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Abstract
Summertime internal melting of Antarctic sea ice is common due to the penetration of solar
radiation below the snow and ice surface. We focus on the role of internal melting and heat
conduction in generating gap layers within the ice. These often occur approximately 0.1 m below
the ice surface. In a small-scale survey over land-fast sea ice in Prydz Bay, East Antarctica, we
observed, for the first time, gap layers 0.6–1.0 m below the surface for both first-year ice and
multi-year ice. A 1D snow/ice thermodynamic model successfully simulated snow and ice mass
balance and the evolution of the gap layers. Their spatial distribution was largely controlled by
snow thickness and ice thickness. A C-shaped ice temperature profile with the lowest values in the
middle of the ice layer resulted in heat flux convergence causing downward progression of the
internal melt layer. Multidecadal (1979–2019) seasonal simulations showed decreasing air
temperature favored a postposed internal melting onset, reduced total internal melt, and delayed
potential ice breakup, which indicated a higher chance for local coastal ice to be shifted from
first-year ice to multi-year ice.

1. Introduction

Summer sea ice in Antarctica is characterized by a
common occurrence of ‘gap layers’, which consist of
deteriorated sea ice of extremely high porosity, often
characterized by honeycomb-like ice structures filled
with water, slush, as well as algal and microbial com-
munity (Kattner et al 2004, Ackley et al 2008, Norman
et al 2011). Gap layers are most common in old first-
year ormulti-year sea ice, and have typical thicknesses
of 0.04–0.12 m (Fritsen et al 2001, Haas et al 2001).
Gap layers are rare in the Arctic, where the strong
summer melt typically results in the removal of the
snow cover and the formation of surface melt ponds
(Rösel et al 2012) instead of gap layers.

Gap layers are important for both sea ice mass
balance and biological activity. According to Ackley

et al (2008), sea ice melt rates related to gap layer
formation typically range from 0.1 to 0.75 cm d−1,
which accumulate to 0.02–0.22 m during the short
(20–30 days) melt period in Antarctic summer. Dur-
ing autumn and winter, refreezing of gap layers and
surface slush may contribute to even half of ice form-
ation in the western Weddell Sea (Lytle and Ackley
1996). By providing suitable light, liquid water and
salinity conditions, gap layers are ideal for biological
productivity and, if the layers are widespread, they
are suggested to strongly contribute to sea-ice related
biological production in Antarctica (Underwood et al
2010, Vancoppenolle et al 2010, Nomura et al 2018,
Selz et al 2018).

Different formation mechanisms of gap layers
have been suggested. Ackley et al (1979) and Ackley
and Sullivan (1994) stressed the importance of dark
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algal material in absorbing solar radiation, which res-
ults in sub-surface melting and gap layer formation,
which further enhances algal growth, generating a
positive physical-biological feedback loop. In sum-
mer the strong solar radiation penetrates below the
ice surface and creates internal melting (Liston and
Winther 2005). The gap layer formation mechanisms
proposed by Fritsen et al (1998) and Haas et al (2001)
were based on granular ice formation due to refreez-
ing. Fritsen et al (1998) addressed the flooding of sea
ice under a heavy snow cover and partial refreezing
of the flooded layers, which allows the drainage of
salt from the refrozen layer to the gap layer below,
which does not entirely refreeze but remains as slush.
This process occurs usually in pack ice, where there
is open water nearby in leads, and rarely in landfast
ice, except possibly to a small extent near tide cracks.
Haas et al (2001) focused on the role of superimposed
ice formation when snowmelt results in the percola-
tion of meltwater to the snow-ice interphase, where
the water refreezes forming a fresher ice layer. Ackley
et al (2008) addressed the role of heat conduction in
summertime conditions with a downward heat flux
from the snow pack to sea ice. In such conditions,
temperature increases in the upper parts of sea ice
and the salinity decreases through brine drainage. In
these upper layers with low salinity, heat is conducted
downward without generating melt, but melt occurs
in the saline gap layer. Hence, a gap layer can be gen-
erated without biological activity and superimposed
ice/snow-ice formation, as long as there is a down-
ward conductive heat flux in snow and upper ice lay-
ers. Observations and modeling of the gap layer are
challenging and have great importance for the under-
standing of sea ice structure and processes since the
gap layer is one of the components of multiphase sea
ice (Hunke et al 2011).

In this paper, we focus on gap layers in the Antarc-
tic landfast sea ice, which in summer comprises 35%
of the overall Antarctic sea-ice area (Fraser et al 2012).
As landfast ice is immobile, thermodynamic processes
dominate ice evolution until its breakup (Heil et al
1996, Yang et al 2015, Zhao et al 2019b). Combin-
ing in situ observations and a snow/ice thermody-
namic model, we investigate factors contributing to
gap layer formation.We go beyond the previous stud-
ies by simulating the roles of both heat conduction
and absorption of solar radiation in snow and ice and
their contributions to the gap layer formation. The
model results are quantitatively comparedwith obser-
vations. The modeling experiments cover time scales
from seasonal to multi-decadal.

2. Data andmethods

In Prydz Bay, observations of land-fast ice have been
carried out in the coastal area near both Chinese
Zhongshan and Russian Progress Research Stations
(Zhao et al 2019a). Applying newly released field data

allows us to map and discover gap layer distribution
at different depths below the ice surface (figure 1).
Unlike in Ackley et al (2008), we observed gap layers,
for the first time, at depths of 0.6–1.0 m below the ice
surface. The detailed observations are summarized in
table S1.

A 1D high-resolution Thermodynamic Sea Ice
and snowmodel (HIGHTSI) (Launiainen and Cheng
1998) was used to simulate snow and ice temperat-
ures and mass balance, affected by surface, internal
and basal melt, as well as snow-to-ice transformation.
The vertical distribution of solar radiation absorbed
below snow or ice surface was calculated according to
Grenfell andMaykut (1977) and Perovich (1996). The
absorbed solar radiation contributed to both the heat
balance of the surface layer and the warming of the
internal snow and ice. This parameterization allows
HIGHTSI to quantitatively simulate the sub-surface
melting of snow and ice (Cheng et al 2003). HIGHTSI
has been extensively validated and widely applied in
both process studies (Cheng et al 2008, 2013, Wang
et al 2015, Merkouriadi et al 2017, 2020, Mäkynen
et al 2020) and operational service for the Prydz Bay
region (Zhao et al 2020). Detailed model parameter-
izations are given in the supporting file (table S2).

The HIGHTSI control run covers the entire melt-
ing season from late spring (1 November 2011) until
early autumn (31 March 2012). The initial snow and
ice thicknesses were 0.17 m and 1.5 m, respectively,
based onmanual in situ observations near the Russian
Progress station. Those measurements were made on
a weekly basis between December 2011 and January
2012. The accuracy of the measurements was 0.01 m.
Those routine measurements were compared with
HIGHTSI results. The initial temperature profile in
snow and ice was assumed as a piecewise linear dis-
tribution (Lei et al 2010). The meteorological para-
meters, used as model forcing, were observed by an
automatic weather station at the Chinese Zhongshan
Station (figure 1). The wind speed (Va), air temper-
ature (Ta), and relative humidity (Rh) were observed
at 10 m height with a 1 min time interval. The total
cloud fraction (CN) was observed visually four times
daily. Total precipitation (Prec) was observed at the
Russian Progress Station, 1 km southeast of Zhong-
shan Station. On the basis of previous studies at near-
coastal sites in Prydz Bay, the oceanic heat flux (Fw)
has an annual cycle with a maximum value in March
and a minimum in September (Heil et al 1996, Lei
et al 2010). Unfortunately, no summer observations
were available due to unsafe ice conditions.We, there-
fore, assumed a simple linear increase of monthly
mean oceanic heat flux from an observed 16 W m−2

in November to an observed 32 W m−2 in March
(Zhao et al 2019a). Figure S2 shows the time series
of weather data and oceanic heat flux used for the
HIGHTSI run.

A recent study found large temporal and spatial
variations of air temperature in the margins of East
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Figure 1. Small-scale landfast sea ice observations carried out during 29th CHINARE program on 11–13 December 2012 in the
vicinity of Indian Bharati Station in Prydz Bay, about 10 km west of the Chinese Zhongshan and Russian Progress stations.
(a) A map of the study region and distribution of the 79 measurement sites. The green circles indicate the locations where gap
layers were detected. The background is a Landsat image (15 m resolution) from 30 November 2012. (b) The Prydz Bay study
region, denoted by a black box, within the Antarctic. 2D maps of (c) snow thickness; (d) ice thickness; (e) surface melting phase
(0: dry surface; 1: melting surface); (f) ice freeboard; (g) the depth of the first gap layers; (h) the depth of the second gap layers.
The depth of the gap layer is defined as the distance of the top of the gap layer from the ice surface.

Antarctica (Wei et al 2019 ), while air temperature
has a profound impact on landfast ice formation (Li
et al 2020). To investigate the long-term impact of air

temperature on internal ice melting, we carried out
multidecadal (1979–2019) seasonal simulations using
ECMWF Reanalysis ERA-Interim from the European
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Centre for Medium-Range Weather Forecasts as for-
cing. The selection of ERA data was justified because
ERA-Interim had the best skill scores among five
atmospheric reanalysis data sets over the Antarctic
Sea ice (Jonassen et al 2019). For each melting sea-
son during 1979–2019, the simulation started on 1
November and ended on 31March using the same ini-
tial snow and ice thickness as in the control run.

3. Results

3.1. Mapping gap layers
Gap layers existed extensively during observa-
tions occurring at 37% of the measurement sites
(figure 1(b)). The depths of gap layers ranged from
0.05 to 1.0 m below the ice surface. The gap lay-
ers were found in locations that were snow-free or
where the snow pack was thin. In several locations
where gap layers were deep, statistically 0.4–0.8 cm
below the surface, the surface was melting. The study
domain was covered by level ice with thickness ran-
ging from 0.76 to 1.93m. The ice freeboard correlated
with the ice thickness (correlation coefficient 0.62),
and no surface flooding was observed, even close to
tide cracks between icebergs and islands. This sug-
gested that the gap layers were unlikely caused by ice
raft, deformation, or snow flooding. The details of
the gap layers are summarized in table S1. For the
first time, two-gap layers were discovered in a single
borehole at several locations, where the first gap layer
was 0.05–0.4 m below the ice surface and the second
gap layer was farther down, 0.6–1.0 m below the ice
surface (figure S1).

3.2. Snow and ice mass balance and internal ice
melting
During the simulation period, the observed mean
air temperature was −3.9 ± 4.1 ◦C with the highest
monthly means observed in December (1.7± 2.9 ◦C)
and January (−0.6 ± 1.8 ◦C). The air temperatures
were sufficiently high for themelt of most of the snow
pack, but there was no direct surface melt of ice, as
some snow remained on top of ice during the entire
study period. Hence, the ice melt was due to (a) solar
radiation that penetrated through the snow and (b)
the oceanic heat flux beneath the ice column.

The simulated snow and ice evolutions were well
in agreement with the observations (figure 2(a)). The
mean biases for simulated snow and ice thickness
from the HIGHTSI model were −0.008 ± 0.029 m
and −0.005 ± 0.022 m, respectively. The modeled
internal ice melting occurred initially on 20 Decem-
ber at a depth of 0.07 m below the ice surface. This
isothermal layer gradually moved downward with a
mean rate of 1.2 × 10−2 m d−1, and by 29 January
it had become deeper, down to a depth of 0.67 m.
By mid-February, the internal ice melting stopped
although the ice layer was still melting from the bot-
tom. In mid-March, the ice melting stopped, and

the freezing season started. In reality, landfast sea ice
may start to disintegrate in February due to impact
of wind and ocean current. This sea ice dynamics
was not considered in our modeling. The calculated
snow thickness and ice thickness are the thermody-
namic results. The modeled total sea ice melt rate was
2.6 × 10−3 m d−1 during the observation available
period of November and December, which was close
to the observed ice melt rate of 2.2 × 10−3 m d−1.
During the entire simulation period, internal melt
lasted for 56 days, with a mean rate of internal melt of
2.8× 10−3 md−1 and the total icemelt was 0.94m, of
which 0.16 m (17%) was internal melt, which agrees
with the internal melt rates of 1.0–7.5 × 10−3m d−1

and amount estimate of 0.02–0.22 m by Ackley et al
(2008). If turning off the internal melting parameter-
ization in the control run, it yielded a total ice melt of
0.83 m, which is some 12% smaller than in the model
run considering internal melting.

When a deep snow pack is present, the penet-
rating solar radiation is confined to its upper part
(figure 2(b)), because the extinction coefficient of
snow is large. When the snow pack gets thinner, solar
radiation penetrates through it and deeper into sea
ice, because the extinction coefficient of sea ice is
much smaller (Perovich 1996). In early November,
the air temperature and downward solar radiative flux
started to increase gradually and heat the snow pack
and upper ice layers. In the lower parts of the ice layer,
the conductive heat flux (figure 2(c)) was upward
in November but then decreased in magnitude and
turned downward in mid-January. The initial linear
in-ice temperature profile turned to a nonlinear one
by the second half of November, and further to prac-
tically isothermal conditions by late December. For a
given time step (figure 2(d)), the larger gain of solar
radiation at the top ice layer increased the ice tem-
perature and generated a downward heat flux in the
upper half of the ice layer, while the continuous heat
flux from the warm ocean to the ice bottom increased
ice temperature and generated an upward conductive
heat flux in the lower half of the ice layer. These fluxes
converged in the middle of the ice layer and resulted
in ice melt generating the gap layer.

The evolution of internal melting was revealed
by the control run. However, it is difficult to dir-
ectly compare the model results with the small-scale
survey. We, therefore, performed a group of model
experiments for the same period using the same
external forcing but different initial snow thickness
and ice thickness. Furthermore, clouds have a large
impact on the downward shortwave and longwave
radiation (Lachlan-Cope 2010), which affect the sur-
face energy balance and internalmelting. As the cloud
fraction was observed only four times a day, its time
series includes uncertainty, which may cause mod-
eling errors in the ice melt and development of the
gap layer. To investigate the sensitivity of the total
internal ice melt, maximum depth of internal melt,
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Figure 2. (a) The time series of snow and ice thickness, snow/ice temperature as well as the occurrence and depth of internal ice
melt layers (white regions); the zero location represents the snow/ice interface; the (∗) and (o) are observed snow and ice
thickness, respectively, before the ice was eroded and not safe for on-ice measurement. (b) The distribution of solar radiation
within snow and sea ice; (c) the distribution of conductive heat flux within snow and ice. The subplot (d) shows the instantaneous
profiles of (a)–(c) (vertical black lines) on 1 January. In (c), the positive values represent downward fluxes, and the negative ones
represent upward fluxes. The isolines of zero values are marked by solid gray lines.

and the onset date of internal melt to the cloud frac-
tion and the initial snow and ice thickness, we ran a
group of model experiments. To investigate the sens-
itivity to total cloud fraction, the initial snow and ice
conditions were set the same as in the control run.
To investigate the sensitivity to the initial snow thick-
ness, the initial ice thickness and time series of cloud
fraction were set the same as in the control run. To
investigate the sensitivity to initial ice thickness, the
snow thickness and the time series of the cloud frac-
tionwere the same as in the control run. To investigate

the sensitivity to total cloud fraction, the initial snow
and ice conditions were set the same as in the control
run (table S3).

The probability density distribution (PDF)
of modeled internal melting depth during entire
December was compared with the survey observa-
tions (figure 3(a)). Both observed and modeled gap
layer depths followed a Gaussian distribution. For
the gap layer between 0.3 m and 0.5 m, the modeled
and observed PDF of the gap layer depth were
close to each other, indicating that the evolution of
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Figure 3. (a) Statistical comparison between modeled and observed depth of the gap layers in December. (b) Sensitivity of the
total internal ice melt (black line); maximum depth of internal ice melt (red line) and the onset date of internal ice melt (blue) to
the initial snow thickness. (c) Sensitivity of the same parameters to the initial ice thickness, and (d) sensitivity of the same
parameters to cloud fraction.

internal melting and the gap layer can be realistically
modeled.

A deeper initial snowpack effectively reduces both
the total amount and maximum depth of internal
melt (figure 3(b)). These effects are due to the large
extinction coefficient and high surface albedo of
snow. Most of solar radiation is either reflected back
to air or used to heat the snow surface and the lay-
ers slightly below it. The onset of internal melt is
considerably delayed when the snow pack is deep.
This is because thicker snow needs more time to melt
and sublimate before bare ice can absorb more short-
wave radiation flux and penetrate further into sea
ice interior. Model sensitivity runs indicated that the
onset of snow-free conditions is linearly delayed by up
to a month when the initial snow thickness increases
from 0.1 to 0.7 m.

In lieu of snow, increasing initial ice thickness
increases the total amount and maximum depth of
internal ice melting (figure 3(c)). During the period
of internal melting, the ice layer is almost isothermal,
and the internal melt penetrates through most of the
ice layer. Hence, the thicker the ice is, the more ice is
available to melt. Increasing ice thickness only causes
a small delay in the onset of internal melt. This is
because the temperature increase in the upper ice
layers is mostly due to solar radiation (not affected by

the amount of ice below the melt layer) and the con-
tribution of the conductive heat flux is minor.

When cloud fraction increased from 0 to 1, the
maximumdepth of internalmelting showed a nonlin-
ear decrease, reduced by 33% from 0.73 m to 0.49 m,
while the total internal melting showed a nearly linear
trend, reduced by 61% from 0.23 m to 0.09 m. The
internal melting onset was postponed by a few days
(figure 3(d)).

3.3. Inter-annual variation of internal melting
For the multidecadal seasonal simulations driven by
the ERA-Interim Reanalysis data during 1979–2019,
we pay particular attention to (a) internal melt-
ing onset; (b) the maximum internal melting depth,
(c) the ratio of internal melting depth to the total
ice thickness; and (d) the timing when ice thickness
reduced to 60 cm after melting onset. Previous stud-
ies have indicated that when the ice thickness reaches
this threshold value, the breakup of landfast ice in the
Prydz Bay occurs (Lei et al 2010, Yang et al 2015).

The results showed that multidecadal seasonal
average snow thickness was between 0.04 and 0.14 m
with an average value of 0.07 m (figure S3(b)), in
agreement with the early finding of coastal thin snow
in the Prydz Bay (Lei et al 2010, Zhao et al 2019b),
indicating that ice internal melting easily occurred
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Figure 4. The time series of modeled (a) internal melting onset date, (b) maximum melting depth, (c) total internal melting,
(d) date of ice melt to 60 cm thickness during the melting season.

and developed in this region. The decreasing trend
(p < 0.05) of local air temperature (figure S3(a))
postponed internal melting onset 2.4 days per dec-
ade (figure 4(a)), and the total amount of internal
ice melting was accordingly reduced (figure 4(c)).
However, the maximum internal melting depth was
deepened (figure 4(b)), probably related to the poten-
tial increase of solar radiation, with decreasing cloud
fraction (figure S3(d)). After late 1990s, all paramet-
ers, in particular the internalmelt onset, total amount
of internal melting, fraction as well as the date of ice
melt to 60 cm showed large interannual variations,
which may be largely associated with spatial and tem-
poral variation of snow. The late date for ice melt-
down to 60 cm thickness may indirectly suggest that
the ice breakup could be delayed, and the coastal land-
fast sea ice accordingly has a higher chance to be shif-
ted from first-year ice to multi-year ice.

4. Discussion and conclusion

We observed and modeled gap layers caused by the
internal melting of the Antarctic landfast sea ice. The
gap layermay be thin, located a few centimeters below

the ice surface, or it may occur in themiddle of the ice
layer. Our results for shallow gap layers approximately
agree with previous studies (Fritsen et al 2001, Haas
et al 2001, Ackley et al 2008), which have reported gap
layers usually at some 0.2mbelow the ice surface. Our
results for deep gap layers are novel. According to our
model experiments, the deepening of gap layers on
multidecadal time scales is very likely associated with
decreasing air temperature and cloud fraction during
summer.

The results of thermodynamic modeling demon-
strated that the key factor for internal melt and gap
layer formation was the penetration of solar radi-
ation into the sea ice. Several other factors, includ-
ing air temperature, clouds, snow thickness, and ice
thickness, contributed to determining the melt onset
date as well as the total amount and maximum depth
of internal melt. Due to the large extinction coeffi-
cient and high surface albedo of snow, a deeper snow
pack reduces both the total amount and maximum
depth of internal ice melt and causes a delay in its
onset. In the case of bare ice, increasing ice thickness
increases the total amount and maximum depth of
internal melt.
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Ice color is quantitatively associatedwith the spec-
trum of solar radiation reflected from the ice sur-
face and scatters within the ice (Lu et al 2018a).
White ice is common in the Antarctic and usually res-
ults from formations of superimposed ice or snow
ice on the surface (Grenfell 1979). However, in the
coastline area of Prydz Bay, katabatic winds were so
strong that snow was blown away soon after the pre-
cipitation events, and therefore snow-free conditions
were often seen, making the ice color more bluish. A
piece of bluish ice indicates fewer internal scatterers,
such as gas bubbles, and thus has a lower albedo and
allows more penetration of light into the ice interior
(Perovich 1996, Lu et al 2018b). For blue ice, the
modeled maximum depth of internal melting was
0.81 m below the ice surface, which is 21% deeper
than in the control run.

Considering the formation of gap layers, Ackley
et al (2008) stressed the importance of the ice tem-
perature profile, physical-biological feedbacks, and
formation of superimposed ice and snow-ice. Our
results demonstrated the importance of air temperat-
ure, cloud, snow and ice thickness, which are directly
linked with the vertical distribution of solar radiation
absorbed within the ice layer. Our results suggest that
in summer conditions with strong solar radiation,
internal melting and associated formation of gap lay-
ers are possible evenwithout physical-biological feed-
back. We note, however, that our study addressed
Antarctic landfast sea ice, whereas Ackley et al (2008)
addressed drift ice zone, where the boundary condi-
tions for internal melting may be somewhat different.
Considering the importance of the shape of the tem-
perature profile, our model results agree with Ackley
et al (2008). In our experiments, the oceanic heat flux
at the ice base and the strong solar radiation absorbed
in the upper layer of the ice column resulted in a pro-
file shape that led to the convergence of conductive
heat flux in the middle of the ice column. It resulted
in strong internal melting.

There had not been major progress or break-
through on gap layer investigations since the study
of Ackley et al (2008). At least we are not aware of
any gap layer modeling study for the Antarctic sea ice.
In this paper, we demonstrated that gap layers can
be formed by the internal melting of sea ice. Because
of the sparse in situ observations, the optical proper-
ties of sea ice and snow were presented as integrated
bulk values in our model experiments. Although the
model runs reproduced the development of gap lay-
ers deep below the ice surface, the exact physical
mechanisms responsible for the simultaneous occur-
rence of two gap layers at different depths in an ice
column remain unclear. The brine channel migra-
tion and gravity drainage are important micro-scale
processes within sea ice (Marchenko and Lishman
2017, Thomas et al 2020), and they may also play
considerable roles in formation of deep gap layers.
Hence, more field data are needed. For example,

observations of the vertical profile of physical prop-
erties and microstructure of sea ice could result in a
better understanding of the spatial distribution of gap
layers and the factors controlling it. The water within
the gap layers, as the water within ice ridges, may
enhance biological activity and biomass production
in the ice (Fernández-Méndez et al 2018). The relev-
ant physical and biological observations are scheduled
for a future field campaign under the support of the
Chinese National Antarctic Research Expedition and
will enable new discoveries of characteristics of land
fast sea ice in other parts of the Antarctic (Heil et al
2011, Arndt et al 2020).
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