle because it is sensitive to long-term changes
in LUEP.

Including information on heat dissipation
dynamics through remotely sensed products (PRI and
CCI) improves modeling of photosynthetic phen-
ology (Wong et al 2022), especially when used in
conjunction with SIF (Wang et al 2020, Hikosaka
and Tsujimoto 2021). In addition, correcting the SIF
signal for canopy and structural effects using struc-
turally sensitive metrics also improves its relationship
with GPP (Liu et al 2020, Lu et al 2020). It has been
well documented and mechanistically explained why
VIs are sensitive to changes in non-photochemical
quenching or canopy structure but there are no uni-
versal quantitative relationships among them. To
develop such a relationship, the impacts from can-
opy structure, view/sun angle effects, snowcover,
and potential differences in instrumentation (field of
view, instrument sensitivity) must all be accounted
for. Until mechanistic models are able to effectively
account for all the aforementioned effects, the capa-
city for these indices to inform SIF and GPP is limited
to qualitative or site-specific empirical relationships.
In order to make more effective use of remote sensing
as a proxy for GPP, it is necessary to have a quantit-
ative framework that can relate SIF, VIs, and GPP.

Advances in machine learning have provided
exciting opportunities for data analysis and pre-
dictive modeling. In particular, random forest
models are non-parametric in nature and are there-
fore well suited for approximating non-linear,
multi-parameter relationships in complex systems

(Breiman 2001). Because random forest models do
not assume functional dependencies between input
variables and predicted output and rather ‘learn’ rela-
tionships based on input data, they are particularly
useful for systems where statistical parameterized
models either do not exist or are not well constrained.
Random forest models are also highly interpretable
compared with other machine learning techniques
due to predictor importance estimates, which make
them more useful for explaining and understanding
observed relationships. Finally, random forest mod-
els have already been used to understand nuance in
the SIF–GPP relationship (Jiao et al 2019, Bai et al
2022, Pierrat et al 2022). We propose that using ran-
dom forest models as a tool to understand and pre-
dict GPP based on a combination of remote sensing
metrics will present a significant improvement over
traditional parameterized models (Monteith 1972,
van der Tol et al 2014, Dechant et al 2020) or other
machine learning approaches.

The central question of this study is therefore:
can we improve our ability to predict GPP from
SIF by using random forest models as a quant-
itative framework that can incorporate additional
physical andphysiological informationprovidedby
VIs? To answer this question, we present 2.5 years of
tower-based remote sensing data across two boreal
forest locations, qualitatively evaluate the seasonal
and diurnal trends among them, and present an inter-
pretation on the physical and physiological informa-
tion contained in them (section 3.1). We justify the
use of random forest models as a tool for under-
standing SIF, VI, and GPP dynamics by showing that
they can accurately reproduce SIF–GPP–PAR rela-
tionships (section 3.2). Finally, we explore the util-
ity of random forest models and remotely sensed
products for improving GPP estimation by showing
how random forest models driven by SIF, VIs, and
temperature improve the prediction of GPP and shed
light on important physical and physiological pro-
cesses (sections 3.3 and 3.4).

2. Materials andmethods

2.1. Site descriptions: Southern Old Black Spruce
(SOBS) and National Ecological Observatory
Network (NEON) Delta Junction (DEJU)
We collected data at the SOBS site (FLUXNET site
code CA-Obs) and the National Ecological Obser-
vatory Network (NEON), DEJU which represent the
northern and southern limits of the North Amer-
ican boreal forest and associated environmental con-
ditions (figure 1, table 1). SOBS is located near the
southern limit of the boreal forest in Saskatchewan,
Canada (53.98◦N, 105.12◦W) (Jarvis et al 1997). It is
amixed forest standwith stem density predominantly
(90%) black spruce (Picea mariana), and scattered

3



Environ. Res. Lett. 17 (2022) 125006 Z Pierrat et al

Figure 1. Experimental setup at the two boreal forest field locations. Site information for SOBS from (Chen et al 2006, Pappas
et al 2020). Site information for DEJU from the National Ecological Observatory Network (NEON). Figure created with
BioRender.com.

(10%) larch (Larix laricina). DEJU is located towards
the northern end of the boreal forest outside DEJU,
Alaska (63.88◦N, 145.75◦W). It is an evergreen forest
dominated by black andwhite spruce (P.mariana and
Picea glauca).

2.2. Data collection: tower-based remote sensing,
GPP, and environmental variables
We collected tower-based remotely sensed measure-
ments (far-red SIF, NDVI, NIRv, CCI, PRI) using
PhotoSpec (see Grossmann et al 2018) for detailed
instrument description) at both the SOBS and DEJU
field sites. Measurements ran from August 2019 to
December 2021 at both field locations (figures 1
and 2). At both sites, Photospec was installed atop
the scaffolding tower facing due north. It has a
narrow field of view (0.7◦), 2D scanning capabil-
ities, and simultaneously measures SIF and VIs at
the same point in the canopy (Grossmann et al
2018). Individual measurements take approximately
20 s. We took canopy representative scans at both
field locations within a 30 min window and aver-
aged measurements together to compare with the
temporal resolution of GPP and environmental
variables. SIF was retrieved in the far-red (745–
758 nm) wavelength range using a Fraunhofer-line
based fitting algorithm (Grossmann et al 2018).
The Fraunhofer-line based approach makes SIF

retrievals insensitive to atmospheric scattering and
therefore robust even under cloudy sky conditions
(Frankenberg et al 2011, Mohammed et al 2019,
Chang et al 2020). We filtered data for low quality
retrievals and retrievals with unstable sky conditions
(Pierrat et al 2021a, 2022) for both sites. The VIs
were calculated as follows, with ρnm:nm = the average
reflectance across a wavelength range in nm:

NDVI =
ρ830:860−ρ620:670

ρ830:860+ρ620:670
(4)

(Tucker 1979)

NIRv =
ρ830:860−ρ620:670

ρ830:860+ρ620:670
×ρ830:860 (5)

(Badgley et al 2017)

PRI =
ρ569:571−ρ520:532

ρ569:571+ρ520:532
(6)

(Gamon et al 1997)

CCI =
ρ520:532−ρ620:670

ρ520:532+ρ620:670
(7)

(Gamon et al 2016).
In boreal ecosystems, the onset of photosynthesis

often occurs prior to complete snowmelt (Starr and
Oberbauer 2003, Parazoo et al 2018). Therefore, any
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Table 1. Summary of methods for measurement and data processing at the two field locations.

Measurement SOBS DEJU

SIF, VIs, PAR, and Df PhotoSpec mounted atop the tower and
processed following (Grossmann et al
2018, Pierrat et al 2022).

PhotoSpec mounted atop the tower and
processed following (Grossmann et al
2018, Pierrat et al 2022).

GPP

Eddy-covariance Taken using a 3D sonic anemometer
(CSAT3, Campbell Scientific, Logan, UT)
in combination with a closed-path
infrared gas (CO2/H2O) analyzer (LI-7200
analyzer, Li-Cor, Lincoln, NE) operated in
absolute mode. We performed quality
assurance on the data using the standard
Fluxnet-Canada method following (Barr
et al 2006, Barr et al 2004).

Obtained from (National Ecological
Observatory Network (NEON) 2022a)
using a Campbell Scientific CSAT-3 3D
Sonic Anemometer and LI-COR—LI7200
gas analyzer. We performed quality
assurance on carbon fluxes based on
turbulent and storage fluxes separately,
using a bivariate statistical procedure for
each, to overcome quality flag restrictions
in the ‘expanded’ NEON eddy-covariance
bundle. The 3% outliers (3% of rarest
events from the tails of each distribution)
were excluded from joint probability
distributions for all available data for (a)
turbulent flux and PAR, and separately for
(b) storage flux and time of day. Net
Ecosystem Exchange (NEE) data were
considered valid if both the turbulent and
storage fluxes passed this quality control
step (and NEE is equal to their sum).

Partitioning Data for NEE and meteorological
variables were filtered to remove low
turbulence (low friction velocity) periods
and then gap-filled via the R package
REddyProc (Wutzler et al 2018).
REddyProc was used to partition NEE
into GPP and Reco using the method of
Lasslop et al (2010), with air temperature
used as the driving temperature for Reco.

Data for NEE and meteorological
variables were filtered to remove low
turbulence (low friction velocity) periods
and then gap-filled via the R package
REddyProc (Wutzler et al 2018).
REddyProc was used to partition NEE
into GPP and Reco using the method of
(Lasslop et al 2010), with air temperature
used as the driving temperature for Reco.

Air temperature (Tair) and
relative humidity (RH)

Vaisala HMP45C probe at 6 m Vaisala HUMICAP Humidity and
Temperature Probe—HMP 155 at 22 m
(National Ecological Observatory
Network (NEON) 2022b)

Soil temperature (Tsoil) Type-T (copper-constantan)
thermocouples at a 10 cm depth

Thermometrics—Climate RTD 100-ohm
Probe at 6 cm depth (National Ecological
Observatory Network (NEON) 2022c)

Soil water content (SWC) Cambell Scientific CS615 Water Content
Reflectometers at a 7.5 cm depth

Sentek—EnviroSCAN TriSCAN at 6 cm
depth (National Ecological Observatory
Network (NEON) 2022d)

proposed approach for predicting GPP based on
remote metrics must be effective even in the presence
of snow. Because of this, we did not filter for snow
but visually identified snow dates using PhenoCam
imagery (Richardson et al 2018). Filtering for snow
using an NDVI threshold >0.5 (Magney et al 2019,
Cheng et al 2020) did not change the results of this
study (figures S1–S4).

To include impacts of illumination conditions on
our analysis, we determined ameasure of direct vs dif-
fuse radiation (Df). Df reflects the deviation of PAR
at a given solar zenith angle from the expected PAR
during a clear sky reference day so that Df= 1 is clear
sky conditions (Pierrat et al 2021b). Df values were
calculated for every PhotoSpec measurement (∼20 s

resolution) and averaged together in 30min windows
to compare with GPP and environmental measure-
ments (table 1). Values where Df > 0.8 are considered
clear sky conditions.

Data collection and processing for eddy covari-
ance and meteorological data for both SOBS and
DEJU are summarized in table 1.

2.3. Data analysis: random forest and
parameterized models
We trained and tested a variety of random forestmod-
els (table 2). All random forest models were pro-
duced using Matlab’s TreeBagger function (MATLAB
2019) which is based on the random forest algorithm
from (Breiman 2001).We used the full data collection
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Table 2. Naming conventions and descriptions of the random forest models used in this study. ENV describes models driven with
environmental inputs. RS describes models driven with remote sensing and meteorological inputs. Parentheses indicate the same model
setup tested with a different variable or location.

Model name
Number of
data points

Temporal
resolution Site Inputs Output Purpose

ENV-SIF 12 482 (3969) Half-hourly SOBS (DEJU) PAR, Tair, Tsoil,
SWC, RH, Df

SIF To test the ability of
random forest
models to reproduce
quantitative SIF-GPP
dynamics
(section 3.2).

ENV-GPP 12 482 (3969) Half-hourly SOBS (DEJU) PAR, Tair, Tsoil,
SWC, RH, Df

GPP To test the ability of
random forest
models to reproduce
quantitative SIF-GPP
dynamics
(section 3.2).

RS-SOBS 12 482 Half-hourly SOBS SIF, CCI, PRI,
GPP, NDVI,
NIRv, Tair, Df

GPP To test our ability to
improve GPP
prediction from SIF
by including
additional remote
sensing metrics
(section 3.3).

RS-DEJU 10 433 Half-hourly DEJU SIF, CCI, PRI,
GPP, NDVI,
NIRv, Tair, Df

GPP To test our ability to
improve GPP
prediction from SIF
by including
additional remote
sensing metrics
(section 3.3).

RS-total 1157 (833
clear sky)

Daily midday
(10:00–14:00)
average

SOBS and
DEJU

SIF, CCI, NDVI,
NIRv, Tair, (site)

GPP To test the
applicability of our
random forest
approach across
multiple sites
(section 3.4).

RS-DSOBS 622 Daily midday
(10:00–14:00)
average

SOBS SIF, CCI, NDVI,
NIRv, Tair

GPP To compare our
random forest
approach with
existing models for
GPP based on SIF
(section 3.4).

RS-DDEJU 535 Daily midday
(10:00–14:00)
average

SOBS SIF, CCI, NDVI,
NIRv, Tair

GPP To compare our
random forest
approach with
existing models for
GPP based on SIF
(section 3.4).

window (August 2019–December 2021, figure 2) to
train all models. All models were created using 100
regression trees and sampled with replacement on an
in bag fraction of 0.7 (i.e. 70% of the data were ran-
domly chosen to train the models saving 30% to test
the models). Out-of-bag (OOB) predictor import-
ance estimates were determined using the permuted
predictor delta error following the standard Clas-
sification And Regression Tree (CART) algorithm
(Breiman 2001) using the remaining 30% of data.
Model performance was evaluated by calculating the
Pearson’s correlation coefficient (Dickinson Gibbons

et al 1985) between measurements and predictions
on the full dataset (R2) and the reserved test data-
set (OOB R2 score). Specific models are identified in
section 3 with the naming conventions in table 2.

We compared random forest models with com-
mon parameterized light-use-efficiency models
for the relationships among SIF, GPP, and PAR
(equations (1)–(3)). All curve fitting and goodness
of fit statistics (R2 values) were done using Mat-
lab’s fit function (MATLAB 2019). Specifics of fit-
ted equations are provided in section 3 and figure
captions where relevant.
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Figure 2. 5 day moving mean of daily mid-day (10:00-14:00) average GPP compared with (a) SIF, (b) NDVI, (c) NIRv, (d) PRI,
(e) CCI, (f) PAR, (g) Df and (h) air temperature over the entire data collection period for both the SOBS and DEJU sites. Shaded
regions are the 5 day moving mean of the standard deviation of diurnal variability. Blue shaded regions are periods of snow cover
as visually identified using PhenoCam imagery.

3. Results and discussion

3.1. Trends among SIF, VIs, and GPP
We present the relationships and trends among SIF,
VIs, and environmental parameters across seasonal
and diurnal scales for both field locations in figures 2
and 3. Compared with SOBS, DEJU generally exhib-
its a shorter growing season, a smaller summer max-
imum GPP, and lower values for all remotely sensed
metrics (figures 2 and 3).

SIF tracks the seasonal cycle and daily-weekly
variability in GPP (figure 2).Monthly diurnal profiles
of SIF show good agreement with monthly diurnal
profiles ofGPP across both sites (figure 3 SIF increases
in spring prior to changes in GPP (figure 2) and
shows a small diurnal profile over winter at both
sites, while GPP does not (figure 3). This early spring
increase has been reported in other evergreen loc-
ations (Magney et al 2019, Pierrat et al 2022, Yang
et al 2022) and is attributed to persistent photosystem
II activity (Porcar-Castell 2011, Bowling et al 2018).
This leads to a winter light response of SIF which
means SIF increases coincident with PAR in winter-
/early spring in a way that does not reflect changes
in GPP. This does not preclude the use of SIF as a

proxy for GPP, but itmust be accounted for to prevent
overestimation of GPP in winter (Pierrat et al 2021a,
2022).

Structurally sensitive indices (NDVI and NIRv)
show little variability over summer and are sensit-
ive to snow in winter across both sites (figure 2).
Over summer at SOBS, NDVI and NIRv show greater
changes than at DEJU, which reflects the fact that
SOBS is a mixed-species forest with scattered decidu-
ous larch trees. SOBS therefore experiences greater
changes in canopy structure over the seasonal cycle
than evergreen DEJU. NDVI peaks in mid-morning
andmid-afternoon over the summermonths at SOBS
and has no clear pattern at DEJU (figure 3). NIRv is
slightly higher in the morning at DEJU and has no
clear pattern at SOBS (figure 3). These patterns sug-
gest thatNDVI andNIRv are useful for accounting for
shifts in viewing geometry and illumination effects
across the diurnal cycle.

Physiologically sensitive indices (CCI and PRI)
generally track the seasonal cycle of GPP but show
sensitivity to snow cover inwinter. CCI ismore sensit-
ive to snow at DEJU due to a higher fraction of snow
cover on the canopy. Both CCI and PRI increase in
spring following GPP at both sites (figure 2). This is
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Figure 3. Average monthly diurnal patterns of GPP compared with (a) SIF, (b) NDVI, (c) NIRv, (d) PRI, (e) CCI, (f) PAR, (g) Df
and (h) air temperature over the entire data collection period for both the SOBS and DEJU sites. Shaded regions are the standard
deviation for each hourly average within the month. Blue shaded regions represent months with snow cover as visually identified
using PhenoCam imagery.

consistent with a two-phased spring transition begin-
ning with the onset of photosynthesis, followed by a
reduction in sustained photoprotection (Pierrat et al
2021a). CCI at DEJU is lower than at SOBS which
may indicate differences in chlorophyll:carotenoid
ratios between the sites. Diurnally, PRI shows a small
decrease around midday during summer months at
both sites (figure 3). This highlights the sensitivity of
PRI to rapidly reversible photoprotection which will
occur under high-light, high-stress conditions. CCI
shows a slight diurnal pattern at SOBS and does not
show a consistent diurnal pattern at DEJU. The lack
of a diurnal pattern at DEJU supports the idea that
CCI is sensitive to sustained cold-season photopro-
tection which will not change over the course of the
diurnal cycle. PRI and CCI thus provide information
on plant heat dissipation processes at both seasonal
and diurnal timescales.

Environmental conditions at the two sites (PAR,
Df, and air temperature) are consistent with expec-
ted environmental patterns. PAR increases prior to an
increase in GPP and begins to decrease in fall prior
to a decline in GPP at both sites. Df does not show
a defined seasonal cycle, nor does it show a prom-
inent diurnal pattern at either site. Thus, diffuse sky
conditions are largely independent of season or time

of day. Air temperature tracks the seasonal cycle of
GPP, and air temperatures above 0 ◦C are a good
indicator of growing season length (Parazoo et al
2018, Pierrat et al 2021a, Stettz et al 2022). Air tem-
perature peaks in the afternoon following the peak in
SIF and GPP.

3.2. SIF and GPP light response curves:
light-use-efficiency and random forest models
We tested the ability of random forest models to
reproduce quantitative SIF-GPP dynamics by com-
paring light response curves following the paramet-
erized light-use-efficiency model (figure 4 row (a))
with light response curves produced by environment-
ally driven random forest models (table 2, ENV-SIF
and ENV-GPP, figure 4 row (b)), at a half-hourly res-
olution at the SOBS site. The same analysis tested
at the DEJU site shows consistent results (figures S5
and S6).

The half-hourly data and parameterized light-
use-efficiency model (GPP =GPPmax×PAR

c×PAR , (Michaelis
and Menten 1913, Monteith 1972) and (SIF=c×
PAR, equation (2) show a curved light response for
GPP, consistent with the light saturation of GPP, and
a near linear light response for SIF (figure 4 row (a)).
Both GPP and SIF show a seasonally dynamic light
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Figure 4. Row (a) shows half-hourly SIF and GPP data against PAR fitted with the parameterized light-use-efficiency models:
GPP = GPPmax×PAR

c×PAR
(Michaelis and Menten 1913, Monteith 1972) and SIF=c× PAR (equation (2)). Row (b) shows light response

curves of half-hourly GPP and SIF produced from two random forest models (ENV-GPP and ENV-SIF).

response with minima over winter and maxima over
summer. The light response of SIF approaches but
does not go to zero over thewintermonths due to per-
sistent winter photosystem II activity (Porcar-Castell
2011, Bowling et al 2018, Yang et al 2022).

Both ENV-SIF and ENV-GPP models had strong
performance with high R2 (R2 = 0.93 and 0.94
respectively) andOOB R2 scores (OOB R2 = 0.86 and
0.89 respectively) (figure S7). This highlights the abil-
ity of random forest models to capture the environ-
mental dependencies of both SIF and GPP. The two
trained models were run for each month using the
range of PAR values for that month and the monthly
average for the rest of the environmental predictor
variables to reproduce the light response curves of
SIF and GPP (figure 4 row (b)). The monthly light
response curves produced by the random forest mod-
els have the same patterns as both the data and the
parameterized light-use-efficiency models. The light
response of GPP is curved and the light response of
SIF is largely linear. SIF shows a slight curvature at
high PAR values which we attribute to changes in f esc
at high PAR (Pierrat et al 2022). Both GPP and SIF
exhibit amonthly variable light response and the light
response of SIF does not drop to zero over winter,
consistent with the light-use-efficiency model.

These results highlight the efficacy of random
forest models for reproducing quantitative relation-
ships and environmental dependencies for GPP and
SIF without prescribing a parameterized model onto
the data (Chen et al 2021). Because of this, and the
additional information that can be provided by addi-
tional remote sensing metrics (section 3.1), we justify
the use of random forest models for GPP prediction.

3.3. Random forest models compared with
parameterized models for predicting GPP
We tested the ability of random forest models
to improve GPP prediction by testing traditional

parameterized models (a linear SIF–GPP relation-
ship, a non-linear SIF–GPP relationship that takes
into account the light saturation of GPP (Monteith
1972) and a monthly variable non-linear SIF–GPP
relationship (Damm et al 2015, Pierrat et al 2022)
against our new random forest approach combining
multiple remote sensing indices for predicting GPP
(figures 5 and 6). The two random forest models used
to test this (table 2, RS-SOBS and RS-DEJU) were
driven by remote sensing and meteorological vari-
ables that reflect the physical and physiological con-
trols on photosynthesis relevant at a half-hourly tem-
poral resolution.

The linear fit between SIF and GPP (figure 5 row
(a)) performs moderately-poorly with an R2 = 0.58
at SOBS and R2 = 0.43 at DEJU (figure 6 row (a)).
The non-linear fit based on (Damm et al 2015) shows
little to no improvement from the linear fit with
R2 = 0.60 at SOBS and R2 = 0.43 at DEJU (figure 5
row (b)). Bothmodels with a fixed SIF–GPP relation-
ship overestimate GPP in winter due to a persistent
winter light response of SIF. The monthly variable
non-linear SIF–GPP relationship (figure 5 row (c))
shows a marked improvement in the predictability of
GPP at both the SOBS and DEJU sites with R2 = 0.76
and R2 = 0.66 respectively (figure 6 row (c)). In addi-
tion to improvedR2 values, themonthly variable non-
linear SIF–GPP relationship helps account for the
persistent winter light response and the winter over-
estimation of GPP is no longer observed. The random
forest models driven by remotely sensed products
(figure 5 row (d)) improved the predictability of GPP
compared to all parameterized models at both sites
with R2 = 0.90 and 0.86 and OOB R2 = 0.81 and
0.73 at SOBS and DEJU respectively (figure 5 row
(d)). The overestimation of GPP in winter is not
observed using the random forest approach and resid-
uals between predicted and measured GPP are more
homoscedastic across seasons.
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Figure 5. Setup of traditional parameterized models for SIF as a proxy for GPP with our proposed random forest modeling
approach for both SOBS and DEJU. Row (a) shows a linear fit between SIF and GPP. Row (b) shows a non-linear fit based on the
light use efficiency model as GPP= SIF×GPPmax

a + SIF
, (Damm et al 2015). Row (c) shows the same non-linear fit but fitted monthly to

create a monthly variable SIF–GPP relationship (Pierrat et al 2022). Row (d) shows the input variables predictor importance
estimates for random forest models RS-SOBS and RS-DEJU.

The predictive power of input variables is
evaluated with the predictor importance estimates
(figure 5 row (d)). SIF was the most important pre-
dictor at SOBS and second most important pre-
dictor at DEJU, highlighting the power of SIF for
GPP prediction. DEJU showed a higher dependence
on air temperature than SOBS which could point
to stronger temperature limitations at this site. Df
was an important predictor across both sites which
highlights the dependence of GPP on diffuse vs. dir-
ect radiative conditions (Durand et al 2021, Pierrat

et al 2021b). NIRv was the third most important pre-
dictor at SOBS which could reflect the fact that SOBS
is a mixed-species forest interspersed with decidu-
ous trees and will thus have more dramatic changes
in canopy structure over the course of the season
than DEJU. CCI was moderately important at both
SOBS and DEJU which highlights the relevance of
CCI for capturing changes in sustained photopro-
tection over winter. NDVI was not a particularly
important predictor for either SOBS or DEJU which
could reflect the fact that NIRv is more effective at

10



Environ. Res. Lett. 17 (2022) 125006 Z Pierrat et al

Figure 6. Evaluation of model performance for traditional parameterized models compared with our proposed random forest
modeling approach for both SOBS and DEJU. Rows (a)–(d) show the correlation between measured GPP and predicted GPP
based on the models presented in figure 5 as row (a) a linear fit between SIF and GPP, row (b) a non-linear fit based on the light
use efficiency model, row (c) a monthly variable non-linear fit, row (d) random forest models RS-SOBS and RS-DEJU (table 2).

capturing changes in canopy structure (Badgley et al
2017, 2019) than NDVI. PRI was also not particularly
important for either SOBS or DEJU which suggests
that rapidly reversible non-photochemical quenching
dynamics may be more effectively captured in the SIF
signal when a prescribed relationship between SIF
and GPP is not used. Including PAR as an input vari-
able does not improvemodel results but does decrease
the predictor importance of SIF (figures S8 and S9).
Substituting PAR for SIF as a predictor variable also
does not change model performance (figures S10 and
S11). This suggests that VIs effectively capture the
structural (f PAR) and physiological (LUEP) factors
relevant for predicting GPP.

3.4. Random forest models for predicting GPP
across boreal forest sites
Satellite remote sensing enables the approximation
of GPP over a broader spatial range than tower-
based measurements, making it essential for under-
standing regional GPP dynamics. However, relation-
ships between remotely sensed products and GPP are
often site specific and thus require a new model or
set of parameters for each ecosystem or plant func-
tional type. We tested the potential of our random
forest modeling approach across sites for a ‘universal’
model for GPP based on remotely sensed products.
We trained a model (RS-total) to predict GPP from
data that are readily accessible or can be inferred
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Figure 7. Random forest model trained with daily midday average data across both sites (RS-total) with (a) predictor importance
estimates and (b) model performance on OOB data with predicted and measured GPP.

from satellite measurements (table 2, RS-total). We
used data at a daily resolution averaged between 10:00
and 14:00 under all (figure 7) and only sunny (figure
S12) sky conditions to replicate satellite observations
across both the SOBS and DEJU sites together. SOBS
and DEJU are at the latitudinal extremes of the boreal
ecosystem, thus, testing the feasibility of interpolation
across the boreal region.

Our results show excellent performance on the
predictability of GPP based on remotely sensed met-
rics (R2 = 0.94 and OOB R2 = 0.89) (figure 7).
Residuals between predicted and measured GPP are
highly homoscedastic and GPP is not overestimated
in winter. Predictor importance estimates show that
SIF is the most valuable predictor for GPP, but air
temperature, NDVI, CCI, and NIRv are all relevant
predictors. To test the universality of this approach,
we tested the same model but included a site flag
as a predictor (either SOBS or DEJU) (figure S13).
This model showed no improvement in performance
(R2= 0.94 andOOBR2= 0.89) andhad site flag as the
least relevant predictor. This may be because import-
ance estimates are biased towards predictors with
many classes or different values (Loh and Shih 1997)
and we only had two flags for the two sites. Alternat-
ively, this, as well as the success of the model without
the site flag, points to our random forest modeling
approach being independent of site, and therefore
potentially generalizable across the boreal biome at
the satellite level (Sun et al 2017, Li et al 2018). This
approach also works whether or not the data have
been filtered for snow contamination (figure S4) and
shows near identical results when only clear sky days
are used (figure S12) which are both advantageous
in the boreal. The combined random forest modeling
approach also outperformed all other parameterized

models at a daily midday resolution for the two sites
separately (figures S14 and S15) and worked well for
the combined sites at a half-hourly resolution (figure
S16). Substituting PAR for SIF also showed good
model performance and similar predictor import-
ance estimates (figure S17). This suggests that VIs are
effective at capturing the physical and physiological
effects relevant for predicting GPP. Our results sup-
port the use of this approach for improving the pre-
dictability of GPP from remote sensing observations
because it can account for physical and physiological
mechanisms impacting remotely sensed signals.

4. Conclusions

In this paper, we present a quantitative framework for
predicting GPP using random forest models driven
by a set of remotely sensed products and air tem-
perature. Multiple years of tower-based remote sens-
ing and GPP data across two field locations at the
northern and southern ends of the North American
boreal forest show that VIs and SIF contain valu-
able information on the physical and physiological
drivers of GPP. Additionally, random forest models
driven by environmental variables are able to repro-
duce light response curves of SIF and GPP and are
thus able to capture quantitative relationships of plant
physiology. These results justify the use of random
forestmodels to predict GPP based on a set of random
forest parameters. Random forestmodels outperform
traditional parameterized models based on SIF alone
for predicting GPP because they are able to incorpor-
ate physical and physiological information provided
by additional remote sensing metrics without pre-
scribing a parameterized model. This approach is not
site specific and therefore has the potential to be
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scaled across the boreal domain using satellite meas-
urements. Finally, this approach has potential for use
in other ecosystems where remote sensing data is
available. Random forest models improve the util-
ity of SIF and vegetation index data for scaling and
understanding GPP across space and time and thus
present an exciting opportunity to better understand
vegetation’s role in the global carbon cycle.
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