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Abstract
Current forecast systems provide reliable deterministic forecasts at the scale of weather (1–7 days)
and probabilistic outcomes at the scale of seasons (1–9 months). Only in recent years research has
begun transitioning to operational settings to provide numerical predictions for a lead time of 2–4
weeks, a timescale known as subseasonal. The Subseasonal Experiment (SubX) multi-model
ensemble mean precipitation forecast (2017–2021) for days 8–14 (week-2 forecast) is used as a
covariate in logistic regression models to predict fire risk in the Amazon. In a complementary
experiment, a vegetation health index (VHI) is added to SubX precipitation forecasts as a predictor
of fires. We find that fire risk can be skillfully assessed in most of the Amazon where fires occur
regularly. In some sectors, SubX week-2 precipitation alone is a reliable predictor of fire risk, but
the addition of VHI as a predictor results both in (a) a larger portion of the Amazon domain with
skillful forecasts and; (b) higher skill in some sectors. By comparing two sectors of the Amazon, we
find that the added information provided by VHI is most relevant where the mosaic of land covers
includes savannas and grassland, whereas SubX precipitation can be used as the sole predictor for
week-2 fire risk forecast in areas where the mosaic of land cover is dominated by forests. Our
results illustrate the potential for using numerical model forecasts, at the subseasonal timescale, in
combination with satellite remote sensing of vegetation to obtain skillful fire risk forecasts in the
Amazon. The operationalization of the methods presented in this study could allow for better
preparedness and fire risk reduction in the Amazon with a lead time greater than a week.

1. Introduction

The use of statistical methods to transform numerical
model outputs into calibrated seasonal predictions
is a well-established field in climate research with
applications in agriculture (Esquivel et al 2018, Shelia
et al 2019, Fernandes et al 2020, Pons et al 2021),
water resources (Muñoz et al 2010, Robertson et al
2014, Najafi et al 2021) and public health (Muñoz
et al 2017, 2020, Landman et al 2020, Colón-González
et al 2021). In ecosystems management, one type of
application consists of combining statistical meth-
ods with numerical predictions to assess or fore-
cast seasonal fires (Aragão et al 2007, Murdiyarso

and Adiningsih 2007, van der Werf et al 2008,
Field et al 2009, Fernandes et al 2017). Sea surface
temperature (SST) in the Atlantic and the Pacific
basins are good indicators of anomalous precip-
itation, at various timescales, in the Amazon (Fu
et al 2001, Espinoza et al 2013, Fernandes et al 2015,
Marengo and Espinoza 2016). Thus, SST forecast
and observations can be used to predict fire occur-
rence in the Amazon (Chen et al 2011, Fernandes
et al 2011) and other fire prone regions (Ceccato
et al 2014, Chen et al 2016, Turco et al 2018) with
a lead time of 1–4 months. At the other end of
the prediction timescale lies fire weather forecasts
(1–7 days), varying in spatial coverage from global
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(Field et al 2015, Di Giuseppe et al 2020) to regional,
where models are calibrated to better represent the
environmental characteristics of the region (IDEAM
2015, Aliaga Nestares et al 2018, Setzer et al 2019,
Martins et al 2020).

While both timescales provide decision-makers
with much needed information, seasonal forecasts
can be too long a horizon for the positioning of
resources and the fire weather can be too short. In
between lies the 2-to-4 week subseasonal timescale,
for which numerical prediction has recently been
established by research-to-operation efforts such as
the S2S Prediction (Vitart et al 2017) and the Sub-
seasonal Experiment (SubX) (Pegion et al 2019).
We use the SubX model outputs, given the statist-
ically significant skill of precipitation forecast over
all months in South America and the facilitated data
retrieval and manipulation offered by the Interna-
tional Research Institute for Climate and Society (IRI)
Data Library (Blumenthal et al 2014).

We develop a hybrid (dynamical-statistical)
model using the NextGen prediction system meth-
odological approach (Munoz et al 2019, WMO 2020)
to predict fire risk. NextGen involves designing, cal-
ibrating, building ensembles, and verifying objective
forecasts by first identifying decision-relevant vari-
ables followed by the analysis of the physical mechan-
isms, sources of predictability and suitable candidate
predictors. Here, the decision-relevant variable is fire
risk, defined as the likelihood of active fires occur-
rence as a function of precipitation and vegetation
health conditions. This definition might be con-
sidered ‘event risk’ in disaster or hazards literature
(Sarewitz et al 2003), as it does not explicitly consider
the vulnerability of specific communities to fire. The
Visible Infrared Imaging Radiometer Suite (VIIRS)
(Hillger et al 2013, Schroeder and Giglio 2017) active
fires are modeled as a function of the SubX multi-
model ensemble mean (MME) week-2 precipitation
forecast, for the 2017–2021 period. A complementary
experiment includes the satellite-based NOAA Veget-
ation Health Index (VHI, Kogan 1997, 2001) as an
additional predictor. VHI is updated in real-time and
it reliably detects ecosystem sensitivity to meteorolo-
gical conditions at various timescales (Andujar et al
2017, Kogan et al 2017). We then take a closer look at
the skill of the statistical models in two sectors of the
Amazon, each representative of a distinct fire season.
Lastly, we explore the role of contrasting land covers
on fire risk models’ performance in each of these two
sectors.

2. Data andmethods

2.1. VIIRS active fires (VNP14IMG)
Fire occurrence is estimated using the active fire
product from the VIIRS instrument on board of the
Suomi National Polar-orbiting Partnership satellite.
The daily VIIRS product at a resolution of 375 m

(VNP14IMG) consists of a fire mask with ten classes.
Three identify low, nominal and high confidence
levels of active fire detection while the other seven are
classes unrelated to fires, such as water and clouds
(table 1 of Schroeder and Giglio 2017). We res-
ampled all variables to an intermediary grid of 0.22◦

latitude-longitude resolutionwithinwhich, every act-
ive fire of nominal and high confidence is coun-
ted. The resampled daily active fires are then aver-
aged to other timescales as needed (sections 2.5.1 and
2.5.2). Although the focus of our study is the Amazon
biome, the full domain of the analyses comprises of
tropical South America (81.25◦ W–44.25◦ W and
19.5◦ S–11.5◦ N). The VIIRS data is available from
January 2012 to current.

2.2. Subseasonal precipitation forecast (SubX)
SubX (Kirtman et al 2017, Pegion et al 2019) consists
of a multimodel publicly available database of histor-
ical re-forecasts and real-time forecasts. The histor-
ical re-forecasts start in 1999 and end between 2014
and 2016 depending on the model. Real-time fore-
casts are available from six groups and include fore-
casts for at least 32 days beyond the initialization
date (table 1). The real-time forecasts start at vari-
ous times in 2017. By the 5 August initialization date,
five of the six models produce forecasts except for
NCEP-CFSv2 which starts on 15 October. All mod-
els maintain up-to-date forecasts on a weekly (or
more frequent) basis that can be accessed through
IRI Data Library (Blumenthal et al 2014). Although
combined historical re-forecast and real-time fore-
cast provide data for over 20 years, we use only out-
put from the real-time forecasts, beginning in 2017,
as the number of ensemble members in each model
differs from historical re-forecast to real-time peri-
ods and a multi-model mean calculated over 1999–
2021 would be inconsistent. The SubX models’ spa-
tial resolution of 1◦ latitude-longitude, was linearly
interpolated to 0.22◦ latitude-longitude grid tomatch
the resolution of aggregated VIIRS data (section 2.1).
Spatially downscaling numerical model outputs can
introduce noise in interpolated precipitation (Wood
et al 2004), especially during the wet season. This
should be less of an issue during the dry season. To
test this assumption, we compared the distribution
of a sample consisted of SubXPr multimodel mean
week-2 forecast at its original resolution (1◦ latitude-
longitude) with the linearly downscaled resolution
(0.22◦ latitude-longitude) sample during one dry
season in southern Amazon. Both samples include
every gridcell within the domain of coordinates
76◦ W–57◦ W and 13◦ S–4◦ S and the 13 weeks
of the 2018 dry season (July–September). Using a
two-sample Kolmogorov–Smirnov test, we tested the
null hypothesis that both samples came from the
same continuous distribution. The test result does
not reject the null hypothesis at the 1% significant
level.

2



Environ. Res. Lett. 17 (2022) 074009 K Fernandes et al

Table 1. SubX model names, number of real-time forecast ensemble members, length of forecast and corresponding references.

Model Institution # of members

Forecast length in days
(1st initialization date
in 2017) References

NCEP-CFSv2 National Centers for
Environmental
Prediction (NCEP)

4 45 (15 October) Saha et al (2014)

EMC-GEFS NCEP Environmental
Modeling Center

21 35 (30 June) Zhu et al (2014),
Zhou et al (2016),
Zhou et al (2017)

GMAO-GEOS National Aeronautics
and Space
Administration
Global Modeling and
Assimilation Office

4 45 (25 July) Rienecker et al (2008),
Koster et al (2000),
Molod et al (2012),
Reichle and Liu
(2014), Field et al
(2015)

RSMAS-CCSM4 University of Miami
Rosenstiel School of
Marine and
Atmospheric Science
(running National
Center for
Atmospheric Research
CCSM4)

9 45 (25 June) Infanti and Kirtman
(2016)

NRL-NESM Naval Research
Laboratory

1 45 (5 August) Metzger et al (2014),
Hogan et al (2014)

ESRL-FIM National Oceanic and
Atmospheric
Administration Earth
System Research
Laboratory

4 32 (2 August) Sun et al (2018a),
(2018b)

The SubX real-time precipitation forecast (Sub-
XPr) is arranged to reproduce 52 week-2 (days 8–14)
forecast period per year by:

(a) Calculating, for each SubX model, the ensemble
members mean week-2 precipitation forecast
corresponding to 52 annual non-overlapping
weeks, and a final sample of 208 elements
per model (52 week-2 forecasts per year times
4 years. Mid August 2017–mid August 2021). See
table S1 for details.

(b) TheMMEmean consist of week-2 forecasts aver-
aged among the six SubX models.

Constructing amulti-modelmean of week-2 real-
time forecasts is a challenging task. The different
models are initialized on different days of the week
and at different intervals. To take advantage of Wed-
nesday initializations in three of the sixmodels, we fix
non-overlapping week-2 real-time forecasts (average
of forecast days 8–14) from Thursday (day 8) toWed-
nesday (day 14). For the other three models, week-2
real-time forecast varies from average forecast days 9–
15 to average forecast days 12–18 depending on the
SubX model and the forecast week (table 2).

2.3. Vegetation health index (VHI)
Fire ignition in the Amazon results from human
activities, but the intensity and spread can be

regulated by natural processes, such as vegetation
water stress (Asner and Alencar 2010). One indicator
of vegetation stress is the satellite-based NOAA-STAR
VHI calculated from the vegetation condition index
(VCI), a proxy for vegetationmoisture, and temperat-
ure condition index (TCI), a proxy for thermal effects
(Kogan 2001)

VCI= 100
NDVI−NDVImin

NDVImax −NDVImin
(1)

TCI= 100
Tmax−T

Tmax −Tmin
(2)

VHI=∝ VCI+(1+∝)TCI, where ∝= 0.5. (3)

VHI is available at 4 km spatial resolution, which
was also re-gridded to the 0.22◦ latitude-longitude
resolution. Near real-time weekly-averaged VHI is
released on the day of the week corresponding to
8 January of each year. In 2018, for example, the
product is updated every Monday (table 2) for a total
of 52 global maps per year. For VHI to be used as a
predictor, the data needs to be available by the weekly
initialization date of the SubXmulti-modelmeanpre-
cipitation forecast, and this varies within the years of
study. From2012 to current, the indices are calculated
using the VIIRS instrument (Kogan et al 2015, 2017).
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Table 2. Example of initialization dates used to produce a multi-model mean week-2 forecast for target date 18–24 January 2018, shaded
blue in the table. The green cells mark initialization dates for each model. The X marks the Wednesday (10 January) initialization for a
week-2 (average of forecast days 8–14) forecast and the closest prior dates for models with initializations on days other than Wednesday.
The actual lead time for each forecast is shown below the target week-2 forecast period. The dates of observed VHI and VIIRS active fires
corresponding to the example SubX precipitation target week are also marked in the table.

Week day F S S M T W T F S S M T W Week-2 (Th-Wed) forecast

Initialization
day 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

NCEP-CFSv2 Dly X 8 9 10 11 12 13 14
EMC-GEFS W X 8 9 10 11 12 13 14
GMAO-GEOS 5 days X 12 13 14 15 16 17 18
RSMAS-CCSM4 Su X 11 12 13 14 15 16 17
ESRL-FIM W X 8 9 10 11 12 13 14
NRL-NESM Sa, Su, Mo,

Tu
X 9 10 11 12 13 14 15

VHI Mo X
VIIRS-Weekly
AF

The 2017–2021 VHI is obtained for dates corres-
ponding to the available SubX week-2 precipitation
forecasts.

2.4. Land cover-Mapbiomas
We use Mapbiomas Land Cover Collection-6 Brazil
(Souza et al 2020) in two areas of the Amazon chosen
for a closer evaluation of fire risk model skills. We
chose the year 2019 land-cover as representative of the
2017–2021 period.

2.5. Methods
2.5.1. Active fire season
The analysis relating precipitation, fires and veget-
ation health is conducted for the peak fire season.
The nearly 10 years of VIIRS data (January 2012–
mid-August 2021) is used to determine the climatolo-
gical most active fire trimester at each gridcell by cal-
culating monthly averages of daily VIIRS active fire
data (section 2.1) and then calculating the climato-
logy for the annual 12 overlapping trimesters (JFM,
FMA, etc). The trimester with highest fire activity
(FA) is then identified (figure 1).

2.5.2. Weekly data
Once the most active fire trimester is identified,
the VIIRS, SubXPr and VHI data for the 13 weeks
within that trimester are fitted in a logistic regres-
sion model. If a gridcell’s most active fire tri-
mester is September–November, data for the season’s
13 weeks of years 2017, 2018, 2019 and 2020 (total
of 52 weeks = 13 weeks times 4 years) is fitted in the
statistical model. For March–May, for example, the
data sample contains the trimester’s 13 weeks of 2018,
2019, 2020 and 2021 given the SubX multi-model
forecast is available fromAugust 2017 to August 2021.

2.5.3. Statistical analysis of fire probability
Fires are used in the Amazon as a tool to clear debris
from deforestation and to manage agropastoral land.

They can occur concentrated in a few weeks as burn-
ing is planned for times when vegetation is dry. Thus,
the timeseries of weekly FA may show a mix of high
activity interspaced by no fires. In the majority of our
study domain, weeks with no fires occur at least dur-
ing 20%of the time in the dry season (figure S1) and a
two-mode behavior (fire/no-fire) is then fitted to pre-
dictors using logistic regression.

To assess the potential for predicting weekly FA,
we choose logistic regression expressed as:

ln

(
P(FA= 1)

1− P(FA= 1)

)
= α+β1X1 + . . .+βnXn (4)

where P(FA = 1) is the probability of fire occurrence
(FA= 1) modeled as a linear combination of predict-
ors Xn with slopes βn and an intercept α. The prob-
ability of fire occurrence is modeled as a function of
non-overlapping week-2 SubXPr and VHI. The FA
binary response is coded 1 for values greater than 0
and 0 for no fire within a 0.22◦ latitude-longitude
gridcell.

The logistic regressionmodels were fit usingMat-
lab 2020a fitglm function (MathWorks 2020) for a
binomial distribution. In one experiment, FA was
fit to SubXPr and in the other FA was fit to Sub-
XPr and VHI. The experiments are henceforth called
FA_f (SubXPr) and FA_f (SubXPr&VHI), respect-
ively. The logistic regression models were cross-
validated using the leave-one-out option, which cor-
responds to leaving out one week of paired datasets
at each iteration. The assessment of gridcell’s logistic
regressionmodel fit is evaluated by determining what
portion of observed positives is classified as positive
(sensitivity) and what portion of observed negatives
is classified as negative (specificity). A plot of sensit-
ivity against 1-specificity describes the receiver oper-
ating characteristics (ROC, Wilks 2011) and good-
ness of fit can be assessed as the area under the ROC

4
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Figure 1.Most active fire trimester at each gridcell based on VIIRS active fire dataset. White areas denote absence of fires or
insufficient data to determine the most fire active trimester.

curve (AUC). An AUC of 0.5 represents discrimina-
tion expected by chance to predict positive outcomes.
AUC above 0.5 mean that the positive outcome has
a higher predicted probability than the negative sub-
ject, and the logistic regression model is considered
skillful. A value of 1 stands for a perfect model.

3. Results

3.1. SubXPr and VHI as predictors of fire
probability
We discuss our results for a subset of gridcells with
intermediate and high values of AUC (>0.6). In some
sectors, using SubXPr week-2 forecast as the sole
predictor (FA_f(SubXPr) results in AUC > 0.7, not-
ably in the southwestern Brazilian Amazon marked
with a box in figure 2(a) and in eastern equatorial
Amazon. AUC values show improvement for exper-
iment FA_f (SubXPr&VHI), especially in the south-
ern Amazonwhere an extensive area shows AUC> 0.6
(figure 2(b)). An exception is the eastern equatorial
Amazon, where precipitation alone results in better
performance both in absolute values and in number
of gridcells with high AUC.

The results in figure 2 illustrate the potential
for relying on SubX multi-model mean precipitation
forecasts to determine the probability of fire occur-
rence in the Amazon with a lead of 8–14 days (week-
2). Moreover, by including the state of vegetation as
an indicator of fire risk, the logistic regressionmodels

perform better over a larger sector of tropical South
America.

3.2. Model performance in southern and northern
Amazon
To further explore fire occurrence response to SubXPr
and VHI, we selected two sectors of the Amazon with
a cluster of high AUCs for each of the experiments.
In the southern Amazon (73.6◦ W–68.5◦ W, 9.8◦ S–
6.5◦ S), where the main climatological fire season is
August–October, high AUC is found for experiment
FA_f(SubXPr) (figure 2(a)). In the northern sector
(63◦ W–59.2◦ W, 1.7◦ S–4.8◦ N), where the climato-
logical fire season is January–April, a cluster of high
AUC is found for experiment FA_f (SubXPr&VHI)
(figure 2(b)).

3.2.1. Forecast time series
Wecalculate, for each spatial domain, howmany grid-
cells predicted the correct outcome among those with
AUC > 0.6. A successful fire forecast means fire prob-
ability higher than 0.5 in a gridcell that detected fire
or fire probability below or equal 0.5 in a gridcell that
detected no-fire. The gridcells with a ‘hit’ are coun-
ted and a ratio between the number of correct hits
and the total number of gridcells with AUC > 0.6
within the domain is calculated for every forecast
week (figure 3). Given the first SubXPr forecast is
available for theweek of 17–23August 2017, theweeks
used in the cross-validated models within the south-
ern domain (fire season August–October) start in

5
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Figure 2. Area under the ROC curve for logistic regression using (a) non-overlapping week-2 SubX multi-model mean
precipitation forecast (FA_f (SubXPr)) and (b) non-overlapping week-2 SubX multi-model mean precipitation forecast and VHI
(FA_f (SubXPr&VHI)), as predictor(s) of fire risk during the most active fire trimester at each grid cell. Values of AUC above 0.5
describe a skillful model and those above 0.6 are shown. Red boxes show the areas of the analyses presented in section 3.2. The
green line marks the Amazon rainforest biome.

2017 and end in 2021. This corresponds to a total of
52 weeks distributed in 11 weeks in 2017, 13 weeks in
2018, 2019 and 2020, and 2 weeks in 2021. The weeks
used for the northern domain (fire season January–
April) start in 2018 and end in 2021 (table S1).

Within the southern domain the number of
gridcells with AUC > 0.6 are 154 and 161 for
FA_f (SubXPr) and FA_f (SubXPr&VHI), respect-
ively. This similar number of skillful models can be
observed in figures 2(a) and (b), where the grid-
cells with AUC > 0.6 are shaded. Collectively, both
experiments result in similar performance with an
average of 75.6% of gridcells correctly predicting fire
risk in experiment FA_f (SubXPr) and 74.3% in the
FA_f (SubXPr&VHI) experiment (figure 3(a)).

In the northern domain the number of gridcells
with AUC > 0.6 are 76 and 127 for experiments
FA_f (SubXPr) and FA_f (SubXPr&VHI), respect-
ively. On average, 74% of gridcells correctly fore-
cast outcomes for the FA_f(SubXPr) experiment and
69% for FA_f(SubXPr&VHI) (figure 3(b)). Relat-
ively, the models in experiment FA_f(SubXPr) out-
perform those of experiment FA_f(SubXPr&VHI),
but the latter represents a considerably larger over-
all area—more gridcells—with skillful forecasts. The
average 74% correct hits from FA_f(SubXPr) cor-
responds to 56 gridcells, whereas the 69% from
FA_f(SubXPr&VHI) corresponds to 87 gridcells,
indicating that the addition of VHI as predictor
provides a more useful set of information in the
northern domain, especially for extreme VHI values
(see figure 4 discussion). In grasslands, common in
the northern domain (section 3.2.3), fires occur reg-
ularly, and fire risk will be mainly determined by
whether it rains or not. However, if at the start of

and during the dry season VHI is ‘neutral to high-
wetness’, VHI becomes a valuable indicator of fire-
risk as absence of rain will not immediately trans-
late in higher fire-risk given the high-wetness state
of vegetation. The high VHI state in 2021 (figure
S2) would explain the models’ performance in that
year (figure 3(b)), when SubXPr alone did a poorer
job in predicting fire risk than SubXPr and VHI
together.

3.2.2. Fire risk sensitivity to SubXPr and VHI
To test fire risk sensitivity to SubXPr and VHI in two
domains identified in section 3.2, we fitted a logistic
regression model to one continuous sample com-
prised of data from gridcells within each domain and
all 52 weeks. Our objective is to evaluate if one single
logistic regression model fitted to the aggregated data
from each domain exhibits characteristics similar to
the gridcells’ individual models, namely low sensitiv-
ity to VHI in the southern domain and high sensitiv-
ity in the northern domain. The southern domain has
the spatial dimension of 25 (longitude) per 17 (latit-
ude) cells for a total of 425 at each timestep. A sample
derived from this domain contains a maximum of
22 100 elements (425 gridcells times 52 weeks). In the
northern domain the spatial dimension is 18 (lon-
gitude) per 32 (latitude) resulting in 576 gridcells at
each timestep for amaximumof 29 952 elements (576
gridcells times 52 weeks). The sample sizes for the
southern and northern sectors contain in fact 13 185
and 14 201 elements, respectively, once all the grid-
cells with an undefined fire season (figure 1) and
occasional missing data are removed. We then repro-
duce the experiment FA_f(SubXPr&VHI) using the
aggregate covariates for each domain and present

6
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Figure 3. Ratio between the number of gridcells with correct week-2 fire risk forecast and the total number of gridcells for which a
skilfull model exist (AUC > 0.6) within the southern (a) and northern (b) domains. A correct outcome means the logistical model
forecasted a probability greater than 0.5 for fire occurrence in gridcells where fires were detected and lower or equal to 0.5 for
gridcells with no-fire.

Figure 4. Fire probability, measured as probability of occurrence of fires (FA), as a function of precipitation for low (red) and high
(blue) VHI conditions within the southern (a) and northern (b) domains.
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Table 3. Logistic regression coefficients (β), standardized errors
(SE), statistical significance (P), and area under the receiver
operating characteristics (ROC) curve (AUC) for regression
predictors of fire risk derived from aggregated gridcells within the
southern and northern domains.

Southern domain β SE P AUC

Coefficients 0.63
Intercept 1.3 0.067 <0.01
SubXPr −0.27 0.012 <0.01
VHI −0.01 0.002 <0.01
Northern domain 0.73
Intercept 1.99 0.064 <0.01
SubXPr −0.25 0.007 <0.01
VHI −0.021 0.001 <0.01

the logistic regression models’ coefficients, standard
error, statistical significance, and AUC in table 3.

The SubXPr and fire relationship sensitivity to
VHI is evaluated from setting two extreme VHI scen-
arios. Low VHI is the average of the 10% lowest val-
ues in the aggregated time series used to fit the stat-
istical models and high VHI is the average of the 10%
highest values. This is done for both domains using
equations (5) and (6). Low VHI values are 21 and
19, and high VHI are 62 and 72 for the southern and
northern domains respectively

Southern Domain P(AF= 1) =
e1.3−0.27∗SubXPr−0.01∗VHI

1+ e1.3−0.27∗SubXPr−0.01∗VHI

(5)

Northern Domain P(AF= 1) =
e1.99−0.25∗SubXPr−0.021∗VHI

1+ e1.99−0.25∗SubXPr−0.021∗VHI .

(6)

Fire probability as a function of SubXPr for low
VHI (vegetation stress) shows higher values in gen-
eral than that describing fire probability for high VHI
(no-stress/high-wetness) conditions in the southern
domain (figure 4(a)). For precipitation of 3 mm d−1

there is a 45% chance of observing fires under high
VHI conditions, increasing to 56% for low VHI,
indicating low fire sensitivity to vegetation conditions
regardless of precipitation amounts.

In the northern domain, a more robust shift of
probabilities is observed, especially for lower values
of precipitation (<7 mm d−1) as seen figure 4(b),
describing a prominent role of vegetation health in
determining fire risk. At 3 mm d−1, fire risk goes
from 43% for high VHI to 69% for low VHI. Bey-
ond 10 mm d−1, the two VHI scenarios converge to
describe a dominant role of precipitation on fire risk
regardless of the state of vegetation.

3.2.3. Land cover
These two sectors of the Amazon are characterized by
different land covers as estimated by the Mapbiomas
Land Cover classification for year 2019 (figure S3).
We resampled the 30meter resolution land covermap
(Souza et al 2020) to the VHI 4 km original grid,
by retaining the class with the highest frequency to

determine the land covers most influential for the
VHI estimate. The southern domain contains 98%
forest and nearly 2% pasture (figure 5(a)), whereas in
the northern domain vegetation is more varied and
comprised of 77% forest, 20% grassland and 1.6%
pasture (figure 5(b)).

The vegetation distribution in the two sectors,
provides a plausible explanation for the distinct fire
risk sensitivity to VHI. In VHI, greenness normal-
ized vegetation index (NDVI) is as a proxy for veget-
ation moisture conditions (equation (1)). However,
reduced cloud cover and more light toward the end
of the dry season can result in a green-up (higher
NDVI) of the Amazon forest (Huete et al 2006). At
the spatial scale of VHI (4 km), this green up could
mask NDVI of other land covers within a gridcell,
reducing the power of VHI as an indicator of fire
risk in land covers that are more susceptible to burn-
ing but border green forest patches. Even if VHI can
describe forest water stress, that does not necessar-
ily mean susceptibility to fires. Understory humidity
and proximity to fire sources, also play an important
role in determining whether fires occur in forest land
covers.

In contrast, savannas and grasslands are more
sensitive to short-termwater stress and VHI responds
tometeorological drought, or recovery from it, within
a couple of weeks to a month (Sehgal et al 2021), bet-
ter reflecting short-term vegetation sensitivity to fires
(Anderson et al 2010, Zhao et al 2017) adding predict-
ive power to fire risk assessment weeks in advance.

4. Discussion

While atmospheric scientists focus on the drivers of
fires, fire ecologists focus on the atmospheric demand
for moisture (e.g. vapor pressure deficit) and the
potential for vegetation to become fuel (Fu et al 2021).
Our study aims at reducing this gap by combining
observed states of vegetation with precipitation fore-
casts. Using a SubX multimodel ensemble mean of
week-2 precipitation forecasts, we find that fire prob-
ability can be skillfully predicted in large portions of
the Amazon. By pairing week-2 SubXPr with VHI to
predict fire probability, we find areas in which logistic
models’ skills improve upon those using only week-
2 SubXPr forecast as a predictor. It is also evident
that a greater number of gridcells in the domain of
study present skillful statistical forecast for the exper-
iment using both VHI and SubXPr as predictors of
fire risk. This is especially true in the Brazilian arc of
deforestation and in Bolivia that are characterized by
land covers that are more susceptible to fires (grass-
land, fallow, and agropastoral land). In areas where
land cover is dominated by forests, the role of vegeta-
tion health as a predictor of fire risk is modest. That is
the case of the southern Brazilian Amazon, where fire
risk is mainly driven by SubXPr and the probability
of fire occurrence increases only about 10% for very
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Figure 5. Predominance of land cover types in in the southern (a) and northern (b) domains.

low (water stressed) to very high VHI across different
precipitation forecasts.

In contrast, in the northern Amazonwhere savan-
nas and grasslands are more prevalent, VHI status
helps determine fire risk in the weeks ahead. This
is seen in the larger number of gridcell with skilfull
fire risk forecast for experiment FA_f (SubXPr&VHI)
compared to FA_f (SubXPr). The sensitivity test also
indicates that fire risk increases by as much as 28%
from high VHI (non-stressed) to low VHI for lower
precipitation values indicating the more promin-
ent role of vegetation status in determining fire
risk.

5. Conclusions

Our study shows the potential for using precipita-
tion subseasonal forecasts in combination with veget-
ation health in a hybrid dynamical-statistical model
to forecast fire risk. The operationalization of the
methods presented in this study have the potential
to inform better practices for fire prevention and
mitigation in the Amazon with lead time beyond
one week, which is a crucial timescale for fire man-
agement resources allocation. Continuous improve-
ment of statistical models’ accuracy can potentially
be achieved by using satellite vegetation conditions
at higher spatial resolution, which would allow for
better discrimination between forests and non-forest
land covers, and by includingmore years of SubX pre-
cipitation forecast.

Data availability statement

VNP14IMG (VIIRS Fires)- https://firms.modaps.eos
dis.nasa.gov/download/
VHI:www.star.nesdis.noaa.gov/pub/corp/scsb/wguo/
data/Blended_VH_4km/geo_TIFF

Mapbiomas: http://mapbiomas.org
The data that support the findings of this study

are openly available at the following URL/DOI:
10.7916/D8PG249H.

Acknowledgments

We acknowledge the agencies that support the SubX
Project and the modeling groups for producing
and making available their model output, includ-
ing the National Centers for Environmental Pre-
diction (NCEP), the NCEP Environmental Mod-
eling Center, the National Aeronautics and Space
Administration Global Modeling and Assimilation
Office, the National Center for Atmospheric Research
and University of Miami Rosenstiel School of Mar-
ine and Atmospheric Science, the Naval Research
Laboratory, the National Oceanic and Atmospheric
Administration Earth System Research Laboratory,
and Environment and Climate Change Canada. We
wish to thank Columbia University’s International
Research Institute for Climate and Society (IRI) Cli-
mate Data Library for disseminating the SubX data
(https://iridl.ldeo.columbia.edu/SOURCES/.Models/.
SubX/; DOI: 10.7916/D8PG249H).

K F and M B, wish to acknowledge the support of
the SERVIR-Amazonia, a joint development initiative
of the National Aeronautics and Space Administra-
tion (NASA) and the United States Agency for Inter-
national Development (USAID). A GMwas partially
supported by NOAA Grant: NA18OAR4310275 and
ACToday, the first Columbia World Project. We also
thank the anonymous reviewers for the constructive
comments and suggestions.

Conflict of interest

The authors declare no competing interests.

9

https://firms.modaps.eosdis.nasa.gov/download/
https://firms.modaps.eosdis.nasa.gov/download/
https://www.star.nesdis.noaa.gov/pub/corp/scsb/wguo/data/Blended_VH_4km/geo_TIFF
https://www.star.nesdis.noaa.gov/pub/corp/scsb/wguo/data/Blended_VH_4km/geo_TIFF
http://mapbiomas.org
https://10.7916/D8PG249H
https://iridl.ldeo.columbia.edu/SOURCES/.Models/.SubX/
https://iridl.ldeo.columbia.edu/SOURCES/.Models/.SubX/
https://10.7916/D8PG249H


Environ. Res. Lett. 17 (2022) 074009 K Fernandes et al

ORCID iDs

Kátia Fernandes https://orcid.org/0000-0001-
8160-0769
Michael Bell https://orcid.org/0000-0002-5867-
9787
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