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Abstract
The causality between Arctic sea ice decline and cold boreal winters has been widely debated
recently and remains controversial. A major source of uncertainty in the sea ice-cold winter
relationship originates from that the stratosphere polar vortex (SPV) is not only affected by Arctic
sea ice anomaly but can also be modulated by El Niño-Southern Oscillation (ENSO) and
quasi-biennial oscillation (QBO). Using reanalysis data and hindcasts from the decadal prediction
system version 4, here we show that both cold and warm winters occur over Eurasia when the
Barents–Kara Sea sea ice is abnormally low. Warm winters occur during the La Niña-easterly
QBO-low sea ice (LANINA-EQBO-LICE) years and cold winters during the neutral ENSO-neutral
QBO (NENSO-NQBO)-LICE and El Niño (ELNINO)-NQBO-LICE years. During the
LANINA-EQBO-LICE years, weakened upward-propagating planetary waves from the troposphere
to the stratosphere strengthen the Arctic SPV and then weaken the Aleutian low and Siberian high,
creating conditions favorable for Eurasian warming. The atmospheric responses are opposite in the
NENSO-NQBO-LICE and ELNINO-NQBO-LICE years. This implies that care should be taken in
using Arctic sea ice alone as the precursor to predict boreal winter climate.

1. Introduction

During the past few decades, several extremely cold
winters occurred in Eurasia despite global warming
(Coumou and Rahmstorf 2012, Liu et al 2012, Cohen
et al 2020, Bailey et al 2021, Cohen et al 2021, Zheng
et al 2022), which had imposed severe threats to elec-
trical power transmission, energy supply, agriculture,
air pollution, and even human lives (Kamo et al 2016,
Wang et al 2016, Thornton et al 2017, Lu et al 2022).
Therefore, a better understanding of the precursors
and related potential mechanism for cold winters
is of great importance for human life and societal
development.

Some observational and modeling studies
attributed these cold winters to the rapid decline
of Arctic sea ice in autumn or winter, especially over
the Barents–Kara Sea (BKS) (Liu et al 2012, Tang et al
2013, Wu et al 2013, Mori et al 2014, Xu et al 2021).
Using the atmospheric general circulation model,
Zhang et al (2018b) proposed a dynamical mech-
anism explaining the relationship between the Arc-
tic sea ice and midlatitude circulation based mainly
on the stratospheric pathway rather than the tropo-
spheric pathway. The enhanced upward planetary
wave induced by sea ice loss could propagate into the
stratosphere, and thus weaken the stratospheric polar
vortex (SPV) (Jaiser et al 2013, Kim et al 2014, Peings
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and Magnusdottir 2014, Nakamura et al 2016, Hoshi
et al 2017, Zhang et al 2018a). These stratospheric
circulation anomalies forced by Arctic sea ice can
persist for a couple of months and subsequently
propagate downward to the midlatitude surface, res-
ulting in cooling over most parts of northern Eurasia
(Kim et al 2014, Peings and Magnusdottir 2014, Sun
et al 2015, Zhang et al 2018b). Moreover, the BKS sea
ice reduction could also contribute to the SPV shift,
leading to a colder climate over some parts of the
Eurasian continent (Zhang et al 2016). These studies
imply that the SPV can act as a bridge linking the BKS
sea ice and midlatitude climate.

Recently, some studies have discussed the lagged
impact of the Arctic sea ice (e.g. Liu et al 2019, Ding
et al 2021, Yang et al 2022). For example, Yang et al
(2022) pointed out that the long-lagged impact of the
Arctic sea ice in BKSs on June precipitation in east-
ern China can be interpreted by the long memory of
the sea ice concentration, polar vortex, and the down-
ward propagation of stratospheric anomalies. How-
ever, the response of mid-to-high latitude weather
and climate to the changes in Arctic sea ice is still sub-
ject to great uncertainty (Screen et al 2014, Overland
et al 2015, Perlwitz et al 2015, Semenov and Latif
2015, Wu et al 2015, Overland et al 2016, Wu 2018).
For example, the winter of 2006/2007 was extremely
warm, while the corresponding Arctic sea ice in early
September was abnormally low (Li et al 2011, Wu
et al 2011). Ayarzagüena and Screen (2016) demon-
strated that Arctic sea ice loss is also accompanied by
a reduction in the strength of cold-air outbreaks in
the midlatitudes. Further, numerous modeling stud-
ies tried to separate the impact of sea ice and atmo-
spheric internal variability onEurasian cooling. Based
on atmosphere-only and coupled atmosphere–ocean
simulations, they have shown that cold Eurasian win-
ters are attributed to atmospheric internal variability,
rather than a change in sea ice forcing (McCusker et al
2016, Sun et al 2016, Collow et al 2018), indicating
that external forcings only contribute to the chance
of cold winters appearing with a higher probability
density function. In addition, some studies indicate
that the link between Arctic sea ice and midlatitude
weather and climate can be modulated by tropical
processes (Baxter et al 2019, Warner et al 2019).

Since the stratospheric pathway appears to be
an important link between the BKS sea ice and
midlatitude climate, we envision that the uncer-
tainty of stratospheric process may be responsible for
the nonstationary relationship between sea ice loss
and cold winters. SPV is an essential system link-
ing the Arctic stratosphere and troposphere. Stud-
ies have shown that the SPV can be largely modu-
lated by El Niño-Southern Oscillation (ENSO) and
quasi-biennial oscillation (QBO) besides Arctic sea
ice (Ren et al 2012, Calvo et al 2017, Ren et al 2017,

Zhou et al 2018, Zhang et al 2020, Rao et al 2021,
Kumar et al 2022). Garfinkel et al (2010) showed
that QBO and Aleutian low associated with ENSO
can explain ∼39.6% of polar vortex variability dur-
ing winter in the reanalysis record. Specifically, dur-
ing the El Niño (ELNINO) years, the associated
Pacific North America pattern is accompanied by an
intensified Aleutian low-pressure system, which sub-
sequently increases the upward planetary wave and
weakens the SPV before reflecting back to the surface
(Ineson and Scaife 2009). As expected from dynam-
ical considerations, Domeisen et al (2019) demon-
strated that the ELNINO years are often linked with
a strengthened Brewer–Dobson circulation and thus
lead to a warming of the polar regions through adia-
batic warming. The circulation responses are often
opposite in the La Niña (LANINA) years (Free and
Seidel 2009, Mitchell et al 2011, Domeisen et al
2019). As for the QBO, Holton and Tan (1980) found
that the wintertime SPV is stronger in the west-
erly QBO (WQBO) phases than in the easterly QBO
(EQBO), which is confirmed by numerical simula-
tions (Zhang et al 2019, Rao et al 2020, Elsbury et al
2021) and observations (Lu et al 2020, Yamazaki et al
2020). Using the Coupled Model Intercomparison
Project (CMIP) models, Richter et al (2020) found
that the number of models that are able to simulate
the QBO has increased from CMIP5 to CMIP6. This
motivates us to explore the role of ENSO and QBO in
the Eurasian surface air temperature (SAT) affected
by BKS sea ice through stratospheric processes.

The goal of this work is to considerwhether ENSO
and QBO interfere with links between the BKS sea ice
loss and Eurasianwinter climate. Section 2 introduces
the data and models used in this study. The responses
of Eurasian wintertime SAT forced by sea ice (ICE),
ENSO, and QBO, and the possible mechanisms are
shown in section 3. Summary and conclusions are
presented in section 4.

2. Model, observational data, andmethods

2.1. Model
The model utilized in this study is the decadal pre-
diction system version 4 (DePreSys4) developed and
deployed at the United Kingdom Met Office. This
system produced the first initialized short-term cli-
mate prediction in 2007 (Smith et al 2007) but now
uses the Hadley Centre Global Environmental Model
version 3 as described in Dunstone et al (2016).
Natural variability and human influences are sim-
ulated in this system using CMIP6 forcing data-
sets and it consists of four components: atmosphere,
ocean, land, and cryosphere (land ice and sea ice).
The horizontal resolution of atmosphere data used
in this paper is 0.556 degrees of latitude by 0.833
degrees of longitude with 36 levels extending from
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the surface to 0.03 hPa. DePreSys4 hindcast consists
of ten ensemble members each starting from differ-
ent ocean analyses sample uncertainties in the ini-
tial conditions. The DePreSys4 hindcasts start each
November from1960 to 2019 and run for 10 years and
4 months.

2.2. Observational data and index definitions
Atmospheric data (monthly mean zonal wind and
SAT) from the Japanese 55 year Reanalysis Project
(JRA-55) are employed with a horizontal resolution
of 1.25◦ × 1.25◦ (Kobayashi et al 2015). The monthly
sea ice and sea surface temperature (SST) data are
from the UK Met Office Hadley Centre with a spa-
tial resolution of 1.0◦ × 1.0◦ (Rayner et al 2003). We
also employ another monthly sea ice dataset from the
National Snow and Ice Data Center (Meier et al 2014)
for comparison.

Several indices are used in this paper. Sea ice
extent (SIE) index is defined as the total marine area
in which the ice concentration is at least 15% over the
BKS region (70◦N–82◦N, 20◦ E–90◦ E). The strength
of the SPV is defined as the zonal wind at 60◦ N and
10 hPa (Hardiman et al 2020). Strong and weak SPV
winters with low SIE (the normalized SIE less than
−0.5) are selected based on the threshold of ±0.5
standard deviation of the SPV strength index. Accord-
ing to this criterion, observed weak SPV/low SIE win-
ters are 1965/1966, 1972/1973, 1984/1985, 2000/2001,
2012/2013, and 2018/2019, whereas strong SPV/low
SIE winters are 1961/1962, 1983/1984, 1985/1986,
and 1995/1996. As previous studies (Holton and Tan
1980, Son et al 2017, Zhang et al 2019), the QBO
index is calculated by zonalmean zonalwind at 50 hPa
averaged over 10◦ S–10◦ N. The Niño 3.4 index,
which is the area-averaged SST over 5◦ S–5◦ N and
170◦ W–120◦ W, is used to represent the ENSO sig-
nal. Following Gong et al (2001), the regional aver-
aged sea level pressure in the midlatitudes of East
Asia (40◦ N–60◦ N, 70 E–120◦ E) is used to represent
the intensity of Siberian high. As presented in Wang
and He (2012), the sea level pressure averaged in the
region of 155◦ E–130◦ Wand 30◦ N–70◦ N is defined
as the strength of Aleutian low.

Composite analysis is the main method utilized
in this paper. To obtain more samples for each com-
posite, we superimposed the atmospheric response of
opposite phases of ENSO andQBO, assuming that the
atmospheric response to opposite ENSO and QBO
phases can be offset. For example, the summation of
the results of ENSO in positive and negative phases
is considered as that for neutral ENSO (NENSO),
and the summation of QBO in positive and negative
phase is considered as neutral QBO (NQBO). In addi-
tion, the weights used for the summation are defined
according to their polar vortex strengths, i.e. they

are weighted by polar vortex strengths during 1960–
2019. Taking QBO as an example, α is the ratio of
the pole vortex intensity in the EQBO years to that in
the WQBO years. The atmospheric response during
the WQBO years is multiplied by α and then adds
the atmospheric response during the EQBO years to
offset the atmospheric response of QBO as much as
possible, which is considered as the result of NQBO.
Analogously, in this way, the LANINA-NQBO-LICE
events and the ELNINO-NQBO-LICE events are
included to increase the number of NENSO-NQBO-
LICE events, and the NENSO-WQBO-LICE and
NENSO-EQBO-LICE events are included to increase
the number of NENSO-NQBO-LICE events.

3. Results

Figure 1 shows the subsequent zonal mean zonal
wind and temperature in winter when the preceding
autumn BKS sea ice is anomalously low based on the
observational record. Under low BKS sea ice condi-
tions, Eurasian winter SAT is abnormally cold when
the SPV is weak and is abnormally warm when the
SPV is strong. This indicates that if the link between
Arctic sea ice and Eurasian SAT is through the SPV
then it can be masked by other variability, which
motivates us to investigate the role of ENSO andQBO
due to their strong connections with SPV variability.

Time series of autumn SIE and wintertime ENSO
and QBO indexes and their lead-lag correlation are
presented in figure S1. Consistent with previous stud-
ies, a clear downward trend is found in the autumn
SIE index (e.g. Chen et al 2021,Docquier andKoenigk
2021, Yang et al 2022), while no significant trend
can be seen in ENSO and QBO. All three factors
exhibit significant interannual variability. Garfinkel
et al (2010) pointed out that the effects of ENSO and
QBO on the polar vortex were independent of each
other. The lead–lag correlation between autumn SIE
and wintertime ENSO and QBO presented in figure
S1(b) also indicates that the ENSO and QBO are not
correlated with autumn SIE during 1960–2019.

Since only a few observed events can be found
in each combination of ENSO and QBO phases
under low BKS SIE conditions from the observational
record, the DePreSys4 hindcasts with ten ensemble
members are used to minimize the impact of internal
variability in this paper. All ensemble members can
well reproduce the observed Northern Hemisphere
SAT climatological spatial distribution with all cor-
relation coefficients above 0.99 and relative amp-
litude close to 1.0 (figure S2). Previously, Andrews
et al (2019, 2020) pointed out that this model has a
good performance in reproducing the QBO and Arc-
tic sea ice. In addition, simulated QBO-Arctic Oscil-
lation teleconnections are similar to that shown in
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Figure 1. Composite maps of wintertime (a), (b) zonal wind (units: m s−1) and (c), (d) SAT (units: K) anomalies in the (a),
(c) weak SPV and (b), (d) strong SPV winters with anomalously low BKS sea ice. The SPV index, zonal wind, and temperature are
from the JRA-55 reanalysis. The sea ice data is from the Hadley Centre.

observations (Andrews et al 2019) and we have also
presented its good ability in performing the tropo-
spheric responses to Arctic sea ice.

It is necessary to investigate the relationship
between the Arctic stratospheric circulation and
ENSO, QBO, and ICE beforehand, as shown in
figure 2. The Arctic polar vortex is negatively lin-
early related to ENSO, positively linearly related to
QBO, and nonlinearly related to ICE. Previously,
some studies pointed out the asymmetry and the non-
linearity of the influences of ENSO on the northern
winter stratosphere (Rao and Ren 2016a, 2016b). In
this study, we discuss the role of ENSO on the premise
of low Arctic sea ice, and in this situation, the non-
linearity of ENSO is relatively weaker. To explore the
potential mechanism underlying the nonstationary
relationship between BKS sea ice and Eurasian SAT,
the wintertime zonal wind responses for all combin-
ations are shown in figure 3. In the case of low sea ice
(LICE) in the BKS, three combinations are investig-
ated, and they show a significant downward propaga-
tion of the stratospheric circulation anomalies forced
by ENSO, QBO, and ICE (figures 4 and S3) and the
polar vortex anomalies of the other combinations are
too weak or cannot propagate significantly to the sur-
face (figure S3). The total occurrence of the three
combinations is 25% under low BKS SIE conditions.
Specifically, the occurrence is 12.5% for the first com-
bination (LANINA-EQBO-LICE) and 6.25% for the
latter two combinations. The Arctic SPV appears to
be stronger during the LANINA-EQBO-LICE years
(figure 4(a)), andweaker during theNENSO-NQBO-
LICE and ELNINO-NQBO-LICE years (figures 4(b)
and (c)). The enhanced SPV in figure 4(a) may be
mainly attributed to the LANINA since EQBO and

LICE favor a weakening of the polar vortex and the
weakened SPV in figure 4(b) is primarily a result of
the reduction of BKS sea ice, as ENSO and QBO are
in the neutral states. While the weakened SPV illus-
trated in figure 4(c) is ascribed to the joint effect of
ELNINO and the reduction of BKS sea ice, as QBO is
in the neutral state. In the case of high BKS sea ice,
almost opposite responses are observed (figure S4).
Thus, only LICE conditions are discussed in this
paper.

Previous studies have shown that the Arctic
SPV changes forced by ENSO, QBO, and ICE are
largely caused by dynamical processes (planetary
waves activity) (e.g. Garfinkel et al 2010, Zhang et al
2016, 2018b). The responses of Eliassen–Palm (EP)
fluxes for the three combinations are thus depicted
in figure 5. The planetary wave activity is weakened
in the LANINA-EQBO-LICE years (figures 5(a) and
(d)), indicating that LANINA events strengthen the
Arctic SPV by suppressing upward planetary wave
activity. Consistent with previous studies, the BKS sea
ice loss in autumn could excite anomalous upward
planetary waves and weaken the SPV (figures 5(b)
and (e)). Changes in upward planetary waves in
the ELNINO-NQBO-LICE years (figures 5(c) and
(f)) are also enhanced as in the NENSO-NQBO-
LICE years, which eventually leads to a weakened
SPV. Figure S5 shows the longitude-latitude maps of
wavenumbers 1 and 2 of zonal wind composites at
10 hPa. The weakened SPV in the NENSO-NQBO-
LICE and ELNINO-NQBO-LICE years (figures 4(b)
and (c)) is attributable to the enhanced vertically
propagating stationary waves-1 and 2. Conversely,
the stronger SPV during the LANINA-EQBO-LICE
(figure 4(a)) years is dominated by reduced upward
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Figure 2. (a) Amplitude dependence of the regression of the averaged polar stratospheric zonal wind (50◦ N–90◦ N and
10–50 hPa) onto the Niño 3.4 index using the DePreSys4 ensemble mean hindcasts. The x-axis indicates the threshold of Niño 3.4
index and only the years with the Niño 3.4 index exceeding the x-axis are chosen to calculate the regression coefficients. Note that
thresholds with too few events leading to unreasonably large regression coefficients are not included. All the time series are
standardized and the QBO and sea ice signals are linearly regressed out before calculating the regression coefficients. (c) and
(e) Same as (a), but for QBO and BKS sea ice, respectively. (b), (d), (f) Same as (a), (c), (e), but for JRA55. All calculations are
based on the monthly mean data.

Figure 3. Composite maps of latitude-pressure section of wintertime zonal mean zonal wind anomalies (relative to the
climatology of each ensemble; units: m s−1) for the eight combinations (no ELNINO-WQBO-LICE events occur). Monthly mean
wind data are from the ten members of the DePreSys4 hindcasts. The number in brackets in the upper right corner of each panel
represents the number of composite ensembles. The area with dots indicates that more than 70% members have the same sign.

5



Environ. Res. Lett. 17 (2022) 124016 X Ma et al

Figure 4. Composite maps of latitude-pressure section of wintertime zonal mean zonal wind anomalies (relative to the
climatology of each ensemble; units: m s−1) in the (a) LANINA-EQBO-LICE, (b) NENSO-NQBO-LICE, and
(c) ELNINO-NQBO-LICE years. (d)–(f) Same as (a)–(c), but for the time-pressure section at 60◦N. Monthly mean wind data are
from the ten members of the DePreSys4 hindcasts. The number in brackets in the upper right corner of each panel represents the
number of composite ensembles. The area with dots indicates that more than 70% members have the same sign.

Figure 5. (a)–(c) Same as figures 4(a)–(c), but for the EP flux anomalies (vectors) in late autumn and early winter
(November–December–January mean). Shaded areas present that more than 70% members have the same sign. (d)–(f) Same as
(a)–(c), but for the vertical component of EP flux anomalies at 50 hPa.

propagating stationary wave of wavenumber-2 and
possibly changes in the transient waves.

Studies have shown that stratospheric circulation
anomalies are closely related to the East Asian winter
monsoon (EAWM) (Ma et al 2021, Lu et al 2022),
which is one of themain factors in driving wintertime
SAT variations over many regions of Eurasia (Chen
et al 2005, Sung et al 2010). We further investigate the
tropospheric responses to the stratospheric circula-
tion anomalies. A positive North Atlantic Oscillation
(NAO) signal appears during the LANINA-EQBO-
LICE years (figure 6(a)), while opposite circulation
responses are displayed in the latter two combinations
with negative NAO signals over the North Atlantic
sector (figures 6(b) and (c)). Usually, cold Euras-
ian winters coincide with a negative NAO and warm
winters with a positive NAO. This suggests that the

circulation changes shown in the first combination
are favorable for Eurasian warming, while the circula-
tion changes shown in the latter two combinations are
in favor of Eurasian cooling (Hirschi and Sinha 2007,
Xie et al 2019). In addition, Miao and Wang (2020)
pointed out that Siberian high and Aleutian low are
two important components of the EAWM system. As
displayed in figure 6(a), during the LANINA-EQBO-
LICE years, weakened Siberian high and Aleutian low
indicate that it is conducive to Eurasian warmingwith
this anomalous circulation (figure 6(d)). Opposite
responses are found in the latter two combinations
(figures 6(e) and (f)).

The responses of Northern Hemisphere winter-
time SAT for the three combinations are shown
in figure 7 (see figure S6 for all eight combina-
tions). The temperature anomalies are characterized
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Figure 6. (a)–(c) Same as figure 4, but for sea level pressure anomalies (units: Pa). (d)–(f) Composite anomalies of wintertime
Siberian high index, Aleutian low index, and difference between the two indexes (units: Pa). Red (blue) bars represent the index is
in the positive (negative) phase.

Figure 7. Same as figure 4, but for SAT anomalies (units: K).

bywarmEurasia pattern during the LANINA-EQBO-
LICE years (figure 7(a)) and cold Eurasia pattern
during the NENSO-NQBO-LICE (figure 7(b)) and
ELNINO-NQBO-LICE years (figure 7(c)). Mori et al
(2014) argued that the warm Arctic-cold Eurasia pat-
tern is a direct atmospheric response to the decline
of the BKS sea ice, which is consistent with our res-
ults shown in parts of Eurasia in figure 7(b). The
cold Eurasia shown in figure 7(c) is the results of
ELNINO superimposed on the LICE (in contrast to
the LICE-only forcing in figure 7(b)). These Euras-
ian SAT anomalies are consistent with the changes in
Arctic SPV and surface circulation related to the three
combinations.

4. Conclusions

This study provides observational and modeling
evidence that the BKS sea ice reduction does not
always lead to a cold Eurasian winter. Using reana-
lysis and DePreSys4 hindcasts, we evaluated the role
of ENSOandQBO inmodulating the linkage between
autumn BKS sea ice and winter Eurasian SAT. Results
show that the stratospheric polar vortex, as a bridge
linking BKS sea ice and Eurasian winter climate,
can be significantly influenced by ENSO and QBO.
Both cold and warm Eurasian winters can occur
when BKS sea ice is abnormally low. Specifically,
SAT anomalies show a warm Eurasia pattern during
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the LANINA-EQBO-LICE years and a cold Eurasia
pattern during the NENSO-NQBO-LICE and
ELNINO-NQBO-LICE years. The physical processes
responsible for the modulation by ENSO and QBO
on the ICE-SAT relationship can be attributable to the
SPV changes associated with ENSO, QBO, and ICE.
During the LANINA-EQBO-LICE years, the polar
vortex is strengthened by suppressed upward plan-
etary wave activity and couples downward with the
tropospheric circulation, leading to a positive NAO,
weaker Siberian high and Aleutian low in winter.
These conditions are conducive to warm Eurasian
winters. Opposite responses of the stratospheric
and tropospheric circulation are found during the
NENSO-NQBO-LICE and ELNINO-NQBO-LICE
years, leading to cold Eurasian winters.
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