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Abstract
When organic peat soils are sufficiently dry, they become flammable. In Southeast Asian peatlands,
widespread deforestation and associated drainage create dry conditions that, when coupled with El
Niño-driven drought, result in catastrophic fire events that release large amounts of carbon and
deadly smoke to the atmosphere. While the effects of anthropogenic degradation on peat moisture
and fire risk have been extensively demonstrated, climate change impacts to peat flammability are
poorly understood. These impacts are likely to be mediated primarily through changes in soil
moisture. Here, we used neural networks (trained on data from the NASA Soil Moisture Active
Passive satellite) to model soil moisture as a function of climate, degradation, and location. The
neural networks were forced with regional climate model projections for 1985–2005 and
2040–2060 climate under RCP8.5 forcing to predict changes in soil moisture. We find that reduced
precipitation and increased evaporative demand will lead to median soil moisture decreases about
half as strong as those observed during recent El Niño droughts in 2015 and 2019. Based on
previous studies, such reductions may be expected to accelerate peat carbon emissions. Our results
also suggest that soil moisture in degraded areas with less tree cover may be more sensitive to
climate change than in other land use types, motivating urgent peatland restoration. Climate
change may play an important role in future soil moisture regimes and by extension, future peat
fire in Southeast Asian peatlands.

1. Introduction

Peatlands in Insular Southeast Asia contain glob-
ally significant carbon stores, estimated at 67 GtC
(Page et al 2011, Warren et al 2017). This carbon
is maintained through high water tables that pre-
vent peat oxidation or ignition (Hirano et al 2009,
Dommain et al 2010). However, in the last half a cen-
tury, degradation has threatened these carbon stores,
as only∼6% of peat forests remain in pristine condi-
tion (Miettinen et al 2016) and widespread drainage
has occurred (Dadap et al 2021). The resulting drier
peat is vulnerable to oxidation (Hooijer et al 2012,

Jauhiainen et al 2012), leading to emissions as large as
155± 30MtC yr−1 in 2015 (Hoyt et al 2020) or about
70% of combined fossil fuel emissions in Malaysia
(63 Mt C yr−1) and Indonesia (149 Mt C yr−1) that
year (Miettinen et al 2017, Andrew and Peters 2021).

Climate also affects peatland carbon loss. Dur-
ing drought years, large-scale burning of peatlands
(Van Der Werf et al 2008, Field et al 2016, Taufik
et al 2017) also leads to globally significant car-
bon emissions because dry peat is more flammable.
For example, fires associated with the 1997 El Niño
Southern Oscillation led to an estimated 0.81–2.56
GtC emitted, 13%–40% of global mean annual fossil
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fuel emissions at the time (Page et al 2002). Although
fire has been a phenomenon in Southeast Asian
peatlands for at least 30 000 years (Goldammer et al
1989, Anshari et al 2001), the frequency and scale of
these fires has increased dramatically in recent dec-
ades (Page and Hooijer 2016). In the second half
of the 20th century, periodic droughts only led to
large increases in fire during periods when degrada-
tion rates were high (Field et al 2009). This evidence
suggests that the combined effects of degradation
and climate on the soil moisture and groundwater
levels in peatlands mediate peat fire (Taufik et al
2017, Dadap et al 2019). Specifically, degradation can
worsen the sensitivity of tropical peatland emissions
to meteorological drought (Siegert et al 2001), fur-
ther motivating restoration and conservation efforts
(Jaenicke et al 2010, Leifeld and Menichetti 2018,
Goldstein et al 2020).

Given that fire emissions in Southeast Asian peat-
lands have historically been largest during drought
conditions attributable to El Niño Southern Oscil-
lation and the Indian Ocean Dipole (Van Der Werf
et al 2008), future emissionsmay also be influenced by
long-term trends associated with climate change (Li
et al 2007). Regional climate simulations have shown
that average rainfall will likely decrease in Southeast
Asia in future decades (Li et al 2007, Tangang et al
2020), especially during the dry season (Kang et al
2019). Additionally, changes in solar radiation, atmo-
spheric humidity, and temperature may also affect
the peat water balance. Understanding how future
climate will affect peat vulnerability is necessary to
inform management, restoration, and conservations
efforts. However, the sensitivity of peatland moisture
to climate change is likely highly variable across the
region. Several factors influence how different hydro-
climatological conditions affect peatmoisture includ-
ing the initial distribution of water table depth, water
uptake differences between vegetation types (Hirano
et al 2015,Manoli et al 2018), canal properties includ-
ing their depth, width, and spatial pattern (Page et al
2009, Cobb et al 2020, Dadap et al 2021), microtopo-
graphy, hydraulic properties of the peat and its mac-
ropores (Mezbahuddin et al 2015, Baird et al 2017,
Cobb et al 2017), and bulk density (Sinclair et al
2020). Because the distribution of these factors across
the region is poorly understood and highly uncertain,
it is not feasible to parameterize physical hydrologic
models (or using land surface simulations from exist-
ing regional climate models (RCMs)) to understand
how climate change affects peat moisture across this
region.

Here, we instead used observations and a stat-
istical modeling approach to estimate how climate
change will influence peat hydrological conditions in
the coming decades. In particular, we considered sur-
face soil moisture, which has previously been shown
to be closely related to peat fire risk (Dadap et al 2019)
and for which observations are widely available across

Southeast Asian peatlands using data from the Soil
Moisture Active Passive (SMAP) satellite (Entekhabi
et al 2010, McColl et al 2017). Here we use the term
‘soil moisture’ to describe peat moisture content in
the upper ground surface, but note that due to the
high organic matter in peatlands, this moisture is not
contained in the soil matrix in the same way it is in
mineral soils. In tropical peatlands, surface soil mois-
ture is closely connected to water table depth (Hirano
et al 2014, Dadap et al 2019), the most commonly
usedmetric of peatmoisture levels for fire risk studies
(e.g. Wösten et al 2008, Hooijer et al 2012). However,
future soil moisture regimes are unknown. To our
knowledge, only one study has attempted to model
future soil moisture (Li et al 2007), but the coarse res-
olution (>2 degree) of the general circulation mod-
els used in that study cannot account for the complex
topography and land-ocean-atmosphere interactions
associated with this region, nor for the effects of vari-
ations in land use and peat properties. In this study,
we instead usedmachine learning to build a statistical
model that predicts soilmoisture variations across the
region as a function of several climate factors. The
statistical model was then used to analyze the impact
of climate change on soil moisture across the region,
including its spatial distribution and variation with
land use type.

2. Methods

2.1. Approach
Our general approach in this study was to train stat-
istical models (neural networks) to learn relation-
ships between climate, degradation, location, and soil
moisture in Southeast Asian peatlands under present
climate. Neural networks have been shown to be a
viable and in some cases superior alternative to state-
of-the-art models when forecasting hydrologic vari-
ables in data scarce regions (e.g. Hsu et al 1995,
Kratzert et al 2019). The trained neural networkswere
then usedwith projections of future climate to predict
future soil moisture. This approach is illustrated in
figure 1. Such a climate sensitivity approach has been
used previously to understand features of hydrologic
projections (Short Gianotti et al 2020).

Here, we directly predict simplified soil moisture
statistics to avoid the need for explicit simulation of
soil moisture timeseries in the future. These variables
were: (a) mean dry season soil moisture (smdry season)
and (b) percent low soil moisture (pctlow sm), defined
here as the percent of time in a given year that
the soil moisture is below 0.2 cm3 cm−3. For mean
soil moisture, we focus on the dry season only
because that is more closely tied to fire risk. Here,
we assumed that dry season timing will remain the
same in the future period. Previous work using both
laboratory measurements (Frandsen 1997, Huang
et al 2015) and SMAP soil moisture (Dadap et al
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Figure 1. Overview schematic of the soil moisture modeling approach. Squares denote input data while ovals denote neural
network predictions. The model is first trained on ERA5 climate and SMAP soil moisture data. Predictions are then calculated for
reference (1985–2005) and future (2040–2060) time periods using climate data from a RCM forced by three global circulation
models. Input climate data are bias-corrected to ERA5 reanalysis data using quantile mapping.

2019, figure 3) showed that peat ignition probabil-
ity (at laboratory scale) and burned area (at remote
sensing scales) sharply increase when soil moisture is
below a threshold value of about 0.2 cm3 cm−3. Thus,
the pctlow sm statistic represents the fraction of a given
year when the peat is at high fire risk and captures the
non-linear response of fire to soil moisture.

2.2. Study area
This study focused on peatlands in Insular Southeast
Asia, an area spanning ∼157 000 km2 on Sumatra,
Borneo, and Peninsular Malaysia. All analyses were
limited to pixels covered by at least 50% peat-
lands, as determined from 30 m land cover maps
(Miettinen et al 2016), and were performed on
the 9 km EASE-Grid resolution of the SMAP data
(Brodzik et al 2012).

2.3. Data sources
2.3.1. Soil moisture data
Soil moisture data from SMAP are available every
2–3 d at 9 km resolution from 2015 to present. Each
pixel represents a distinct soil moisture observation.
An example SMAP soil moisture timeseries from one
pixel is shown in Supplementary figure 1. We used

soilmoisture retrieved from theMulti-TemporalDual
Channel Algorithm (MT-DCA) (Konings et al 2016,
2017, Feldman et al 2021), which is a separate data-
set from the SMAP baseline science data products.
Because the MT-DCA retrievals rely on a dielectric
mixing model that was developed for mineral soils
(Mironov et al 2004), an empirical correction was
applied to account for the high organic matter con-
tent of the peat (Bircher et al 2016). Measurements
with potentially high error associated with radio fre-
quency interference, urban areas, and precipitation
were excluded from the dataset. Microtopography
and the presence of organic material on the peat may
add error to the soil moisture retrievals, as the pres-
ence of litter can affect L-band soil moisture retriev-
als even in less densely vegetation sites (Kurum et al
2012). Thick vegetation can also block remote sens-
ingmeasurement of soil moisture where present. Fur-
thermore, no in situ validation of SMAPdata has been
performed in this region, which remains a limitation
of using SMAP data in this context. However, there is
evidence that soil moisture retrievals have sufficient
accuracy in this region, since triple collocation-based
(statistical) error analysis of SMAP soil moisture in
the region previously showed that retrieval precision
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is likely on par with the SMAPmission target error of
0.04 cm3 cm−3 (Dadap et al 2019).

2.3.2. Input features
Input features were chosen to capture the possible
effects of climate, degradation, and location on soil
moisture (Supplementary table 1). Climate variables
included precipitation and potential evapotranspira-
tion (PET) to represent water supply and evaporat-
ive demand; PET was calculated from radiation and
temperature using the Priestly-Taylor method. These
were represented in the neural networks with mean
dry season PET, mean dry season precipitation, mean
annual precipitation and precipitation entropy. Pre-
cipitation entropy (calculated as the Shannon entropy
of monthly precipitation) was included because it is a
descriptor of rainfall seasonality (Feng et al 2013), or
the degree to which rainfall is distributed between the
wet and dry seasons. A smaller entropy value indicates
larger seasonal differences in precipitation. Although
PET might deviate from actual evapotranspiration
(ET), only PET was included here since the RCM
and reanalysis data may not capture the differences
in water use strategies (and thus, the actual/potential
ET ratio) in different land use types.

Because the study area is dominated by coastal
areas and topographic complexity, a high resolution
simulation is necessary for more accurate prediction
of climate variables (Im and Eltahir 2018). Here, we
used 25 km regional climate data from the Coordin-
ated Regional Climate Downscaling Experiment—
Common Regional Experiment as inputs to the
neural networks for the reference (1985–2005) and
future periods (2040–2060) (Giorgi et al 2021, Im
et al 2021). These data are driven by three global
circulation models under Representative Concentra-
tion Pathway 8.5 forcing (Meinshausen et al 2011),
then downscaled using the Regional Climate Model
version 4.7.0 (RegCM4.7.0) developed at the Abdus
Salam International Centre for Theoretical Physics.
This results in three different RCM realizations cor-
responding to the three GCMs. See Supplementary
text 1 for more information on the climate data.

Peatland degradation features used in the neural
network model included the percent of different land
use types, tree cover fraction, drainage canal dens-
ity, fire area, and fire count. These factors are likely
to change significantly in the future, but it is diffi-
cult to predict how they will change due to shift-
ing economic incentives and regulations (Suwarno
et al 2018, Schoneveld et al 2019, Humpenöder et al
2020). We therefore only considered changes in cli-
mate variables in this study, but incorporated these
additional land use and fire inputs to account for
their effect on the soil moisture-climate relationship.
Location descriptors including latitude, longitude,
region, and distance from the edge of the peat dome
were also used as predictors to account for possible
spatial autocorrelated factors affecting soil moisture,

such as land use history, peat physical properties,
and land management practices. See Supplement-
ary Text 1 and Supplementary table 1 for more
information on the input features and neural network
structure.

2.4. Neural network prediction of soil moisture
The neural networks were trained using remotely
sensed soil moisture from SMAP over the 2015–2020
period. To determine how soilmoisture statistics were
affected by climate change, the neural networks were
then run with a set of regional climate predictions
dynamically downscaled from three global climate
predictions for a reference (1985–2005) and future
time period (2040–2060). To reduce the effect of
biases in the global circulation models downscaled
by a RCM, all climate inputs were bias-corrected
to match the statistics of an observation-driven
dataset, here the European Centre for Medium-
Range Weather Forecasts ERA5 reanalysis product
(Hersbach et al 2019).

We compared predictions of smdry season and
pctlow sm between the reference (1985–2005) and
future periods (2040–2060). In each case, degradation
and location input features were held constant while
climate features changed based on bias-corrected
RCM predictions. Bias correction of the climate
data was necessary because there are biases between
the RCM simulations and the pseudo-observational
ERA5 data. These differences in distributions would
otherwise result in projections of soil moisture incor-
rectly attributed to changing climate that are instead
due to differences between ERA5 and the RCM. We
used quantilemapping to correct these biases (Reichle
and Koster 2004, Miao et al 2016). Specifically, we
matched reference period RCM data to ERA5 data
from the same time period, and then applied the same
correction to future period RCM data. A separate
quantile mapping was applied to each of the three
RCM realizations (corresponding to each global cir-
culation model). Both RCM and ERA5 data used for
bias-correction were downscaled to 9 km resolution
from their original 25 and 30 km grids, respectively,
using nearest neighbor resampling.

2.5. Neural network models assessment
The neural networks’ performances were evaluated
in two different ways using cross-validation (CV).
First, to assess overall model performance on unseen
data, 5-fold ‘random’ cross validation was performed.
This means that a model was trained on a random
selection of 80% of the data, then predictions on the
unseen 20% of the data were compared to observa-
tions. The training data and testing data were cycled
through till all data had been tested in this manner.
Alternatively, to assess the models’ abilities in pre-
dicting interannual variability, 6-fold ‘temporal’ cross
validation was performed, meaning that the model
was trained on 5 years of data, then tested on the
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remaining 6th year of data. Prediction accuracy was
then assessed using the coefficient of determination
(R2) (which varies from0 to 1with 1 indicating higher
agreement between the model prediction and obser-
vation), bias, and root-mean-squared error.

3. Results and discussion

3.1. Soil moisture models assessment
Cross validation for both soil moisture variables,
smdry season and pctlow sm, demonstrated that the
neural network models could predict out-of-
sample data accurately (table 1, Supplementary
figure 2). The smdry season model achieved a CV mean
R2 = 0.83, RMSE = 0.08 cm3 cm−3, and a bias of
0.001 cm3 cm−3 on randomly sampled test data.
Similarly, the pctlow sm model achieved a CV mean
R2 = 0.73, RMSE = 16%, and a bias of 0.8% on ran-
dom test data. When the two networks were cross-
validated using a full year’s worth of held-out data,
R2 decreased only a slight amount (∆R2 ≈ 0.1 in
both cases), suggesting the networks were able to pre-
dict soil moisture behavior on unseen years of data,
including simulated future years.

3.2. RCM predicts drier future atmospheric
conditions
RCM projections show overall drying in the study
region, as dry season precipitation is projected to
decrease across 89% of the area (figure 2(a)), while
PET is projected to increase across 98% (figure 2(b)).
The median change in dry season precipitation is
−0.79 mm d−1 and the median PET change is
+0.38 mm d−1 between the reference (1985–2005)
and future (2040–2060) periods (Supplementary
figure 3(a)). Geographically, there are larger decreases
in dry season precipitation in southern Sumatra and
larger increases in dry season PET in the southern
parts of the study region (figure 2). Because ET is
the dominant water flux out of peatlands (e.g. Hirano
et al 2015, Cobb and Harvey 2019), increased PET is
expected to lead to decreases in soil moisture.

Annual precipitation is projected to decrease by
∼0.5–2 mm d−1 in the study region (figure 2(c),
Supplementary figure 3(b)). Precipitation seasonal-
ity, as captured by precipitation entropy, exhibited a
mixed change in signal by latitude in Sumatra: gen-
erally decreasing south of the equator and increas-
ing north of it (figure 2(d), Supplementary figure
3(b)). Decreasing entropy suggests higher seasonal-
ity, whichmay cause drier smdry season, as precipitation
may be less evenly distributed between the dry and
wet seasons. These results are consistent with those of
Kang et al (2019), who found that Aug–Oct precip-
itation (corresponding to the dry season across most
of the study area) generally decreased while Nov–Jan
precipitation generally increased. While our model
did not account for possible changes in the timing
of the dry season, only relatively minor changes are

projected in the timing of the monsoon in this region
(Ashfaq et al 2020). Overall distributions of climate
features shifted under future climate (Supplement-
ary figure 3), but these shifts generally did not extend
far beyond the ranges observed under future cli-
mate. This builds confidence that the neural networks
trained using present climate-soil moisture relation-
ships can accurately assess the impact of future cli-
mate scenarios.

3.3. Climate changes cause substantially drier soils
Both soil moisture variables exhibited drier condi-
tions under 2040–2060 climate projections compared
to 1985–2005 climate, consistent with the changes in
climate forcing. Median smdry season was projected to
decrease during the future period by 0.023 cm3 cm−3

(figures 3(a) and (c)). For context, this decrease is
nearly half the magnitude of the 0.056 cm3 cm−3

decrease in median dry season soil moisture observed
by SMAP during the 2015 and 2019 El Niño years rel-
ative to non-El Niño years between 2015 and 2020.
Recent El Niño years have been associated with a non-
linear increase in fire activity (Yin et al 2016), suggest-
ing that themagnitude of climate-change induced soil
moisture drying, absent other changes, could signi-
ficantly increase fire risk in the region. However, the
impacts of climate change relative to recent El Niño
years differ geographically. Here, we found that the
predicted soil drying due to climate change is gener-
ally greater than impacts observed during recent El
Niño droughts north of the equator, while the oppos-
ite is true south of the equator in the study region
(figures 4(a) and (b)).

The pctlowsm variable, a more direct measure of
fire risk than smdry season, increases over almost the
entire region. Our neural network projected amedian
increase in pctlow sm of 3% (from 12.5% to 15.5%)
(figures 3(b) and (d)), suggesting that extremely dry
conditions associated with high fire risk will be more
prevalent in the future. To estimate how large the
pctlow sm associated impact on burned area might be,
we consider a single average burned area associated
with dry soil moisture (below 0.2 cm3 cm−3) and
another average burned area for wet soil moisture
conditions (as calculated from the curve in figure 3(a)
of Dadap et al 2019). The increase of the 3% in
pctlow sm would then correspond to a 10% increase in
burned area due to future climate change. This calcu-
lation, though highly simplified, illustrates the out-
sized increase in fire risk associated with even small
increases in pctlow sm driven by climate change.

Drought conditions during recent El Niño years
have been attributed primarily to precipitation
drought (e.g. Field et al 2016), but ourmodel suggests
that future changes in smdry season are also affected
by increased evaporative demand (i.e. increasing
PET). This is evident from the higher feature import-
ance of PET compared to precipitation inputs for
both neural networks (Supplementary figure 4).
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Table 1. Cross-validation (‘CV’) results± standard deviation across folds. Temporal CV was performed by holding out one year of data
at a time for the test set, and training on the other years. For example, the data would be trained on 2015–2019 data and evaluated on
unseen 2020 data. This was then repeated for all six years of data. Random CV involved random selection of data from all years (across
all pixel-times) when performing five-fold cross validation.

Model Random CV train R2 Random CV test R2 Temporal CV train R2 Temporal CV test R2

smdry season 0.95± 0.01 0.83± 0.02 0.90± 0.08 0.73± 0.12
pctlow sm 0.92± 0.02 0.73± 0.03 0.91± 0.03 0.64± 0.13

Figure 2.Mean change in climate variables between reference (1985–2005) and future (2040–2060) periods for (a) dry season
precipitation, (b) dry season PET, (c) annual precipitation and (d) precipitation entropy. Red indicates drier dry season
conditions; note the colorbar is reversed in (b). Non-peat areas are shown in gray. These four variables make up the input climate
features in the neural networks.

Consistent with this finding, running the model with
future (2040–2060) PET but with reference (1985–
2005) precipitation resulted in a decrease in median
smdry season that was 0.008 cm3 cm−3, or 36% of the
change when precipitation drivers were included.
Thus, our results suggest that increased evaporat-
ive demand will play a significant role in driving
soil moisture changes under climate changes. Land-
atmosphere feedbacks may further exacerbate soil
drought and atmospheric aridity under future climate
(Zhou et al 2019).

3.4. Degraded areas are more sensitive to climate
change
To better understandwhere soilmoisture changes will
occur, we separated model predictions by land use
(here determined by the majority land use type in
each pixel). During the reference period (1985–2005),
pristine forest was predicted to have the wettest
median smdry season, while open undeveloped was the
driest (figure 4(a)). Nevertheless, reference period
distributions of smdry season were generally found to
have little variation across land uses (figure 4(a)). This
was somewhat surprising, as land use is often used as a

proxy for hydrologic disturbance (e.g. Miettinen et al
2017, Taufik et al 2020). However, our model predic-
tions were mostly consistent with a meta-analysis of
in situ soil moisture measurements, which show sim-
ilar soil moisture magnitudes across land use types
and large variation within land uses (Supplementary
figure 5, Supplementary table 2). Such high variab-
ility of soil moisture within land use types is likely
due to differences in precipitation regimes, peat phys-
ical properties, drainage density, andmore Kurnianto
et al 2019, Aldrian and Dwi Susanto 2003, Dadap
et al 2021.

Degraded land use types (including degraded
forest, open undeveloped, smallholder plantation,
and industrial plantation) exhibit larger magnitudes
of drying than pristine forest (figures 5(c) and (d)). In
particular, open undeveloped areas are predicted to
experience the largest changes, while pristine forests
are predicted to experience the smallest changes.
Open undeveloped areas generally have the lowest
starting soilmoistures, suggesting that the driest areas
will dry further than wetter areas. The differences
in soil moisture changes by land use type could be
caused by (a) climate changing more in certain land
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Figure 3. Changes in soil moisture variables between reference (1985–2005) and future (2040–2060) time periods. (a) Probability
distributions for smdry season smoothed by a kernel density estimator. (c) Cumulative distributions for pctlow sm. For (a) and (b),
thin lines denote individual GCM climate projections while the thick line denotes mean distribution across GCMs. (c) and
(d) Histograms showing per-pixel change in smdry season and pctlow sm due to climate change.

Figure 4. Comparison of future climate impacts with present day El Niño. (a) Difference in predicted∆smdry season due to climate
change vs∆smdry season observed during recent El Niño years (2015 & 2019). (b) Same as in (a) but for∆pctlow sm. Non-peat areas
are shown in gray.

use types and/or (b) certain land use types are inher-
ently more sensitive to changes in climate. However,
the former does not appear to be a major factor,
because the soil moisture changes (∆smdry season and
∆pctlow sm) vary independently of the changes in cli-
mate variables (∆precip and ∆PET) when grouped
by land use type (figure 6), except for increases in
PET with decreases in smdry season. This suggests that
land use could affect the sensitivity of soil moisture
response to climate change.

Our results further suggest that tree cover affects
soil moisture sensitivity to climate change. We
regressed∆smdry season and∆pctlow sm with the input
metrics that capture peatland degradation (tree cover,
canal density, and fire), and found significant rela-
tionships for both variables only with tree cover (Sup-
plementary figure 6). These relationships suggest that
areas with less tree cover are more sensitive to climate
changes (i.e. will experience more drying) than areas
with more tree cover. This increased sensitivity with

7
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Figure 5. Soil moisture distributions grouped by land use type for (a) smdry season and (b) pctlow sm during reference (1985–2005)
and future (2040–2060) periods. Box denotes inter-quartile range and median. Change in median (c) smdry season and (d) pctlow sm

from reference to future periods.

Figure 6.Magnitude of percent change in soil moisture variables (smdry season and pctlow sm) compared to percent change in
climate variables (dry season PET and dry season precipitation). Changes in soil moisture do not appear to vary with changes in
climate. Note the signs for smdry season and for dry season PET denote negative change.

less tree cover can be explained by a number of pos-
sible mechanisms. First, tree cover reduces the solar
radiation reaching the ground surface. In areas with
less or shorter vegetation, this effect isminimized, and
atmospheric conditions are more likely to determine
changes in soil evaporation (Fan et al 2019, Ohkubo
et al 2021). Deforested areas are also more likely to
contain degraded soils with increased hydrophobicity
(Bechtold et al 2018, Perdana et al 2018). This in turn
could decrease rainfall infiltration, increase soil evap-
oration, and decrease the capillary connection with
the water table and the surface soil, making degraded
areasmore sensitive to climate changes. Furthermore,
reduced hydraulic diversity (Anderegg et al 2018),

shallower roots, or less stomatal regulation (Manoli
et al 2018) are characteristic of agricultural areas that
have lower tree cover fraction.

It should also be noted that SMAP soil mois-
ture measurement could be affected by differences in
peat microtopography by land use type, complicating
comparisons of soil moisture between land use types.
For example, the duff and litter layers that form
the hummock and hollow topography endemic to
pristine peatlands are often replaced by a denser, flat-
ter surface when graded or converted to agricultural
use (Lim et al 2012). These differences could in turn
affect the profile of soil moisture measurement rel-
ative to the groundwater table. For example, Sakabe

8
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et al (2018) foundhigh variability in surface soilmois-
ture within pristine forests based on the location of
measurement: hummocks averaged 0.06 cm3 cm−3

while hollows averaged 0.54 cm3 cm−3, but the drier
value would not necessarily imply higher fire risk.
Such small-scale spatial variability would be averaged
to a single measurement by SMAP, which integrates
measurements over 9 km pixels. However, this vari-
ability would not exist in land use types where the
ground surface is generally flatter. Thus, in situ val-
idation studies are needed to better understand how
to interpret differences in SMAP retrievals between
land use types and their implications for fire risk and
carbon emissions. Nonetheless, comparisons within
land use types would not be affected by this potential
issue, and the predicted drying trends observed in all
land use types underscores the consistent prediction
of drying due to climate change.

4. Conclusions

Our model projections suggest that future drier cli-
matic conditions across Southeast Asia will lead to
lower mean soil moisture and more frequent periods
with dangerously dry peat conditions that would lead
to increased fire risk. The median predicted decreases
in soil moisture are nearly half themagnitude of those
experienced during high-fire drought years associ-
ated with El Niño under current climate, portend-
ing more prevalent fire risk due to climate change.
More research is needed to understand the impact of
changes in El Niño severity or changes in dry season
length, two factors that were not considered in this
study. In contrast to recent droughts, future drier soil
conditions also appear to be driven by increased evap-
orative demand in addition to reduced precipitation.
Further work is needed to assess the combined and
interacting impacts of changing land use—which will
mediate how evaporative demand changes will affect
future ET and thus ultimate soil conditions—and
changing climate, thus requiring the development of
detailed land use change scenarios. Our findings sug-
gest that more degraded peatlands with lower tree
cover may be especially sensitive to climate change,
motivating the importance of restoration in not only
reducing current carbon emissions and fire risk, but
also towards lessening the impacts from future cli-
mate change. Degradation is understood to be a crit-
ical determinant of peatland hydrology, but our res-
ults suggest that climate change will also play an
important role in determining future soil moisture
regimes.
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