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Abstract
Many climate subsystems are thought to be susceptible to tipping—and some might be close to a
tipping point. The general belief and intuition, based on simple conceptual models of tipping
elements, is that tipping leads to reorganization of the full (sub)system. Here, we explore tipping in
conceptual, but spatially extended and spatially heterogenous models. These are extensions of
conceptual models taken from all sorts of climate system components on multiple spatial scales. By
analysis of the bifurcation structure of such systems, special stable equilibrium states are revealed:
coexistence states with part of the spatial domain in one state, and part in another, with a spatial
interface between these regions. These coexistence states critically depend on the size and the spatial
heterogeneity of the (sub)system. In particular, in these systems the crossing of a tipping point not
necessarily leads to a full reorganization of the system. Instead, it might lead to a reorganization of
only part of the spatial domain, limiting the impact of these events on the system’s functioning.

1. Introduction

Many Earth system components and ecosystems have
been shown to exhibit tipping [1–5]: when a tiny
change in environmental conditions or parameters
leads to a critical shift towards an alternative state
that might have completely different functioning. For
instance, the Amazonian rainforest that might disap-
pear [6, 7], desertification [8, 9], a restructuring of the
Atlantic meridional overturning circulation [10, 11],
collapses of ice sheets [12–14], turbidity in shallow
lakes [15], amongst many others. Even on a planetary
scale, tippingmight have happened [16], and is hypo-
thesised to be possible in the (near) future [17–19].

Typically, tipping is illustrated and explained
using simple, conceptual low-dimensional models,
that have two alternative states and that can
tip between them as climatic conditions change
[1–3, 20]. In more complex, more detailed high-
dimensional models and in real-life data tipping is,
however, often not as clear and pronounced [4, 5, 21].
Tipping from one state to a completely differently
structured state is hardly ever observed. Instead, par-
tial restructurings occur more often. For instance,
(large) parts of an ice sheet melt, instead of the whole
sheet melting in one single tipping event [22].

This suggests that low- and high-dimensional
models behave differently. It could be that high-
dimensional models are tuned for stability too much,
suppressing tipping behaviour [23]. It could also be
that the low-dimensional models are too restrictive
in the number of physical processes, thereby exagger-
ating tipping behaviour [24, 25]. At least, the most
simple models really only allow for two alternative
states and nothing more. Adding complexity to these
leads to more response options for the system, which
might lead to less severe tipping events. For instance,
adding more boxes to a box model [26, 27], or incor-
porating spatial effects [21, 25].

In this paper, we investigate the behaviour of con-
ceptual models when spatial effects are incorporated:
spatial transport and spatial heterogeneity. This set-
ting has received only little attention in the literature
[21, 28] and a thorough theoretical understanding
of such systems is still lacking, despite their omni-
presence [29]. In such models additional stable states
called co-existence states can emerge, in which part
of the domain resides in one state and the rest in
another state, with a spatial interface separating these
regions [21, 24]—see figure 1 for real-life examples.
Consequently, in these systems transitions can occur
in which only in part of the spatial domain the system
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Figure 1. Examples of visibly observable coexistence states and the spatial interfaces between the different states in real systems.
(a) Spatial interface between tropical forest and savanna ecosystems (Reproduced from Google Earth. Image stated to be in the
public domain. © 2021 Maxar Technologies; Gabon, 1◦19′47.15′′ S, 13◦52′48.66′′ E). (b) Spatial Interface between two types of
stratocumulus clouds (RAMMB/CIRA SLIDER [30]; 9.45◦ S, 73.62◦ W, 8 September 2017 16:30:36 UTC). (c) Spatial interface
between sea-ice and water in the Eltanin Bay in the Bellinghausen Sea (73◦43′ S, 83◦49′ W, 2 March 2015. Reproduced from
NASA’s Earth Observatory, NASA. Image stated to be in the public domain). (d) Algae bloom in part of Lake St. Clair on 28 July
2015 (Reproduced from NASA’s Earth Observatory, NASA. Image stated to be in the public domain).

changes state, providing a more subtle, fragmented
tipping pathway.

The rest of this paper is structured as follows. In
section 2, we first review the classic theory of coexist-
ence states in spatially homogeneous (gradient) sys-
tems. Subsequently, we detail how this theory changes
in a spatially heterogeneous setting. We focus on the
possibility of new equilibrium coexistence states and
the different bifurcation diagrams these systems can
have depending on the spatial heterogeneity. Then, in
section 3, we illustrate the potential widespread rel-
evance of coexistence states using several examples of
climate subsystems ondifferent spatial scales. For this,
we use a variety of conceptual models, that have been
proposed before in the literature, or spatially exten-
ded versions thereof. Finally, we endwith a discussion
in section 4.

2. Theory

We consider the evolution of a (single) state variable
y. Depending on the particular system of interest, this
could be for example temperature or vegetation cov-
erage. Ignoring spatial effects for a moment, the local
dynamics of y are described by an ordinary differen-
tial equation, i.e.

dy

dt
= f(y;µ) =:

∂V

∂y
(y;µ), (1)

where f describes the evolution over time, depend-
ing on the value of the state variable y and the value
of a (bifurcation) parameter µ, and V is the associ-
ated potential function (also referred to as the stabil-
ity landscape) [1–3].
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Figure 2. Bifurcation diagram for (a) a non-spatial model, (b) a spatially homogeneous model and (c) a spatially heterogeneous
model. Solid lines denote stable equilibria and dotted lines unstable ones. The vertical axes in (b) and (c) indicate the spatial
average of the state variable. Insets in (b) and (c) show the spatial structure of equilibria for the different branches. The green line
in (b) indicates the Maxwell point of the bifurcation parameter. The cyan branch in (c) consists of stable coexistence states. For

(c), the model used is ∂y
∂t

= 1
100

∂2y
∂x2

+ y(1− y2)+ 1
2
cos(xπ)+µ on the domain [−1,1] with Neumann boundary conditions; for

(b) the spatially heterogeneous terms are absent and for (a) also the diffusion term is absent.

The model (1) possesses tipping behaviour when
there is a parameter region inwhich there is bistability
of two different states—say, a state A and state B—
with tipping points (saddle-node bifurcations) to the
other state at both ends of this region. This leads to the
prototypical ‘S’-curve bifurcation diagram as shown
in figure 2(a). An explicit example of such system is
the model (1) with

V (y;µ) =
y2

2
− y4

4
+µy. (2)

In the rest of this section, we detail how the addition
of spatial effects to the model (1) changes the bifurc-
ation diagram.

2.1. Spatial transport
We now consider the evolution of the state variable
y on a spatial domain with coordinate x. In addition
to the local dynamics, spatial transport between loc-
ations now also plays a role. The most simple way
to implement spatial transport is to add (linear) dif-
fusion to the model (1). Thus, a new spatial model
describing the evolution of y over time and space is
given by the partial differential equation

∂y

∂t
= D∆y + f(y;µ) = D∆y +

∂V

∂y
(y;µ), (3)

where D is the diffusion coefficient and∆ the spatial
Laplacian in x.

Because this type of model can be used to model
phase segregation dynamics [31, 32], its dynamics are
well understood and the literature is quite extens-
ive, including rigorous mathematical proofs [33, 34].
First, spatially uniform states exist in which the whole
domain is in the same state (either stateA orB). These
are the natural spatially extended versions of the states
in the local model (1). However, next to these, there

are also coexistence states, in which parts of space
reside in state A and the rest in state B, with a spa-
tial interface (or ‘front’ in mathematical jargon) con-
necting these regions. These interfaces can be spatially
localized, or extend over a large space depending on
the strength of the spatial transport.

The dynamics of these coexistence states is intric-
ate [33, 35]. In short: the interfaces typically migrate
slowly over space depending on the distance to other
interfaces and the domain boundary, but there are
sometimes fast coalescence events when interfaces
meet and separate regions merge. On the long term, a
maximum of one interface can persist in the domain
(the rest is slow transient behaviour). Such single
interface moves with a speed that is proportional to
the difference in potential between states A and B, i.e.
V (A;µ)−V (B;µ). So, only in the degenerate case
in which the potentials are equal, this leads to an
additional equilibrium state of (3). The specific para-
meter value for which the potentials are equal is called
theMaxwell point of the system. This means that the
bifurcation diagramdoes not changemuch compared
to the non-spatial system; see figure 2(b). However,
the transient dynamics occurring after a tipping point
has been crossed can be different in such systems: this
can now occur via an invasion front which replaces
one state with the other, which might lead to a slow
tipping of the full system [36, 37].

2.2. Spatial heterogeneity
The previous model (3) assumes that the local
dynamics are the same throughout thewhole domain,
i.e. the model is spatially homogeneous. Reality is,
however, spatially heterogeneous: local dynamics dif-
fer from location to location, for example due to topo-
graphical features or human activity. Hence, it ismore
realistic to consider a spatially extended model in

3
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Figure 3. Showcase of some variations of the bifurcation diagram for spatially heterogeneous models with different spatial
heterogeneities. The insets show the spatial structure of equilibria for the different stable branches as a function of the spatial

coordinate x. The model used is ∂y
∂t

= 1
100

∂2y
∂x2

+ y(1− y2)+ g(x,y)+µ on the domain [−1,1] with Neumann boundary

conditions. In (a) g(x,y) = 1
4
cos(πx), (b) g(x,y) = x, (c) g(x,y) = 1

2
cos(πx) sin( 3

2
πx), (d) g(x,y) = 1

4
sin(4πx), (e)

g(x,y) = 2cos(πx)y+ cos(2πx) and (f) g(x,y) = 1
2
cos(πx)y+ 1

2
cos(2πx). Bifurcation diagrams might not show all possible

branches, because isolated branches might exist.

which the local dynamics explicitly depends on the
location x:

∂y

∂t
= D∆y + f(y,x;µ) = D∆y +

∂V

∂y
(y,x;µ). (4)

We will assume that the spatial variation is not too
much locally, i.e. ∂f

∂x (y,x;µ) does not get very large
compared to diffusion strength (as this would, poten-
tially, give rise to different dynamics than described in
this paper; see e.g. [38, 39] for an exploration of those
dynamics in case of spatially periodic forcings).

The presence of spatial heterogeneity in (4) does
change the dynamics of the interfaces. Their move-
ment nowdepends on the local difference between the
potentials of state A and B. Because of this, the Max-
well point is different for different locations in space,
making it no longer a degenerate case. Furthermore,
coexistence states with multiple interfaces can now be
equilibrium states of the model system.

A typical bifurcation diagram is given in
figure 2(c), which is different compared to the classic
one (figure 2(a)) because of the additional branch of
stable coexistence states. In this case, the crossing of a
tipping point does not necessarily lead to a tipping of
the complete system, but can lead to a less critical shift

of the system in which only part of the spatial domain
undergoes a transition to the alternative state.

The precise structure of the bifurcation diagram
depends on the specific heterogenity of the system. A
few possible variations are shown in figure 3, illustrat-
ing the potential complexity of the bifurcation dia-
gram for spatially heterogeneous systems. The results
show that the parameter range for which coexistence
states exist can vary much between systems with dif-
ferent heterogeneities. In particular, this range can
be fully contained in the hysteresis loop of the non-
coexistence states (e.g. (a) and (d)), which indicates
that crossings of the tipping points will lead to a full
tipping of the system despite the presence of coex-
istence states in part of the parameter regime. On
the other hand, the spatial heterogeneity can also
prevent overlap of the fully tipped branches (e.g.
(b)), meaning that the full system cannot tip in one
tipping event. It can also happen that the tipping
process is fragmented in one direction, but not in
other directions (e). Moreover, the spatial heterogen-
eity can lead to multiple tipping points (e.g. (c), (d)
and (f)), in each of which another part of the spa-
tial domain undergoes a transition to the alternative
state.

4
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Figure 4. Bifurcation diagrams for different diffusion
strengths, but the same spatial heterogeneity and domain
size, demonstrating the change of structure of the diagram
as the domain becomes too small to fit in the spatial
interfaces (as more space is required when D is larger). The

model used is ∂y
∂t

= D ∂2y
∂x2

+ y(1− y2)+µ+ 1
2
cos(πx) on

[−1,1] with no-flux boundaries.

A concise description of the mathematical the-
ory and analysis of coexistence states can be found
in appendix A.

The above described spatial interfaces between
regions in different states can only emerge and per-
sist if there is enough space available for them in the
system. Hence, if the spatial domain is too confined,
the above described coexistence states do not fit and
the branch of coexistence states is absent in the bifurc-
ation diagram (see figure 4). The precise minimum
required length varies per model and depends on the
typical length scale associated with the spatial trans-
port. For instance, if the diffusion coefficientD in (4)
is increased, a larger domain is needed to facilitate the
coexistence states. See also appendix B for a mathem-
atical treatment of the small domain limit.

The form of equation (4) is chosen for simplicity
of presentation. Coexistence states can also occur in
other models that for example have a diffusion coef-
ficient that depends on space or have a different spa-
tial transport mechanism altogether. Similar beha-
viour as described above can at least be expected from
other spatially heterogeneous Lagrangian or gradient
systems.

3. Earth system and ecosystem example
conceptual models

The above described theory is quite generic, and there
are only few assumptions. Hence, if a simple concep-
tual model only considers local dynamics and cap-
tures tipping behaviour, a spatially extended and het-
erogeneous model will behave as described above. In
particular, such systems might have additional coex-
istence states, and tipping events in which only part
of the domain undergoes transition. Many systems,
and many previously proposed conceptual models,

fit into this description. To illustrate this, next we
give some examples of systems for which this the-
ory might be relevant by looking at some illustrative
conceptual spatially extended models for these sys-
tems. These are either models directly taken from the
literature or simple spatial extensions of non-spatial
models. Hereby we cover systems of many different
spatial scales, ranging from global to more regional
systems.

3.1. Global energy balance model
On a planetary scale, an example of coexistence states
can be found in global energy balance models. These
describe the evolution of Earth’s temperature by con-
sidering the energy flux at the top of the atmosphere.
These type ofmodels were first introduced by Budyko
[40] and Sellers [41], and have since served often
as conceptual models to illustrate planetary climate
shifts [42–52].

Here, we consider the following simple spatially
one-dimensional variant:

CT
∂T

∂t
= Q0(x) [1−α(T)]− εσ0T

4 +µ

+D
∂

∂x

[(
1− x2

) ∂T
∂x

]
. (5)

This models the longitudinally averaged temperat-
ure T (as function of x= sin(θ) where θ is the lat-
itude) by looking at the absorbed incoming solar
radiation (Q0(x) [1−α(T)]), the outgoing Planck
radiation (−εσ0T4), the meridional heat transport(
+D ∂

∂x

[(
1− x2

)
∂T
∂x

])
, and the effect of atmospheric

CO2 on the energy budget (+µ). The model uses
the following functional form for the temperature-
dependent albedo (ice, with a high albedo, can only
exist if temperatures are low enough):

α(T) = α1 +(α2 −α1)
1+ tanh

(
M
[
T− T1+T2

2

])
2

,

(6)

where α1 is the albedo of ice, and α2 the albedo
of water. The sigmoid function ensures the change
in albedo is smooth. The spatial heterogeneity in
this models stems from the incoming solar radi-
ation,which is latitude-dependent. Following [48], we
have taken

Q(x) = Q0

(
1− 0.241

[
3x2 − 1

])
, (7)

where Q0 is the global average of the incom-
ing solar radiation. As parameters we have
taken Q0 = 341.3 Wm−2, α1 = 0.289, α2 = 0.70,
T1 = 260 K, T2 = 290 K, M = 0.1 K−1, ε = 0.61,
σ0 = 5.67× 10−8 Wm−2 K−1. The value for the dif-
fusivityD is not known—andpotentially not uniform
over earth [44, 45]—but for the illustrative purposes
in this paper we have taken D = 0.30. Finally, since
we are focussing on stationary states, the value for

5
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Figure 5. Bifurcation diagrams for the example systems in section 3. In all figures, the red and blue branches denote equilibria in
which the whole system is in the same state. The cyan branch denotes the stable coexistence states, in which part of the spatial
domain is one state and the rest in the other. The insets show the spatial structure of solutions along the stable branches; axes of
different insets of a figure are the same and the dashed lines in the insets in (a) correspond to T = 273.15 K (i.e. the melting point
of ice). (a) Global energy balance model (GEBM). (b) Ocean convection model. (c) Atmospheric boundary layer model. (d)
Tropical forest model. (e) Model for turbidity in shallow lakes.

CT does not matter, but a typical value would be
CT = 5× 108 Jm−2 K−1.

It has been shown that the model can reside in an
ice-free state or a fully ice-covered ‘Snowball Earth’
state. When spatial effects are not modelled, these
are the only states of the model. However, once spa-
tial effects are incorporated, planet-scale coexistence
states are also found with ice in only part of the
earth (i.e. the poles) and no ice elsewhere [42–51]. An
example bifurcation diagram is given in figure 5(a)
which shows the global mean temperature as func-
tion of the parameter µ. This diagram shows that tip-
ping between a snowball earth state (blue branch) and
a partially ice covered state (cyan branch) leads to
large changes in global temperature, whereas tipping
between coexistence states (cyan branch) and ice-free
states (red branch) leads to much smaller changes in
global temperature. It is also interesting to note that
there is no bistability of snowball earth and ice-free
states, implying that transitions between them always
need to go via coexistence states.

3.2. Ocean circulation
In oceans, convection occurs at places where the
ocean mixed-layer exchanges water with the deep
ocean. This ocean convection plays an important role

in the global ocean circulation. Using simple concep-
tual models, the possibility of bistability between a
convective and a non-convective state has been found
for a range of parameters [53–56]. These results have
been obtained in box models, where temperature T
and salinity S of the mixed-layer are dynamic vari-
ables, which change through exchange with (static)
atmosphere and deep ocean boxes. Here, we extend
such model via the addition of diffusion as form of
spatial transport.

To showcase coexistence states with convection
only at certain regions, we apply a series of (stand-
ard) simplifications on the equations (details in
appendix C). This leads to the following equation that
describes the evolution of the local density difference
∆ρ(x, t) between themixed-layer and the deep ocean:

∂∆ρ

∂t
= D

∂2∆ρ

∂x2
+ kT (∆ρA(x)−∆ρ)−κ(∆ρ)∆ρ

+D
∂2ρ0(x)

∂x2
. (8)

Here, ∆ρA(x) represents the (static) density differ-
ence between the atmosphere box and the deep ocean
box, and ρ0(x) is the local density in the deep ocean
box. Further, kT gives the rate of exchange with the
atmosphere box and κ(∆ρ) the rate of exchange with
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the deep ocean box. The latter is a function of ∆ρ,
which is a non-negative increasing function [53].
That is, convection happens when the exchange rate
κ(∆ρ) is large, which typically occurs if the mixed-
layer is heavy enough compared to the deep ocean.

Depending on the functional form of the
exchange rate κ(∆ρ), certain parameter ranges can
allow for bistability and coexistence states between
convection and no convection. Not striving for the
most realistic description, we take a continuous
approximation of a step function similar to [53]. Spe-
cifically, we take κ(∆ρ) = κ̄

2 [1+ tanh(∆ρ−∆ρref)]
which goes from 0 to κ̄ and starts to increase around
∆ρref. As parameter values we have taken kT = 1,
κ̄= 100,∆ρref = −1/2 and ρ0(x)≡ 0. In the numer-
ical computationswe have rescaled the spatial domain
to [−1,1] and have taken D= 0.01. As the horizontal
diffusion coefficient of ocean systems is typically
between 100 and 1000 m2 s−1 this corresponds to
an ocean basin of about 100–1000 km in size.

To illustrate this model, we take a spatially het-
erogeneous atmospheric reference density∆ρA(x) =
2+ f

(
1+ cos

[
πx
2

])
, where f acts as a bifurcation

parameter. In ocean systems, such kind of spatial het-
erogeneity could for instance be caused by local differ-
ences in freshwater fluxes. In figure 5(b), an example
bifurcation diagram for this model is given, showing
the possibility of coexistence states in large enough
ocean basins. In this system, the system does not tip
fully between convective and non-convective states at
a tipping point, but only part of the domain changes
and the system transitions to a coexistence state—
for chosen heterogeneity, in these coexistence states
convection happens only at the edges of the spatial
domain.

3.3. Atmospheric circulation
In the atmospheric circulation, there also seems to
be the possibility of coexistence states. As a simple
example, we look at the dynamics of the atmospheric
boundary layer, in which heat exchange with the sur-
face takes place. This boundary layer can be in a fully
turbulent state or a quiescent, quasi-laminar state
depending on the temperature difference between the
boundary layer and the soil. In cold regions, or during
cold nights, the layer is stable stratified, but at higher
temperatures surface warming leads to a convective
boundary layer.

Bistability and tipping between these two states
has been explained using simple energy balancemod-
els [57, 58]. These describe the near-surface inver-
sion strength ∆T, defined roughly as the boundary
layer’s temperatureminus the soil temperature, which
evolves according to the net imbalance of the energy
fluxes in the layer [58]. To the best of our knowledge,
there is no standard way to include spatial heat re-
distribution. Hence, as a first effort to create a spa-
tially extended model, we have modelled spatial heat

re-distribution as a diffusive process. The model is
given by

∂∆T

∂t
= D

∂2∆T

∂x2
+Q(x)−λ∆T−C(x)∆Te−2α∆T.

(9)

Here, Q(x)−λ∆T is the linearized net long-wave
radiation, and −C(x)∆Te−2α(∆T) is the turbulent
sensible heat flux. The location x can be interpreted as
a local coordinate of a larger region on Earth. In the
numerical computations, we have rescaled the spatial
domain to [−1,1] and have taken a rescaled diffusion
coefficientD= 0.01. In reality, this would correspond
to a spatial domain that is much larger than the diffu-
sion length scale.

To demonstrate the effect of spatial heterogeneity
in this model, we take λ = 1, α = 3, Q(x) = 1− 0.1x
and C(x) = 0.1x+µ, modelling for example spatial
differences in soil temperature or wind speeds (the
latter influences the turbulent sensible heat flux); µ
acts here as a bifurcation parameter, representing
changes in wind speed. For these choices, an example
bifurcation diagram is given in figure 5(c), which
indicates the possibility of coexistence states with
regional turbulence. However, for these heterogen-
eous conditions, the branch of coexistence states is
almost fully contained in the hysteresis loop of the
fully turbulent and the fully quasi-laminar states, sug-
gesting that crossings of the tipping points might lead
to a full tipping of the system despite the presence
of a branch of coexistence states in the bifurcation
diagram.

3.4. Ecosystems
In many ecological systems, bistability and trans-
itions between alternative states have been found. For
instance, in drylands, bistability between vegetation
and bare soil occurs [59]. On larger scales, the same
environmental conditions can even support multiple
ecosystem types, such as grasslands, savannas and
tropical forests in the Tropics [7, 60]. In all of these
systems, spatial effects are present: species disperse
over space (e.g. via seed dispersal) and environmental
conditions are spatially heterogeneous (e.g. a rainfall
gradient). Hence, they can exhibit coexistence states
in which different ecosystem types are separated by a
local interface.

Especially in models of drylands, many patterned
states have been analyzed, including coexistence states
[37, 61], although spatial heterogeneities are not often
taken into account, with few exceptions [62, 63].
However, the models considered are typically more
complicated than (4) and more advanced mathemat-
ical techniques are used to analyze them that are bey-
ond the scope of this article. Hence, we illustrate the
coexistence patterns in ecosystems using a different
example.
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Recently, the bistability between tropical forests
and grasslands in a heterogeneous environment has
been studied [64]. In a spatially extended (rescaled)
version of the model in [65], the local fraction of fire-
prone forest trees is given by F and its evolution is
modelled as

∂F

∂t
= D

∂2F

∂x2
+ r(P)(1− F)F−m(P)F− Ff(F;P),

(10)

with the coordinate x representing e.g. a cross-
section through a tropical forest region. Here,
r(P) = 0.2

(
1− e1.54−0.003P

)
is the (logistic) growth

rate depending on local precipitation P(x). Further,
m(P) = 0.041+ e−2.15−0.008P is the precipitation-
dependent natural mortality rate, and f(F;P) is the
mortality due to forest fires, which depends both on
the local precipitation P(x) and the local tree coverage
F (dry trees burn easier and fire spreads easier when
there are less trees and more herbaceous vegetation).
Specifically, f takes on the following functional form

f(F;P) =
0.46

2.7

YC(P)4

YC(P)4 + f 4
, (11)

where YC(P) models the assumed decrease in fire-
spreading percolation threshold (see [65] for details),
expressed in equations as

Yc(P) =max
(
0,0.56−1.43× 10−4P

)
. (12)

Finally, sapling dispersal is modelled as diffusion.
In [64], a 1D spatial domain [0,3000 km] is taken

with diffusivity D = 0.2. By rescaling space (see
appendix B) this is equivalent to a domain [−1,1]
with D≈ 5× 10−6. However, we take D = 10−4,
essentially modelling a smaller real domain of about
100 km.

The spatially heterogeneous term in this example
is the local precipitation P(x). Following [64], we
have modelled this as a linear precipitation gradient
P(x) = Pmean + 150x, and model climate change via
the mean precipitation parameter Pmean. An example
bifurcation diagram is given in figure 5(d). Here, the
red branch has solutions with non-zero forest tree
fraction F everywhere, the blue branch corresponds
to a no-forest state and the cyan branch to coexist-
ence states with forest trees in part of the domain.
In this diagram, the blue branch is attracting for all
parameter values, and does not connect to the other
branches via a saddle-node bifurcation (the lower
unstable branch only connects to the blue branch in
the limit Pmean →∞). From the bifurcation diagram
it can be deduced that the spatial region with lowest
rainfall (left in the insets) will die downwhen the fully
tree-covered state tips into a coexistence state. How-
ever, as long as the system is in a coexistence state and
there still are trees in part of the domain, restoration
is possible if precipitation increases again.

3.5. Shallow lakes
On even smaller spatial scales, coexistence states
could also play a role. As an example, we look at
the turbidity of shallow lakes [15], which has been
used as one of the prime examples of critical shifts
in ecological systems. In these lakes, turbidity is
closely related to the algae concentrationA, which can
change depending on the amount of nutrients in the
lake. If there is a lot of nutrients, algae concentration
is high and the lake is turbid. For lower nutrient con-
centrations, there are few algae and the lake is clear.
Transitions between these states can take place if the
nutrient concentration changes.

In [15], a simple non-spatial model is given for
the evolution of algae A, depending on the nutrient
concentration. Here, we have added spatial transport
as a diffusive process to obtain the following spatially
explicit model that models the local algae fraction
over e.g. a cross-section of a shallow lake:

∂A

∂t
= D

∂2A

∂x2
+ rµ̂(N,x)

A

1+V (A,x)
− cA2; (13)

V (A,x) =
1

hv

1

1+Ap(x)
. (14)

Here, algae growth ismodelled as logistic growthwith
competition coefficient c. The growth rate depends
on the effect of nutrients µ̂(N,x) and the amount of
vegetation V(A), which is larger if there are few algae.
The value of p(x) represents the (local) shallowness of
the lake. More information on the rescaling process
can be found in appendix D.

To illustrate the effect of spatial heterogeneity in
such lake systems, we take µ̂(x) = µ(1− 0.1cos(πx))
and p(x) = 3+ 0.1cos(πx), representing e.g. higher
nutrient concentrations and shallower waters near
the edge of a lake. The other parameter values are
r= 10, hv = 0.1, c= 1 andD= 0.01 (with scaled spa-
tial domain [−1,1], essentially modelling a lake large
enough to allow for coexistence states). As bifurca-
tion parameter we take the spatial average nutrient
effect µ. An example bifurcation diagram is given in
figure 5(e). This shows the possibility of coexistence
states in such systems. In particular, for this specific
heterogeneity, the results indicate that a clear lake can
tip to a turbid state directly, whereas the transition
in the other direction goes via coexistence states in
which part of the lake is turbid.

4. Discussion

Classically, tipping in complex systems has been illus-
trated using simple conceptual models with two
alternative states [1–3, 20]. When tipping occurs in
these systems, that leads to a reorganization of the full
system, with potentially large impacts on its function-
ing. In this study, we have investigated a prototypical
tipping system and extended it by making it spatially
explicit, via the incorporation of spatial transport and
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spatial heterogeneity. The resulting spatially exten-
ded model system revealed a more intricate bifurca-
tion structurewith additional branches of stable states
compared to the classic ‘S’-curve bifurcation diagram.
This is due to the presence of stable coexistence states
with part of the spatial domain in one state and part in
another. Further, it revealed the possibility of trans-
itions in which the system only undergoes reorgan-
ization in part of the spatial domain, limiting the
impact of these events on the full system’s function-
ing. Therefore, this study further specifies how tip-
ping of spatially heterogeneous systems happens; they
do not necessarily tip fully in one event, but can have
a more fragmented tipping in smaller steps, each cor-
responding to a restructuring in only part of the spa-
tial domain. These events are therefore less severe
than full tipping events, and lead to smaller hysteresis
loops. On top of that, while part of the domain is still
in its original state, restoration might also be easier
and can happen more gradual: as climatic conditions
would improve again, the spatial interface between
states can move, slowly recovering the system.

This detail of the tipping process might be rel-
evant for many natural systems. Here, we have illus-
trated this using a few conceptual example systems
on different spatial scales, but there are many more.
In principle, if a model or real system would allow
for bistability locally, spatial effects could lead to the
formation of coexistence states—and thus tipping in
these systemsmight be fragmented. One of the prom-
inent examples is the occurrence of multiple con-
vection patterns in ocean general circulation mod-
els [66, 67]. Such behaviour was often attributed to
numerical artifacts (due to the coarse horizontal res-
olution in such models). However, the different con-
vection pattern could in the framework here be inter-
preted as different stable coexistence states. Indeed,
the vertical coupling is very strong and follows basic-
ally the boxmodel example in section 3.2, whereas the
horizontal diffusive coupling is rather weak.

Coexistence states in this study have been char-
acterized by a spatial interface that spatially separ-
ates alternative states. Such spatial structures have
been observed in reality for systems in which these
spatial interfaces are distinct and clearly visible by
eye. Examples include the ice grounding line [22]
and the tropical forest-savanna boundary [68–70]. In
particular, empirical studies of the latter have made
connections to the here described mathematical the-
ory [68, 70]. Together with the results on conceptual
models presented in this paper, these suggest the rel-
evance of coexistence states formany real climate sub-
systems. It is difficult to study the associatedmultista-
bility and resulting fragmented tipping empirically,
because of the required temporal and spatial resol-
ution. Nevertheless, at least in more realistic mod-
els, the behaviour of e.g. an ice grounding line seems
consistent with a fragmented tipping scenario: the
interface moves slowly most of the time, with some

sudden events in which interface changes and a lar-
ger part of the domain undergoes transition [22]. In
addition, there are some early studies suggesting some
historic climatic changes, such as atmospheric warm-
ing, could be step-like [71], which could be consistent
with a fragmented tipping scenario.

As illustrated, the precise importance and rel-
evance of coexistence states depends a lot on the
size of the system and the specific heterogeneity.
For instance, if a system is too confined, coexistence
states cannot form at all, and spatial heterogeneities
change the bifurcation structure and the severity of
critical transitions. Consequently, for some systems
these insights might be more important than for oth-
ers. Future research should distinguish between cli-
mate subsystems that can show fragmented tipping
and those that do not. This difference is important
to make, as a fragmented tipping scenario indicates
an imminent tipping event does not lead to a full sys-
tem collapse but still leads to similar problems locally
in the regions that change state. Of particular interest
are the implications on a planetary scale, as it has been
hypothesised planetary tipping might happen in the
future [17–19]. If tipping on a planetary scale is frag-
mented its effects might be limited globally—though
they can still be harsh locally.

One of the most important tasks remaining is
therefore to distinguish between the type and severity
of a tipping event before it happens. Current generic
early warning signs seem focused mostly on predict-
ing when an imminent system change is going to hap-
pen [28, 72, 73], but not onwhat is happening then. If
it is only a reorganization in a minor part of the spa-
tial domain, it is not necessarily worrisome. Further,
in spatially-extended systems early warning signs, like
critical slowing down, might only be visible in the
part of the domain in which change is going to hap-
pen, while it might be absent in the global response.
Both of these issues might be tackled by inspection of
the spatial structure of the destabilizing perturbation
[25].

In this paper, we have deliberately used concep-
tual models that are very basic and relatively simple
to showcase the general phenomenon and argue its
generality. In more complex and realistic models,
including non-gradient systems, coexistence states
and fragmented tipping should also be present in
general. However, dynamics of such models can be
much more difficult. For instance, models with 2D
or 3D spatial domains, the spatial interfaces can have
complicated structures, and in systems with mul-
tiple components might also undergo bifurcations
[37, 61, 74, 75].

Finally, we have focused on stationary states, but
also the transient behaviour of coexistence states is
relevant. When not in equilibrium, a spatial inter-
face slowly moves towards its equilibrium position,
hereby converting part of the domain from one state
to another—but slowly [36, 37]. This is in contrast
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with the tipping events, in which change is fast.
Together, this leads to a potentially complicated tran-
sient behaviour, which can consist of long periods
of slow behaviour interspersed with few fast tipping
events [25, 33]. If we would have a better understand-
ing of this transient behaviour of the spatial inter-
face, and how it is influenced by climate change and
(human-made) heterogeneities, it might be possible
to create circumstances that allow these systems to
slowly restore themselves naturally more easily.

Summarising, the take-home messages of this
work are as follows. First, the bifurcation struc-
ture of any spatially heterogeneous model can be
severely more complicated than that of a non-spatial
model because of additional branches of coexistence
states. Second, the possibility of these coexistence
states indicates that tipping in these systems can be
fragmented—and thus more gradual—with multiple
smaller steps instead of one large tipping event. Third,
restoration of a system that has tipped to a coexistence
state is easier than from a fully tipped state, because
restoration can happen gradually by movement of
the spatial interface and because hysteresis loops are
smaller. Fourth, the specifications of both the spatial
size and the precise spatial heterogeneity determine
the precise response of a spatially extended system.
This includes towhat extent coexistence states and the
described fragmented tipping scenario are relevant
for the system under consideration. Fifth, examples
of many climate subsystems, ranging from global to
local scales, suggest coexistence states can emerge on
many spatial scales. All this together implies that tip-
ping inmany climate (sub)systemsmight be fragmen-
ted and that these systems might be more resilient
than indicated by non-spatial models.
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Appendix A. Mathematical theory of
coexistence states

In this appendix section, we briefly explain the
mathematical ideas behind the presented coexistence
states. This does not constitute a rigorous mathemat-
ical proof; many details, in particular in the spatially
heterogeneous case, warrant a further, more careful
mathematical investigation.

A.1. Spatially homogeneous equation
Equilibrium solutions to (3) (in one spatial dimen-
sion) have to satisfy

0= Dyxx + f(y;µ), (A.1)

where the subscripts x denote taking the derivative
with respect to x. This is a Hamiltonian dynamical
system (see e.g. [76, chapter 9]) with Hamiltonian H
given by

H(y,yx;µ) = D
y2x
2
+V(y;µ) (A.2)

where V is the potential function, i.e. V satisfies

∂V

∂y
(y;µ) = f(y;µ). (A.3)

Solutions to (A.1) therefore lie on the level curves
with constant H(y,yx;µ). Depending on the value of
the (bifurcation) parameter µ, the level sets can trace
out different orbits in the phase space; see figure A.1.

Equilibrium solutions to (A.1) are represented in
these phase portraits as bounded orbits. For µ < µB,
the only bounded solution is the point (y,yx) =
(yA,0) corresponding to the uniform solution y(x)≡
yA to (A.1). At µ= µB a saddle-node bifurcation
occurs which creates two other uniform solutions
(y(x)≡ yB and another, unstable one). For µB < µ <
µM, there are additional bounded solutions: a homo-
clinic orbit connecting (yB,0) to itself (corresponding
to a pulse solution to (A.1)) and periodic orbits, but
these are all unstable solutions to the PDE. Atµ= µM,
the Maxwell point, the points (yA,0) and (yB,0) lie
on the same level curve, i.e.∆H(µ) :=H(yA,0;µ)−
H(yB,0;µ) = V (yA;µ)−V (yB;µ) = 0 for µ= µM,
and heteroclinic connections between both points
exist, which represent the stable equilibrium co-
existence states to (3). For µM < µ < µA, there is a
homoclinic orbit to (yA,0), and periodic orbits that
are all unstable. Finally, for µ > µA only the uniform
solution y(x)≡ yB exists.

A.2. Spatially heterogeneous equation—existence
of equilibrium solutions
Equilibrium solutions to (4) (in one spatial dimen-
sion) satisfy

0= Dyxx + f(y,x;µ). (A.4)

We set D= ε2 ≪ 1 (a change of coordinate x can
achieve this) and we assume that ∂f

∂x (y,x;µ)⩽O(1)
(with respect to ε). In this setting, coexistence solu-
tions to (A.4) have the form as depicted in figure A.2:
there are large, so-called outer regions that reside in
the same state and small, so-called inner regions in
which the transitions between regions are located (i.e.
the spatial interfaces). Solutions to (A.4) can now be
constructed per region, and should be matched at
the boundaries. Here, we only give a sketch of the
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Figure A.1. Level curves for a typical Hamiltonian system for various values of parameter µ. The circles correspond to fixed points
of (A.1), and hence to spatially uniform solutions of (3). Blue circles denote the lower stable state, red circles the higher stable
state and black, non-filled circles the unstable uniform state. The thick magenta lines in (c) indicate the spatial interfaces (also
called fronts, or heteroclinic connections) that are the building blocks of the coexistence states.

Figure A.2. Sketch of a coexistence state in spatially heterogeneous models. Part of the domain resides in state A (blue), and part
in state B (red), with a spatial interface (cyan) connecting these regions.

leading order construction per region. We note that
a rigorous extension of the ideas formulated here
would require higher-order terms and matching of
the regions. See e.g. [77, chapter 2] for more general
explanation on the here employed matched asymp-
totics method.

In the outer region, (A.4) becomes at leading
order the equation

0= f(y,x;µ), (A.5)

with the added constraint that y needs to be smooth.
That is, in the outer regions, the diffusion term does
not play a role at leading order. Hence, this leads to
y(x) = yA(x) or y= yB(x).

In the inner regions, we use the coordinate change
ξ := x−xF

ε , where we zoom in on the position x= xF
where the interface is located. We then obtain

0= yξξ + f(y,xF;µ)+ ε
∂f

∂x
(y,xF;µ)ξ+ h.o.t,

(A.6)

where h.o.t. stands for the higher-order terms. At
leading order this equation does not depend on space
(for any given xF). Hence, the theory of interfaces in

the spatial homogeneous model applies. That is, by
extending the definition of V in (A.3) to

∂V

∂y
(y,x;µ) = f(y,x;µ), (A.7)

and defining

∆H(x,µ) := V (yA(x),x;µ)−V (yB(x),x;µ),
(A.8)

it is now clear that an interface can only be located at
x= xF when∆H(xF,µ) = 0.

A.3. Spatially heterogeneous equation—stability of
equilibrium solutions
For any given stationary state y= y∗, the (lin-
ear) stability can be analyzed by setting y(x, t) =
y∗(x)+ eλtȳ(x) in (4), which yields the linear stabil-
ity problem

λȳ= ε2ȳxx +
∂f

∂y
(y∗,x;µ)ȳ. (A.9)

Again, this equation can be analyzed per region.
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In the outer regions we have approximately

λȳ=
∂f

∂y
(y∗,x;µ)ȳ. (A.10)

So an outer region contributes to the spectrum

all values λ= ∂f
∂y (y

∗(x),x;µ) for all x within the
outer region. Heuristically, this means that the solu-
tion becomes unstable in an outer region if the
local dynamics (so ignoring all spatial effects) would
become unstable.

In the inner regions we have

λȳ= ȳξξ +
∂f

∂y
(y∗,xF;µ)ȳ

+ ε
∂2f

∂x∂y
(y∗,xF;µ)ȳξ+ h.o.t. (A.11)

This equation can be tackled by using a method sim-
ilar to the one employed in [61, 62]. For this, we first
differentiate (A.6) with respect to ξ to obtain

0= y∗ξξξ +
∂f

∂y
(y∗,xF;µ)y

∗
ξ + ε

∂2f

∂x∂y
(y∗,xF;µ)y

∗
ξξ

(A.12)

+ ε
∂f

∂x
(y∗;xF;µ)+ h.o.t. (A.13)

Then, by using this equation, it can be seen that sub-
stitution of ȳ= y∗ξ + εỹ and λ= ελ̃ into (A.11) yields
at leading order the equation

ỹξξ +
∂f

∂y
(y∗,xf;µ)ỹ = λ̃y∗ξ +

∂f

∂x
(y∗,xF;µ).

(A.14)

A Fredholm solvability condition then indicates that
each inner region contributes an eigenvalue

λ=−Cε

ˆ
If

∂f

∂x
(y∗(ξ),xF;µ)y

∗
ξ(ξ)dξ (A.15)

=−Cε

ˆ
If

d

dξ

(
∂V

∂x
(y∗(ξ),xF;µ)

)
dξ (A.16)

=−Cε
∂V

∂x
(y∗,xF;µ)|∂If , (A.17)

where C > 0 is a constant, and If is the inner region.
Thus, λ is proportional to the difference between

∂V
∂x at both ends of the interface. Or, put differ-
ently, to the derivative of ∆H. If the interface under
consideration goes from state B to state A, we have
λ=−C ∂∆H

∂x (xF;µ) and if it goes fromA to Bwe have

λ= C ∂∆H
∂x (xF;µ).

The equilibrium solution y∗ is only stable if all λ
in the spectrum have negative real parts. Therefore,
this is only the case when (a) all outer regions are loc-
ally stable and (b) all interfaces are located at positions
that yield only negative eigenvalues λ.

Appendix B. The small domain limit

If the spatial domain is too small (compared to the
diffusion strength), spatial interfaces do not fit in
the domain and coexistence states cannot form. If
the domain is really small, the spatial heterogen-
eity becomes irrelevant and dynamics are essentially
similar to a model that has no spatial effects. To
see this, consider the following spatially heterogen-
eous model with one spatial dimension (see also e.g.
[77, chapter 5] for a more general treatment of so-
called homogenization methods):

∂y

∂t
= D

∂2y

∂x2
+ f(y,x;µ) (B.1)

on the domain [−L,L] with no-flux boundary condi-
tions. By scaling x→ x/L, we obtain

∂y

∂t
=

D

L2
∂2y

∂x2
+ f(y,x;µ) (B.2)

on the domain [−1,1]. Now, in the small domain
limit, D̃ := D

L2 ≫ 1.
Hence, solutions can be approximated using per-

turbation techniques. Specifically, we can set

y(x, t) = y0(x, t)+O
(
1

D̃

)
. (B.3)

Then, at leading order,

∂2y0
∂x2

= 0 (B.4)

which indicates that y0(x, t)≡ y0(t) is uniform in
space.

Then, the evolution of the spatial average ⟨y⟩(t)
can be found at leading order:

d

dt
⟨y⟩(t) = 1

2

ˆ 1

−1

∂y

∂t
(x, t) dx (B.5)

=
1

2

ˆ 1

−1
D̃
∂2y

∂x2
(x, t) dx

+
1

2

ˆ 1

−1
f(y,x,µ) dx (B.6)

=
1

2

ˆ 1

−1
f(y0,x;µ) dx + O

(
1

D̃

)
,

(B.7)

where the integral over the spatial derivatives vanishes
because of the no-flux boundary conditions. Since y0
is uniform in space, the remaining integral is only the
spatial average over the heterogeneity. That is,

d

dt
⟨y⟩(t) = f(⟨y⟩, t) := 1

2

ˆ 1

−1
f(⟨y⟩,x;µ) dx (B.8)

which has dynamics similar to a non-spatial model.

12



Environ. Res. Lett. 17 (2022) 045006 R Bastiaansen et al

Appendix C. Details of the ocean
convectionmodel

To model the possibility of bistability between
convective and non-convective states, we use a
standard box model that models the temperature T
and salinity S of themixed-layer as dynamic variables,
which change through the exchange with static atmo-
sphere and ocean boxes [53–56]. We have extended
the model by the incorporation of a spatial dimen-
sions and the inclusion of spatial diffusion:

∂T

∂t
= D

∂2T

∂x2
+ kT (TA(x)−T)

−κ(∆ρ)(T−T0(x)) ; (C.1)

∂S

∂t
= D

∂2S

∂x2
+ kS (SA(x)− S)−κ(∆ρ)(S− S0(x)) ,

(C.2)

where∆ρ := ρ− ρ0 is the density difference between
the mixed-layer and the deep ocean. Further, TA(x)
and SA(x), respectivelyT0(x) and S0(x), are the space-
dependent (reference) temperature and salinity of the
atmosphere and deep ocean box, respectively. kT and
kS give the rate of exchange with the atmosphere box
and κ(∆ρ) the rate of exchange with the deep ocean
box. The latter is a function of ∆ρ, which is a non-
negative increasing function [53]. That is, convec-
tion happens when the exchange rate κ(∆ρ) is large,
which typically occurs if the mixed-layer is heavy
enough compared to the deep ocean.

Equations (C.1) and (C.2) describe the evolu-
tion of temperature T and salinity S in the ocean’s
mixed layer. We further simplify this two-component
model as follows: density ρ is approximated as a lin-
ear equation of state, i.e. ρ=−αT+βS. Then, T and
S are re-scaled as T̃= αT, S̃= βS such that ρ= S̃− T̃
and the system becomes

∂T̃

∂t
= D

∂2T̃

∂x2
+ kT

(
T̃A(x)− T̃

)
−κ(∆ρ)

(
T̃− T̃0(x)

)
; (C.3)

∂S̃

∂t
= D

∂2S̃

∂x2
+ kS

(
S̃A(x)− S̃

)
−κ(∆ρ)

(
S̃− S̃0(x)

)
.

(C.4)

Now, we assume kT = kS. Then, we define the spi-
ciness µ := S̃+ T̃, and ∆ρ := ρ− ρ0 =−(T̃− T̃0)+
(S̃− S̃0) and ∆µ := µ−µ0 = (T̃− T̃0)+ (S̃− S̃0).
The system can then be rewritten in terms of∆ρ and
∆µ as

∂∆ρ

∂t
= D

∂2∆ρ

∂x2
+ kT (∆ρA(x)−∆ρ)−κ(∆ρ)∆ρ

+D
∂2ρ0(x)

∂x2
(C.5)

∂∆µ

∂t
= D

∂2∆µ

∂x2
+ kT (∆µA(x)−∆µ)−κ(∆ρ)∆µ

+D
∂2µ0(x)

∂x2
. (C.6)

Since the equation for ∆ρ does not depend on ∆µ,
it can be solved without taking ∆µ into account.
Hence, for the purposes here, only the equation for
∆ρ is needed.

Appendix D. Details of the shallow lake
model

The shallow lake model that has been created in [15]
is non-spatial and dimensional. It is given by the fol-
lowing ordinary differential equation

dA

dt
= r

(
N

N+ hN

)(
hv

hv +V (A)

)
A− cA2, (D.1)

where

V (A) =
hpA

hpA +Ap
. (D.2)

We define µ̂ := N
N+hN

and rescale Â= A/hA, ĉ= hAc
to obtain the scaled model

dÂ

dt
= rµ̂

1

1+ V̂(Â)
Â− ĉÂ2, (D.3)

where

V̂(Â) =
1

hV

1

1+ Āp
. (D.4)

With spatial effects added (and dropping the hats),
this becomes the model in (14).
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