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Abstract
Rapid development of remote sensing and Light Detection and Ranging (LiDAR) technology has
refined estimates of tree architecture and extrapolation of biomass across large spatial scales. Yet,
current biomass maps show significant discrepancies and mismatch to independent ground data. A
potential obstacle to accurate biomass estimation is the loss of information on wood density, which
can vary at local and regional scales, in the extrapolation process. Here we investigate if variation in
wood specific gravity (WSG) substantially impacts the distribution of above-ground biomass
(AGB) across a range of scales from local plots to large regions. We collected wood cores and
measured tree volume in 341 forest sites across large altitudinal and climatic gradients in
Colombia. At all spatial scales, variation in WSG was substantial compared to variation in volume.
Imputing study-wide average values of WSG induced regional biases in AGB estimates of almost
30%, consequently undervaluing the difference between forest areas of low and high average wood
density. Further, neither stem size nor climate usefully predicted WSG when accounting for spatial
dependencies among our sampling plots. These results suggest that remote sensing- and
LiDAR-based projections to biomass estimates can be considerably improved by explicitly
accounting for spatial variation in WSG, necessitating further research on the spatial distribution
of WSG and potential environmental predictors to advance efficient and accurate large-scale
mapping of biomass.

1. Introduction

The world’s forests contain the largest pool of car-
bon in the biosphere (Bar-On et al 2018) and play
an essential role in the global carbon budget (Pan
et al 2011, Friedlingstein et al 2019). Carbon-focused
conservation programs have been established to mit-
igate increasing levels of atmospheric carbon diox-
ide (Houghton et al 2015). For instance, multilat-
eral REDD+ initiatives have raised more than 5 bil-
lion US dollars to incentivise reduction of tropical
deforestation and forest degradation (Watson et al
2021). However, large uncertainties remain in the
forest carbon stock estimates that underpin such

programs (Avitabile et al 2016, Réjou-Méchain et al
2019, Ploton et al 2020).

Quantification of forest biomass traditionally is
based directly on inventory data, but rapid devel-
opment of remote sensing and LiDAR technolo-
gies provides new opportunities for accurate and
automated measurements of forest structure, from
individual tree architecture (Raumonen et al 2013,
Kellner et al 2019) to regional and global stand-level
estimates (Saatchi et al 2011, Baccini et al 2012, Asner
and Mascaro 2014, Ferraz et al 2016). Such remote
sensing techniques can provide tree volume estimates
across large spatial scales, but lack the ability to detect
variation in xylem densities, commonly represented
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as wood specific gravity (WSG): the oven-dry mass
per unit water-saturated volume of wood, relative
to the density of water (Williamson and Wiemann
2010). Species-average values range from 0.1 to 1.4
(Zanne et al 2009) and have an approximately multi-
plicative effect on individual tree biomass (Chave et al
2014), independent of volume (Phillips et al 2019).
Any correlation betweenWSG and height or diameter
of individual trees is weak or absent (Wittmann et al
2006, Martínez-Cabrera et al 2011, Fan et al 2012,
Hietz et al 2017, Ubuy et al 2018, Phillips et al 2019).
This absence of correlation extends to the scale of
plots, where total basal area and LiDAR derived top-
of-canopy height carry insufficient information to
predict average WSG (Asner et al 2012, Jucker et al
2018a, Muñoz Mazón et al 2020).

Two pantropical maps of forest biomass derived
from satellite LiDAR data and wall-to-wall remote
sensing products (Saatchi et al 2011, Baccini et al
2012) have been widely applied as reference data in
ecological studies (Sullivan et al 2020, Walker et al
2020, Wigneron et al 2020). However, the maps con-
tain spatial discrepancies with one another (Mitchard
et al 2013) and interregional biases when compared
to independent ground plots (Mitchard et al 2014,
Avitabile et al 2016). Information on spatial vari-
ation in WSG could be lost in the intermediate
LiDAR step between sparse plot data and continuous
remotely sensed data as neither pantropical analysis
accounts for any intracontinental differences in the
relationship between above-ground biomass (AGB)
and LiDAR-detected forest structure (Saatchi et al
2011, Baccini et al 2012). However, such a role of
WSG in promoting the observed inconsistencies is
debated (Mitchard et al 2014, Saatchi et al 2014).

Ground-plot studies have demonstrated differ-
ences in community-weighted WSG between dis-
tant tropical regions (ter Steege et al 2006, Asner
and Mascaro 2014), and local differences up to 20%
between adjacent forests induced by shifting sub-
strate properties (Baraloto et al 2011, Gourlet-Fleury
et al 2011, Phillips et al 2019) and flooding regimes
(Hawes et al 2012, de Assis et al 2019,Mori et al 2019).
But the degree to which such spatial variation inWSG
control biomass, and how it emerges and develops
across intermediate spatial scales, is unclear. Previ-
ous assessments of biomass estimation error driven
by omittance of spatial variation in WSG show con-
trasting results (Asner et al 2012, Mitchard et al 2014,
Saatchi et al 2014, Phillips et al 2019), but the studies
diverge on the spatial scaling of analyses and weight-
ing of upscaledWSG, and fail to account for potential
spatially contingent bias introduced by intra-specific
variation (Patiño et al 2009, Bredin et al 2020).

The spatial scale at which extrapolated biomass
estimates are most reliable thus depends on the mag-
nitude and scale at which averageWSG varies and our
ability to capture and retain such variation through
extrapolation processes. In this study, we investigate

the spatial pattern of variation inWSG across Colom-
bia, quantify the relative errors induced on AGB
estimates at different spatial scales when neglecting
spatial variation in WSG, and explore the potential
of environmental correlates to predict WSG across
space.We address the current knowledge gap by expli-
citly assessing variancemanifesting at different spatial
scales and assuring relevance for biomass estimation
and integration of intra-specific effects by applying
volume-weighting of averageWSG values and relying
on locally collected WSG measurements.

2. Methods

2.1. Spatial arrangement of study sites
We established 341 forest plots (75 m2 inWest Andes,
300 m2 in all other regions) across seven broad
biogeographic regions of Colombia: The lowland
Amazon (n = 46, elevation = 133–288 m. msl.), the
northern West Andes (n = 83, elevation = 1142–
2684 m. msl.), the northern Central Andes (n = 12,
elevation = 1754–2699 m. msl.), the southern Cent-
ral Andes (n = 9, elevation = 2691–3360 m. msl.),
the northern East Andes (n = 72, elevation = 119–
3381m.msl.), the southern East Andes (n= 113, elev-
ation= 1163–3415m. msl.) and the Sierra Nevada de
Santa Marta (n= 6, elevation= 1891–2606 m. msl.).
Within these regions, the plots were further grouped
on two intermediate spatial scales. First, all plots
were grouped in clusters of three. Individual plots
were separated by 70–230 m, while clusters were sep-
arated by at least 370 m (figure 1(C)). Second, all
plots closer than 20.5 km to each other were grouped
into 21 different areas, with all areas separated by
at least 22.5 km and each comprising 6–44 plots
(figure 1(A)). This hierarchical grouping aggregated
our forest structure data on four spatial scales, from
plots (<30 m), through clusters (<600 m), areas
(<20.5 km) and biogeographic regions.

The large-scale distribution of plots was selec-
ted haphazardly based on research permits and the
access to primary and mature secondary forest at
each location. Local scale plot placement was chosen
without reference to the plot-scale forest structure or
terrain except where the terrain constrained options
for access on foot. Plot coordinates were determined
by handheld GPS. For each plot, we extracted climatic
variables from the WorldClim ver. 2 database (Fick
and Hijmans 2017) and elevation and topographic
slope from the AW3D30 ver. 2.2 dataset (Tadono et al
2014).

The sample plots spanned an elevational gradi-
ent from 133 to 3415 m above sea level. The total
annual precipitation ranged from 910 to 3128 mm
and the coefficient of variation of monthly precip-
itation ranged from 19.2% to 73.9%. Mean annual
temperature ranged from 8.2 ◦C to 27.2 ◦C and
showed strong correlation with elevation (Pearson’s
r = −0.99), and the standard deviation of average
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Figure 1. (A) Distribution of 21 sampling areas across seven regions of Colombia. (B) Raster images of the climatic predictors
used in this study. From left: elevation (m. msl.), annual precipitation (mm), slope (◦), the standard deviation of average monthly
temperature (◦C× 100) and the coefficient of variation of average monthly precipitation. (C) Example of sample plot
distribution in two areas in southern East Andes.

monthly temperatures ranged from 0.2 ◦C to 0.76 ◦C.
Within areas, plots spanned an elevational range
of 507 m on average (range 38–1243 m), and an
average annual precipitation range of annual pre-
cipitation of 298 mm (range 18–933 mm; supple-
mentary methods, table S1-1 available online at
stacks.iop.org/ERL/17/054002/mmedia).

2.2. Field measurements
Within each plot, we measured the diameter at breast
height (DBH) for all trees greater than 5 cm DBH.
We estimated individual tree volume using the tree
volume term from the Alvarez et al (2012) type II.4
biomass equation, which was developed from a data-
set on felled trees across a range of forest types in
Colombia.

Wood cores were extracted (two threads,
5.15mm;Haglöf, Sweden) for a subset (mean= 44%)
of trees in each plot. We collected taxonomic inform-
ation for a limited number of stems (n = 28.4%)
belonging to locally dominant species (Quercus
humboldtii, n = 776; plot-specific morphospecies,
n = 192; cluster-specific morphospecies, n = 19),
and cored only a subset of each (Quercus humboldtii,
n = 43; morphospecies, n = 2–5 per plot or cluster)
(see supplementary methods, figure S1-1). We
attempted to extract cores from all the largest trees in
each plot and the largest individuals of each morpho-
species, while the remainder of stems were cored at

random (see supplementary methods, figure S1-2).
The wood density (ρwood) of the core was measured
as the dry weight to wet volume ratio (g cm−3), after
removing the bark and pith from the sample. WSG
is given as the unitless, standardized density of wood
relative to the density of water (ρwater = 1 g cm−3).
Cores were rehydrated prior to volume measurement
and dried at 105 ◦C for at least 60 h before weight-
ing (Díaz et al 2016). All field data is available online
at https://data.mendeley.com/datasets/zzzzcnt2bd/1
(Sæbø 2022).

2.3. Statistical analysis
2.3.1. Stem-level variation in WSG
We fit a linear mixed-effects regression model on the
stem-level WSG data to investigate stem-level vari-
ation in WSG across our study, test for any size-WSG
relationships that could support the use of LiDAR
for biomass extrapolation, and derive uncertainty-
bounded estimates of WSG for uncored trees for fur-
ther analysis. The full model for each WSG measure-
ment i is

WSGi = α+βplot[i] +βs × speciesi × IDi +βv

× volumei + εi(ID=1) × IDi + εi(ID=0)

× (1− IDi)

βplot[i] ∼ N
(
βcluster[ j], τcluster

)
3

https://stacks.iop.org/ERL/17/054002/mmedia
https://data.mendeley.com/datasets/zzzzcnt2bd/1


Environ. Res. Lett. 17 (2022) 054002 J S Sæbø et al

βcluster ∼ N
(
βarea[k], τarea

)
where α is the overall intercept, βv is a fixed effect
of the tree’s volume, βplot[i] is a plot-specific random
effect centred on a cluster-specific random intercept
βcluster[j], and where cluster j is centred on an area-
specific random effect βarea[k] for area k. To avoid
potential sampling bias due to plots with dominant
tree species, the limited taxonomic information was
added as an additional random effect βs for identified
trees. The Boolean variable ID excludes this random
effect for unidentified trees. As the intra-specific vari-
ances are captured in the βs random effect for identi-
fied trees only, we allowed separate variances for iden-
tified and unidentified trees.

2.3.2. Contribution of WSG to variation in
above-ground biomass
We multiplied each plot’s total tree volume by
the plot-level volume-weighted WSG estimate (cal-
culated as the uncertainty-bound volume-weighted
average WSG of all stems in the plot) to derive final
plot-level values of AGB in t ha−1. We then used two
strategies to assess how strongly variation in WSG
contributes to the variation in AGB at different spa-
tial scales. First, we calculated the between-plot coef-
ficient of variation of AGB, WSG and volume within
each region and across the study extent to assess their
relative contribution to the variation in estimated
AGB. We further calculated the between-cluster and
between-area coefficients of variation across the study
extent to indicate the relative change in variation in
WSG and volume among sample units of different
spatial extents.

Second, we calculated the deviation between the
volume-weightedWSGof individual spatial units and
the volume-weighted average of the spatially superior
unit (leaving out the unit of interest). For example,
the observed deviation for the Amazon region was
calculated as its volume-weighted WSG subtracted
from the volume-weighted WSG of all other regions,
while for an area within the Amazon it was calcu-
lated as its volume-weighted WSG subtracted from
the volume-weighted WSG of all other areas within
the Amazon. Proportional deviation was represented
as the deviation relative to the observed WSG, and
absolute deviations as the magnitude of the resulting
differences in AGB estimates.

We judged whether these observed deviations sig-
nificantly exceeded expectations from sampling vari-
ation alone by the 95% intervals of the differences
between the observed WSG at each unit and a null
distribution generated under the assumption of no
spatial effects occurring at the spatial scale in ques-
tion. We generated these null distributions for the
volume-weighted WSG value of each spatial unit by
repeatedly (n= 4000) resampling (with replacement)

the volume-weighted WSG values of spatially sub-
ordinate units from the pool within the spatially
superior unit (excluding the unit being tested), with
each new sample consisting of the same number of
subordinate units as the original unit being tested.
For example, the null distribution for the Amazon
region was generated by repeatedly drawing two areas
(the number of areas in the Amazon) from all other
regions with replacement, while the null distribu-
tion for an area within the Amazon was generated by
repeatedly drawing eight clusters from all other areas
in the Amazon with replacement.

We repeated the above procedure for clusters,
areas and regions. Spatial units were ranked from sub-
ordinate to superior according to their spatial scale
(i.e. fromplots to clusters, areas, regions and the over-
all study area).

2.3.3. Predicting WSG from environmental variables
We regressed plot-level volume-weighted WSG on
elevation, total annual precipitation, the coefficient of
variation of averagemonthly precipitation, the stand-
ard deviation of monthly average temperature, and
the topographic slope.

The Moran’s I statistic indicated strong spatial
autocorrelation in the model residuals. Therefore, we
cross-validated the model while accounting for the
spatial structure of the data. K-fold cross-validation
divides the data into a number (k) of ‘folds’. The
model is refit k times on k-1 folds, iteratively calcu-
lating predictions and model performance statistics
for the excluded fold. In leave-one-out cross valida-
tion, we iteratively excluded one of the 341 individual
plots, while in larger fold cross-validation, we divided
the data into folds corresponding to the size of clusters
(108-fold), areas (23-fold) and regions (7-fold). To
track the effect of spatial dependence on validation
estimates, we performed a ‘random’ cross-validation
for each fold size that assumed spatial independence
among residuals, and a ‘spatial’ cross-validation that
retained the spatial structure of the data.

Additionally, we fit a second model that included
the same environmental covariates as well as random
effects of either cluster or area. We compared these
models to amodel that included random effects while
omitting the environmental predictors.

2.3.4. Model fitting and error propagation
We fit the models in JAGS (Plummer 2003) via
R package jagsUI (Kellner 2019). We used weakly
informative gamma priors (shape = 1, rate = 0.001)
on all precision hyperparameters and normal pri-
ors (mean = 0–0.5, precision = 1–2) on all random
effect parameters (see supplementarymethods S1 and
table S1-2 for the reasoning justification of our pri-
ors). We ran all models on four chains for a function-
optimized number of adaptation iterations (Kellner
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2019). The individual tree model ran for 10 000
burn-in iterations and 50 000 sampling iterations,
saving every 50th iteration for a total of 4000 pos-
terior samples. Plot-level models ran for 1000 warm-
up and 10 000 (models without spatial effects) or
50 000 (models with spatial effects) sampling iter-
ations. Every 10th or 50th sample were saved for a
total of 4000 combined posterior samples across the
iteratively fit models. Model fit and convergence was
assessed using graphical predictive checks and the
Gelman–Rubin R-hat estimator (Gelman and Rubin
1991).

Model performance was assessed from pos-
terior estimates of the root mean squared error
(RMSE), the squared Pearson correlation between
model fitted and observed WSG (R2) and deviance
information criterion (DIC). Predictive perform-
ance of cross-validated models was assessed from
posterior estimates of the expected log predictive
density (elpd), the root of average squared prediction
errors (RMSPE), and the squared Pearson correlation
between model predicted and observed WSG (pR2).

Uncertainty in stem-level WSG values was
propagated through consecutive analysis by repeat-
ing all procedures across an array of volume-weighted
plot-averageWSG combining the fieldmeasurements
for cored trees with 100 posterior draws from the final
stem-level model for non-cored trees.

3. Results

3.1. Spatial variation in stem-level WSG
The distribution of WSG, DBH, and tree volume
estimates showed variation across our study sites
(figure 2, supplementary methods, table S1-1).
The relationship between individual tree volume
and WSG was not detectably different from zero
(figure 1(D), supplementary results, table S2-1).
RMSE and Bayesian R2 estimates indicated large
residual variation and weak predictive capabilities
at the individual tree level (supplementary results,
table S2-1 and figure S2-1). However, the correla-
tion between estimated and raw plot-level volume-
weighted WSG was strong (Pearson’s r = 0.95),
indicating that our results do not hinge heavily on
imputed WSG values for uncored stems (supple-
mentary results, figure S2-1). The model estimated
that around 60% of the spatial variance in stem-level
WSG occurred between the 21 areas, 14% occurred
between clusters within areas, and 26% occurred
between plots within clusters (figure 3, supplement-
ary results, table S2-1). The estimated random inter-
cepts of spatial units of different regions overlapped
but showed clear overall differences, with the Amazon
portraying consistently high and the central Andean
regions consistently low WSG at all spatial levels
(figure 3).

3.2. Effect on above-ground biomass estimates of
ignoring variation inWSG
The regional-scale AGB ranged from 307.4 t ha−1

in the lowland Amazon to 117.3 t ha−1 in the
highest-altitude areas in the southern Central Andes
(∼3000 m. msl., table 1). The coefficient of variation
was mainly driven by large variations in tree volume,
but the additional variability due to WSG was sub-
stantial. The between-area coefficient of variationwas
32% of that of tree volume across the study extent
(table 1). The variation in volume increased more
substantially than the variation in WSG at smaller
scales (table 1), indicating that the control ofWSG on
spatial patterns of biomass increase with increasing
scales. Average volume weighted WSG ranged from
0.40 to 0.58 at the scale of regions, resulting in sub-
stantial deviations between individual regions and the
full dataset (figure 4). Replacing region-specific WSG
values with the overall average WSG value led to rel-
ative errors of up to 29% and absolute AGB errors of
up to 41.4 t ha−1 (supplementary results, table S2-
3, Central Andes north and Amazon, respectively).
Area-level volume weighted WSG ranged from 0.37
to 0.63 s across the dataset and showed inter-regional
spans of up to 0.09, resulting in inter-regional errors
of up to 17% and 50.4 t ha−1 (supplementary res-
ults, table S2-4, Amazon area II and I). Cluster-
level volume-weightedWSG ranged from 0.34 to 0.74
across the dataset and showed inter-area spans of up
to 0.22, resulting in inter-area errors of up to 30% and
69.6 t ha−1 (supplementary results, table S2-5, East
Andes north VI cluster XI and West Andes I cluster
I).

The null model approach demonstrated the exist-
ence of spatially driven variation among regions,
beyond patterns of random variation and subscale
covariance. The averageWSGof three regions fell out-
side the expected value under the scenario of no spa-
tial effect above the area level (figure 4, supplement-
ary results, table S2-3). Spatial patterns at smaller
scales were generally more consistent with null vari-
ation, but some spatial effects at the level of areas and
clusters were indicated within the Amazon, northern
Central Andes and West Andes. A total of five areas
(supplementary results, table S2-4) and nine clusters
(supplementary results, table S2-5) deviated signific-
antly from their null distributions.

3.3. Predicting plot averageWSG from
environmental variables
The non-spatial and cluster random effect models
for plot-level volume-weightedWSG estimated signi-
ficant decreases in volume-weighted WSG along the
elevational gradient of 0.035 and 0.039 per 1000 m
altitude, respectively. No effects remained signific-
ant (i.e. 95% credible intervals do not overlap zero)
when including random intercepts for each area

5
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Figure 2. Raw data overview. Panels (A)–(C) study-wide and regional distributions of field-measured tree-level WSG (A) and
DBH (B) and plot-level wood volume estimates (C). Panel (D) scatterplot of all field-measured WSG values and individual tree
volume estimates.

Figure 3. Posterior estimates of spatial effects on stem-level WSG from the individual tree model. The y-axis represents the
random effect of plots (upper panel), clusters (lower left panel) and areas (lower middle panel). Coloured dots represent point
estimates for each spatial unit and black lines represent their 95% credibility intervals. Spatial effects were centred on 0 and thus
represent the deviation from the average.

Table 1. AGB estimates and coefficient of variation for AGB, WSG and volume for each region.

Above-ground biomass Coefficient of variation

Region Mean 95% CI AGB 95% CI Volume WSG 95% CI

Amazon 307.4 304.4 310.3 0.47 0.47 0.48 0.45 0.15 0.14 0.16
Central Andes—north 124.1 121.8 126.4 0.49 0.47 0.5 0.4 0.13 0.1 0.16
Central Andes—south 117.3 113.8 120.8 0.51 0.48 0.54 0.52 0.08 0.06 0.1
West Andes 302.1 297.7 306.5 0.86 0.85 0.88 0.8 0.18 0.17 0.19
East Andes—south 160.2 155.7 164.8 0.69 0.64 0.75 0.66 0.13 0.11 0.15
East Andes—north 193.6 187.5 199.9 0.61 0.53 0.69 0.57 0.13 0.12 0.15
Santa Marta 129.2 126.1 132.2 0.72 0.7 0.74 0.68 0.08 0.05 0.1

Overall (between-plot) 222.7 219.9 225.4 0.79 0.78 0.81 0.73 0.17 0.16 0.17
Overall (between-cluster) 0.53 0.5 0.55 0.48 0.14 0.13 0.15
Overall (between-area) 0.43 0.42 0.44 0.37 0.12 0.11 0.13

6



Environ. Res. Lett. 17 (2022) 054002 J S Sæbø et al

Figure 4. Regional deviations from the overall average WSG expressed relative to the regional WSG (left) and as absolute regional
AGB estimates (middle), and regional WSG estimates (right). Coloured dots indicate observed values, with 95% confidence
intervals derived from the uncertainty in stem-level WSG values. Grey dots indicate average values under the null assumption of
no regional effect on WSG, generated by repeatedly resampling each region from the observed values of all other regions. 95%
confidence interval combine stem-level uncertainty and variance among resampled regional units. Asterix (∗) indicate significant
difference (p < 0.05) between observed and resampled WSG.

Table 2. Estimated expected log predictive density (elpd), root mean squared predictive error (RMSPE) and predictive R-squared (pR2)
of the non-spatial environmental model, and elpd of the non-spatial model without environmental covariates. All model criteria are
estimated from cross-validation procedures assuming spatial independence (random CV) or spatial dependence (spatial CV) among
plots at different spatial levels.

Random CV Spatial CV

Environmental model Environmental model

k-fold CV elpd elpd RMSPE pR2 elpd elpd RMSPE pR2

Leave-one-out 356.7 374.1 0.080 0.095
108-fold (cluster) 356.6 373.9 0.080 0.095 355.6 370.3 0.081 0.082
23-fold (area) 356.5 373.9 0.080 0.096 347.6 341.0 0.087 0.026
7-fold (region) 356.8 372.6 0.081 0.090 336.1 291.5 0.096 0.018

(supplementary results, table S2-2). DIC, R2 and
RMSE estimates indicated that the environmental
predictors improved model fit when assuming spa-
tial independence among the WSG estimates, but
did not result in better fits than spatial models with
no environmental predictors (supplementary results,
table S2-2).

Cross-validation of the non-spatial model indic-
ated that environmental covariates added little pre-
dictive power beyond through autocorrelative effects.
RMSPE and pR2 estimates decreased only slightly
with increasing sizes of random folds, but deterior-
ated strongly when cross-validating to folds account-
ing for spatial dependencies in the data (table 2). The
model with no environmental predictors provided
better predictive performance than the environ-
mental model in terms of elpd when cross-validating
across areas and regions (table 2).

4. Discussion

WSGdiffer largely among species and individuals and
alters the capacity of trees to accumulate biomass,
but how this variation scales up to extents relevant
to forest management and interpretation of carbon

maps is poorly known. We observed that small-scale
variance in stem-level WSG across diverse forests
in Colombia accumulates across increasing spatial
scales and substantially influences spatial variation in
AGB. Consequently, ignoring the variation in WSG
in our dataset across different spatial scales gener-
ated considerable regional biases in estimated AGB
and an undervaluation of differences between spatial
units. Comparison to null distributions assuming the
absence of spatial patterning established that inter-
regional differences were involved in generating the
overall patterns of variance in WSG.

4.1. The importance ofWSG in above-ground
biomass estimation
LiDAR and remote sensing technologies provide us
the ability to collect immense amounts of data on
tree size, facilitating large-scale extrapolations of AGB
estimates. However, weak and divergent relationships
between WSG and tree size measurements among
species database values (Martínez-Cabrera et al 2011,
Fan et al 2012, Hietz et al 2017), field data on indi-
vidual trees (Wittmann et al 2006, Ubuy et al 2018,
Phillips et al 2019) and in aggregated plot values
(Asner et al 2012, Jucker et al 2018a, Phillips et al 2019,
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Muñoz Mazón et al 2020) indicate that the diver-
gence between the pioneer strategy of rapid volu-
metric growth and the old-growth strategy of slower
growth but higher survival rates (De Souza et al 2016,
Hietz et al 2017) do not translate into any general
relationship betweenWSG and adult tree stature. The
absence of any relationship betweenWSGand volume
in our stem-level WSG model are consistent with
these previous observations, collectively establishing
that spatial information onWSG is effectively ignored
at scales where AGB is extrapolated across volumetric
data (e.g. LiDAR data), and any predictive power con-
tingent on this information is lost.

The implications of this conclusion depend on
the degree to which WSG controls spatial patterns
of AGB, but previous literature has left this question
unresolved. Evaluations of the importance of WSG in
spatial AGB estimation have been limited to either the
scale of individual forest plots or large regions (ter
Steege et al 2006, Asner and Mascaro 2014, Mitchard
et al 2014, Phillips et al 2019), leaving it unclear how
variance in WSG arise and develops across different
spatial scales. Robust conclusions on the scales we
evaluated here have also been impeded by confound-
ing between estimated spatial patterns and sampling
variation. This issue is evident in the contradictory
results on intra-Amazon regional variation (Mitchard
et al 2014, Saatchi et al 2014), demonstrating that a
scarcity of field data leaves average values of WSG
sensitive to collection biases, and questioning the
certainty of observed differences between large-scale
tropical regions (ter Steege et al 2006, Asner and
Mascaro 2014, Phillips et al 2019). Further, while
phylogenetic conservatism (Chave et al 2006) has jus-
tified the use of taxonomically coarse database val-
ues of WSG in all the above studies, considerable spa-
tial variation have been shown to occur within species
(Patiño et al 2009, Bredin et al 2020).

By partitioning the variance to a range of spatial
scales across a large and varied study area, propagat-
ing uncertainty in locally collected WSG estimates
through the full analysis, and explicitly disentangling
spatial effects from confounding sampling variation,
our results provide robust clarifications on the effect
of WSG on spatial AGB distribution. Notably, the
importance of WSG as a control of AGB increased at
larger scales, as indicated by the increasing variance in
WSG relative to that of tree volume and a clear rejec-
tion of the null hypothesis of no difference between
regions. The relatively small sample sizes within indi-
vidual units at smaller spatial scales left the null ana-
lysis approach with weak power to confirm spatial
effects between areas and clusters, but both the stem-
level and plot-level mixed models suggest that vari-
ation in WSG manifest on all spatial scales and has
substantial effects on AGB distribution.

The magnitude of the observed spatial deviations
in WSG and the resampled null distribution for each

spatial unit depends strongly on the overall distribu-
tion of WSG. For example, increasing the number of
samples from the significantly deviating north Andes
region would strengthen their dominance over the
overall sample distribution, altering the regional devi-
ations and eventually pulling all null distributions
outside their regional averages. The specific distribu-
tion of bias in our results are thus of lesser interest,
as our overall sample distribution does not have any
concrete analogue in any biomassmap.How such bias
distributes in individual products depends on the dis-
tribution of the extrapolated ground data. However,
the prevalence of spatial variation in WSG and res-
ulting observed deviations demonstrate that the effi-
ciency gains for AGB estimation presented by devel-
oping technologies such as LiDAR are constrained
by our ability to capture and retain such variation
through the extrapolation process, and suggests that
WSG should be a target for further improvements to
our mapping capabilities.

4.2. PredictingWSG from environmental
covariates
Detaching the extrapolation of WSG from the LiDAR
framework may enable more accurate spatial estim-
ates if appropriate correlates of WSG are identified.
Stand-average WSG have previously been linked to
latitude (Wiemann and Williamson 2002, Lewis et al
2013), elevation (Chave et al 2006, Slik et al 2010,
Muñoz Mazón et al 2020), gradients of rainfall and
temperature (Slik et al 2010, Lewis et al 2013), spatial
patterns of disturbance (Slik et al 2010, Magnabosco
Marra et al 2018), and distinctive soil characterist-
ics (Baraloto et al 2011, Gourlet-Fleury et al 2011,
Phillips et al 2019) and flooding regimes (Hawes
et al 2012, Lewis et al 2013). However, such results
are often weak and inconsistent across regions and
scales. For example, WSG can be positively, negat-
ively or uncorrelated with elevation in different areas,
commonly interpreted as products of local differen-
tial disturbance patterns or elevational distribution
of hard-wooded species (Swenson and Enquist 2007,
Slik et al 2010, Muñoz Mazón et al 2020). Likewise,
disturbance is generally thought to generate patterns
of lowered community average WSG through pro-
moting the establishment of early-successional spe-
cies (MagnaboscoMarra et al 2018, Aleixo et al 2019),
but the opposite pattern has arisen following selective
mortality of trees with lowWSG (vanNieuwstadt and
Sheil 2005, Slik et al 2010)more prone to implosion of
conduits when facing negative water pressure (Hacke
et al 2001) andmechanical failure inflicted by external
forces (Van Gelder et al 2006, Niklas and Spatz 2010).

The presence of universal large-scale predictors of
WSG is thus unclear. In this study, none of the cli-
matic predictors we assessed showed appreciable abil-
ity to predictive ability, with any modest explanatory
power achieved via spatial autocorrelation (Dormann
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2007) rather than any relationship between WSG
and the predictors (see also Ploton et al 2020).
Substantial effort is required to attain an applic-
able approach to discerning spatial patterns, by
disentangling the seemingly complex and context
dependent relationships between WSG and poten-
tial environmental predictors, to gain a comprehens-
ive overview of representative forest type values, or
establishing direct relationships with remotely sensed
reflectance imagery (Jucker et al 2018b).

5. Conclusion

We suggest that WSG requires considerable research
effort in the pursuit of accurate estimates of global
distributions of forest biomass. The spatial patterns
of AGB within the bounds of our study were con-
siderably regulated by WSG across all scales, demon-
strating that the predictive performance and accur-
acy of biomass maps can be enhanced by explicitly
accounting for the spatial distribution ofWSG. Large-
scale systematic ground sampling of WSG is needed
to reveal spatial patterns on scales relevant to forest
conservation and support further investigations on
potential spatial predictors.
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