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Abstract
Organic matter (OM) content and a shallow water table are two key variables that govern the
physical properties of the subsurface within the active layer of arctic soils underlain by permafrost,
where the majority of biogeochemical activities take place. A detailed understanding of the soil
moisture and OM profile behavior over short vertical distances through the active layer is needed
to adequately model the subsurface physical processes. To observe and characterize the profiles of
soil properties in the active layer, we conducted detailed soil sampling at five sites along Dalton
Highway on Alaska’s North Slope. These data were used to derive a generalized logistics function to
characterize the total OM and water saturation fraction behavior through the profile. Furthermore,
a new pedotransfer function was developed to estimate the soil bulk density and
porosity—information that is largely missing from existing soil datasets—within each layer, solely
from the soil texture (organic and mineral properties). Given the currently sparse soil database of
the Alaskan Arctic, these profile models can be highly beneficial for radar remote sensing models to
study active layer dynamics.

1. Introduction

In northern circumpolar regions, it is estimated that
70% of the total carbon (1000 Pg) is stored in the
top 3 m of ground underlain by permafrost. (Tar-
nocai et al 2009, Hugelius et al 2014). Due to the
current warming trends and the resulting impact
on both anaerobic and aerobic soil respiration, the
sequestered soil organic carbon (SOC) in permafrost
could be released into the atmosphere as CH4 and
CO2 (Mishra et al 2013, Schuur et al 2015, Abbott
et al 2016). In addition to the impact of increas-
ing temperatures, soil moisture variability also plays
a major role in the loss of carbon from the perma-
frost SOC to the atmosphere (Natali et al 2015). In a
recent study, land surface modelers prioritized SOC

and soil moisture as key variables for studying Arc-
tic ecosystem dynamics in a changing climate (Fisher
et al 2018). Within US soils alone, observational SOC
estimated from soil pedon data indicates that Alaskan
soil accounts for up to half of the stored total US
soil carbon (Bliss andMaursetter 2010). However, the
vastness, remoteness, and harsh environment in the
Arctic region have led to sparse sampling and an often
incomplete and poorly constrained carbon inventory
in Alaska (Ping et al 2008).

In permafrost regions, almost all biogeochemical
activities occur in the active layer, the soil above per-
mafrost that freezes and thaws seasonally (Hinzman
et al 1991). The permafrost table restricts vertical
water flow and maintains a shallow water table and
a highly saturated soil across the active layer in the
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Arctic. Furthermore, cold temperatures and shallow
water tables lead to a low SOC decomposition rate
and subsequently cause an accumulation of high
organic matter (OM) content in active layer soils
(Chen et al 2019a). Pedon delineation and sampling
processes designed for permafrost affected soil often
collect samples from representative horizons (Ping
et al 2013, O’Connor et al 2020). This horizon-based
sampling results in just a few samples within the act-
ive layer with coarse sampling depths. Therefore, in
part, some of the critical processes associated with
variations of soil OM (SOM) properties over short
vertical distances through the active layer soil pro-
file might be overlooked (Harden et al 2012, Manies
et al 2020). Consequently, a more detailed study of
soil properties is of interest to model the fine-scale
vertical profile and, more specifically, the SOM pro-
file through the permafrost active layer (Jobbagy and
Jackson 2000).

Soil moisture variations in the active layer are
a primary driver of Arctic carbon exchange, active
layer thermal conductivity, and energy transfer affect-
ing permafrost stability (Lawrence et al 2015), yet
in-situ soil moisture data in the Arctic and Boreal
regions of North America is quite sporadic. In-situ
observations have been collected either at perman-
ently installed sites with near-real-time soil mois-
ture data at several depths within the active layer,
or manually during field campaigns (Nicolsky et al
2009, Biskaborn et al 2015). While the permanently
installed sensors provide sufficient temporal resol-
ution, they suffer from lack of spatial distribution
and a limited number of sensors per profile that do
not capture active layer fine-scale dynamics (Dafflon
and Torn 2017, Chen et al 2018, Romanovsky et al
2020). The second observation method, employed
during limited field campaigns, uses a soil moisture
probe, ground penetrating radar, and/or gravimetric
sampling of soil water content. While these samples
can be taken with high spatial density; the total spa-
tial coverage remains rather limited. These field cam-
paign measurements are temporally sparse and com-
prise single (or multiple) point(s) measurements in
time and space. Furthermore, even the largest avail-
able soilmoisture dataset collectedwithin the Alaskan
tundra provides only the average values of soil mois-
ture from probes inserted vertically into the ground
in conjunction with GPR measurements (Bourgeau-
Chavez et al 2010, Clayton et al 2021). The challenge
still remains, in that there is a lack of fine-scale vertical
profile characterization of soil moisture throughout
the active layer.

A major user of fine-scale vertical profile mod-
els characterizing SOM and soil moisture behavior
through the active layer is the radar remote sensing
community. For example, soil moisture profile mod-
els and detailed soil texture maps available for tem-
perate sites within the contiguous US have been used

for retrieval of subsurface soilmoisture from airborne
low frequency radar observations (Tabatabaeenejad
et al 2015, Tabatabaeenejad et al 2020, Cuenca et al
2016). However, in microwave remote sensing of per-
mafrost active layer soils, neither soil moisture nor
SOM profile models have been quantified (Chen et al
2019b, 2019c). Such models could also be incor-
porated into land surface models, replacing cur-
rent approximate SOC profile models being used in
numerical simulations, such as the exponential form
used by Yi et al (2018).

The work reported here directly supports the
NASA airborne campaigns within the Arctic Boreal
Vulnerability Experiment (ABoVE) (Miller et al
2019), by providing a detailed experimentally derived
model to describe soil moisture and OM distribution
in the active layer soil profiles. We further develop a
pedo transfer function (PTF) that relates soil min-
eral texture and OM to bulk density and porosity and
can be used to fill the data gap in existing databases,
in which critical information such as bulk density is
often lacking (Johnson et al 2011, Mishra and Riley
2012). The dataset used in this paper was obtained
in August 2018, through a series of field experi-
ments conducted at five tundra sites located along
the Dalton Highway in northern Alaska (Bakian-
Dogaheh et al 2020). The sites are located within two
of the ABoVE Airborne Campaign (AAC) flight lines,
commonly referred to as the ‘Deadhorse’ and ‘Toolik’
lines.

2. Materials

2.1. Site description
The Deadhorse and Toolik flight swaths of the AAC
(figure 1) are among the most widely studied areas
in the North Slope of Alaska. The vicinity of these
lines along the Dalton Highway and the Toolik Field
Station are densely sampled areas and a benchmark
for Arctic ecosystem studies. During the 2018 field
surveys, we selected five study sites along the Dalton
Highway to acquire field measurements within the
airborne synthetic aperture radar (SAR) footprints of
the 2017 AAC. The sites include Franklin Bluffs (FB),
Sagwon (SGW), Happy Valley (HV), and Ice Cut
(ICC), which are located within the Deadhorse flight
line, and Imnavait Creek (IMN) within the Toolik
flight line. The sites were chosen after close coordin-
ation with the ABoVE field scientists. FB, SGW,
and ICC were chosen because there had been mul-
tiple soil coring experiments the year before by other
ABoVE field scientists. The SGW site was chosen
based on preliminary results from the ABoVE radar
team suggesting an unexpectedly deep active layer
thickness (ALT) in the radar retrievals. The HV site
was chosen because of its proximity to the Univer-
sity of Alaska Fairbanks borehole temperature mon-
itoring system (Wang et al 2018), the University of
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Figure 1. The location of the five in situ tundra measurement sites located along the Dalton Highway, on the Alaskan North Slope,
USA. The site locations fall within two of the AAC flight lines shown on a regional land cover map (NLCD; Dewitz 2019) and
geographic projection. The land cover categories are adapted from the NLCD classification. Reproduced with permission from
(NLCD; Dewitz 2019).

Southern California (USC) Arctic SoilMoisture Sens-
ing Controller And oPtimal Estimator (SoilSCAPE)
site (Chen et al 2018), and Alaska Circumpolar Active
LayerMonitoring sites (Brown et al 2000). Also, there
had beenmultiple soil coring efforts in previous years
around the area. The presence of multiple eddy cov-
ariance flux towers in the IMN site was another factor
in choosing the site.

Further consideration and deciding factors for the
site (figure 1 and table S1 available online at stacks.
iop.org/ERL/17/025011/mmedia) selections involved
capturing awide range of land cover types andperma-
frost soil features specifically related to SOM content.
The National Land Cover Database (NLCD)map and
in-situ observations show that the IMN site is dom-
inated by tussock graminoid tundra (tussock sedge,
dwarf shrub, moss tundra). The HV and ICC sites are
covered mostly with erect dwarf shrub tundra (low
shrub tundra), while the SGW site is characterized
by non-tussock graminoid (non-tussock sedge and
dwarf shrub) or wetland (wet sedge) tundra (Stow
et al 2004, Walker et al 2005, 2012, Epstein et al 2012,
Raynolds et al 2012, Gagnon et al 2019).

2.2. Field experiment design
2.2.1. Soil moisture measurement
The in-situ determination of soil moisture con-
tent at the study sites was made using direct and
indirect methods. Most conventional indirect meth-
ods for in-situ soil moisture measurement are
electromagnetic techniques that use either capacitive
measurement or time domain reflectometry (Dorigo

et al 2011). These methods, which exploit the rela-
tionships between soil dielectric permittivity, soil
moisture, and other physical properties of soil, always
need further calibration (via a soil dielectric mix-
ing model) to translate the measured capacitance or
time delay of the permittivitymeasurement to the soil
water content. On the other hand, the direct methods
of soil moisture observation rely on field sampling of
moist soil and finding the soil moisture value via over
drying (this is often referred to as gravimetric water
content and is the gold standard).

In this work, we used both measurement types.
For the direct soil moisture measurement, two side-
by-side (adjacent) soil samples were extracted from
each layer (figure 2), and moist soil mass was recor-
ded for each sample in the field to measure the in-situ
soil moisture content (θ). The gravimetric soil mois-
ture content was calculated via oven drying (table
S2). For the indirect method (dielectric probing) the
values of dielectric constant were not translated into
soil moisture because of the need for an organic soil
dielectric model, which will be reported in our future
work.

For dielectric probing, the previous measurement
method (Clayton et al 2021, Schaefer et al 2021) did
not capture the profile behavior and only provided
average information about near-surface or total active
layer soilmoisture. Our dielectricmeasurements were
taken along the soil profiles using METER Group’s
TEROS 12 sensors (TEROS 12 manual 2020) and
the ProCheck data logger. These sensors operate at
70 MHz and measure the dielectric permittivity and

3

https://stacks.iop.org/ERL/17/025011/mmedia
https://stacks.iop.org/ERL/17/025011/mmedia


Environ. Res. Lett. 17 (2022) 025011 K Bakian-Dogaheh et al

Figure 2. Dielectric permittivity profile characterization
and soil sampling protocol, from the side wall of a soil pit
using TEROS 12. Two side-by-side replicate samples were
extracted from each layer. For PTF development, adjacent
samples are assumed to be independent, and for profile
modeling, ‘a’ and ‘b’ averaged values are used.

electrical conductivity. Measurements were taken at
multiple discrete points along the active layer soil
profile. Soil pits were dug, and sensors were inserted
horizontally into the soil to collect the measurements
(figure 2). This horizontal sampling was performed
along the inner wall of the soil pits, with a sampling
interval of 2.5 cm from the surface down to the top
of the permafrost table, located at the base of the act-
ive layer up to 55 cm below the surface at the tundra
sites. This approach provides the opportunity to cap-
ture the vertical variations of dielectric permittivity
at a fine resolution throughout the active layer pro-
file, which is not possible in alternate methods where
probes are inserted vertically or at an angle. Further-
more, while vertical sampling may be faster in a field
survey, it only measures the effective dielectric prop-
erties along the length of the probe from the surface,
which cannot capture the subsurface features that are
observable by low-frequency radars such as P-band
(Bourgeau-Chavez et al 2010).

2.2.2. Soil property measurement
The soil sampling procedure was designed to obtain
a full characterization of the subsurface profile. Con-
ventional field protocols and soil sampling procedure
in the Arctic Tundra region often consists of single
coring or opening a soil pit and sampling from rep-
resentative horizons, which results in a coarse charac-
terization of the active layer (2–3 samples). (Jobbagy
and Jackson 2000, Ping et al 2008, 2013, Tarnocai et al
2009, Agus et al 2010, Johnson et al 2011, Mishra
and Riley 2012, Michaelson et al 2013, Hossain et al
2015, O’Connor et al 2020). The majority of the pre-
vious studies were conducted by researchers focused

on Earth system and/or hydrology models. There is
a fundamental difference between the way subsurface
is characterized in Earth system models and physics-
based radar remote sensing models. In the latter, a
coarse horizon-based soil sampling may not capture
the transition and details of the soil property vari-
ations in the active layer, where, despite its relatively
shallow depth, its soil moisture and OM vary sub-
stantially. While we mainly follow the sampling pro-
tocols suggested by previous methods, the main dif-
ference in our method is fine resolution sampling to
acquire more sampling points in the subsurface to
characterize the active layer soil profile model. Oth-
erwise, the transition points between each horizon
will be ignored. Therefore, after opening each soil pit,
two side-by-side tin cans of soil samples were harves-
ted from the sidewall. Usually, the samples closer to
the surface, which typically have more organic, are
done at depths of 7–8 cm, and the deeper layer that
have more minerals content are sampled at intervals
of around 5–6 cm (table S3).

Furthermore, some pieces of information, such
as bulk density (ρb), porosity (φ), and root biomass
(RB), are often missing in datasets. Sample contain-
ers with the same volume (V = 251 cm3) were used
so that ρb andφ could bemeasured in the lab.Wet soil
mass was recorded in the field to measure the in-situ
soil moisture content (θ). The root layer decomposed
organic layer, and the mineral layer are visually dis-
tinguishable in the two soil pits excavated at HV and
ICC (figures 3 and S5).

2.3. Lab experiment design
A total number of 112 harvested samples were
weighed in the field. As needed, they were brought to
saturation for porosity measurement at Toolik Field
station (table S3). Soil samples collected during the
field campaign were shipped to our lab at USC for
further analysis. Upon arrival, a complete oven dry-
ing process was conducted for 72 h at 65 ◦C to avoid
charring the OM content to measure porosity.

Subsurface (herein referred to as ground) samples
consisted of soil matter, root systems, and gravel.
Hereafter, we refer to all live and dead OM and roots
with diameters (particle size) larger than 2 mm as
RB. All ground samples were wet sieved with a 2 mm
mesh. The remaining RB that did not pass through
2 mm mesh, was visually excluded from gravel frac-
tions. Once OM (roots) with dimensions larger than
2 mm was excluded, we over-dried them and meas-
ured the weight to calculate RB.

Consequently, we refer to subsurface sampleswith
particle size less than 2mmas soil, based on theUSDA
definition. If a sample contained a gravel fraction, it
was characterized based on a size greater than 2 mm
(Taxonomy 1999). Soil samples with particle size less
than 2 mm were then sent to a soil lab (The Ward
Laboratories in Nebraska) for analysis of the mineral
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Figure 3. Soil pits excavated at the HV and ICC study sites.

texture and SOM content. SOM was measured using
a loss on ignition (LOI) method, which heats the soil
samples in a drying oven at 360◦C for 2 h and 15 min
to combust the SOM. Mineral texture analysis was
performed using the hydrometer method.

All parameters, including porosity, bulk density,
RB, SOM content, and mineral texture, were meas-
ured for all soil samples. No samples were excluded
in a certain analysis, except for mineral texture meas-
urements, when the mass of the sample that con-
tained more than 35% OM content was too small
to measure the mineral texture. This level of detail
and the classification based on particle size is import-
ant because RB and the surface organic mat are
often excluded in the subsurface parameterization
(table S2). In contrast, our experiment revealed more
detailed information about the subsurface and differ-
entiation between RB and SOM, which are collect-
ively known as total OM.

3. Methods

3.1. Pedotransfer function
Numerical coupled thermal-hydrologic processes
used in land surfacemodels and electromagnetic scat-
tering models used in radar remote sensing usually
represent the subsurface as a multi-layered struc-
ture. The subsurface thermal, hydraulic, and dielec-
tric properties need to be parametrized for numer-
ical simulations, and these properties are strongly
dependent on soil moisture variation and texture
(mineral, organic, root layer) (Tabatabaeenejad and
Moghaddam 2006, Lawrence and Slater 2008, Bircher
et al 2016). Generalized models for subsurface para-
meterization often rely on soil properties, such as

mineral texture (sand (S) and clay (C) fractions),
OM (which encompasses SOM and RB), bulk density
(ρb), and porosity (φ) (table S1). These soil proper-
ties serve as inputs for these parametrization models.
PTFs leverage the strong correspondence between
different soil properties and provide a means of redu-
cing the complexity of these parametrization models
by reducing the number of input data layers. The
goal here was to find a function that estimates ρb and
φ from soil texture (OM, sand, and clay fractions)
through simple empirical modeling.

Important points that must be made are the
definitions for organic and mineral soil. Our field
observations indicate 35% OM (equivalent to 20%
carbon content) as distinguisher threshold between
mineral and organic soils (Agus et al 2010, O’Connor
et al 2019, Manies et al 2020). Above this threshold,
the properties of soil are governed only by OM
(Manies et al 2020). This is consistent with our
measurement observations, that for organic samples
(OM > 35%) even combinations of the two adjacent
samples did not have sufficient mineral constituents
and was dominated by organic particles. Therefore,
mineral texture of soil with OM beyond this range
has minimal influence on the pedotransfer model-
ing. Subsequently, in our modeling of samples with
OM > 35% we estimated the texture with the mean
value of each component (sand and clay) due to
almost-uniformbehavior ofmineral texture through-
out the profile.

Our dataset provided 102 samples from eight
soil pits including replicates, which are referred to
as sample ‘a’ and ‘b’ and can be treated as an inde-
pendent sample for PTF development (figure 2, table
S3). We combined our data with another recently
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published dataset collected within the Toolik flight
line (O’Connor 2019), which resulted in an expan-
ded set of 214 samples covering a wide range of
OM distribution (figure S1), frommineral to organic
soil. It is important to note that O’Connor et al
(2019) sampling follows a coarse characterization of
the active layer; nevertheless, the data can be used for
PTF model development. Unlike conventional PTFs
that are based on data-driven regressions, herein we
focused on correlation-based models. Here, a data-
driven regressions PTF refers to multi-variable mod-
els that use machine learning techniques such as Ran-
dom Forest to find a PTF model. Correlation-based
models are parsimoniousmodels with great explanat-
ory predictive power. For instance, in the followingwe
estimate different soil properties from soil textures.

Analysis of our data indicates that the bulk density
for mineral fraction can be found as follows:

ρb
Min = e0.0056S + 0.0081C (1)

where ρb
Min is the mineral bulk density associated

with mineral texture fraction. Sand and clay mass
fractions (%), which serve as input variables are
denoted by (S) and (C) respectively.

Furthermore, knowing that pure organic soil
often shows very small bulk density, to find the total
bulk density we used an exponential function as fol-
lows:

ρb = ρMin
b e−0.0314OM. (2)

Accordingly, once the value of ρb was found based
on OM, S, and C, to find the soil sample porosity
we adopted a linear relationship between φ and ρb
(O’Connor et al 2020).

φ = −0.3771ρb + 0.9247. (3)

The above relationship was confirmed from our site
soil measurements, with parameters calculated from
data.

3.2. Organic matter profile model
3.2.1. OM profile
Both soil moisture and OM vary substantially along
the active layer profile. Therefore, an accurate empir-
ical characterization to describe this profile behavior
is necessary. For the purpose of profile characteriz-
ation, we used only our fieldwork soil samples; the
O’Connor et al (2020) samples were not included
due to their sporadic sampling points within the pro-
file. The OM distribution for depth intervals of 5 cm
throughout the profile (figure S2(a)) and the median
of OM content at each corresponding depth (figure
S2(b)) show that the OM profile behavior is effect-
ively represented using a logistic sigmoid (S-shaped)
function.

OM(z) = OMz0 +
OMM −OMz0

1+ e−β(z−m)
. (4)

Equation (4) explains the behavior of the OM(z) pro-
file, where 0 ⩽ OMM < 35% is the OM fraction in
the mineral horizon, 0 ⩽ OMz0 ⩽ 100 is the surface
OM, β > 0 is the decay rate, and m> 0 indicates
the depth where the maximum decay rate occurred.
Based on the 35% OM criterion, the organic layer
thickness (zOLT) can be found for different soil
pits. This S-shaped profile is different from previ-
ous observations, in which the OM was expressed
as an exponential function (Meersmans et al 2009,
Hossain et al 2015). The difference in profile func-
tional forms reflects the more detailed sampling pro-
cedure used in this study, which provides finer resolu-
tion of profile gradients than more conventional bulk
sampling from representative soil horizons (Chen
2019) (figure S3).

3.2.2. RB and SOM profile
Aboveground vegetation biomass plays a crucial
role in governing subsurface hydraulic, thermal, and
dielectric characteristics (Hinzman et al 1991). While
between 70% and 80% of the vascular plant bio-
mass in Arctic tundra is located below ground, there
is still only limited knowledge about the below-
ground responses of tundra ecosystems to climate
change (Mokany et al 2006, Poorter et al 2012, Iversen
et al 2015, Wang et al 2016). One conventional
approach to quantifying the RB distribution is find-
ing a relationship between roots (underground) bio-
mass and shoot (aboveground) biomass, namely, the
root:shoot ratio. Species dependent root:shoot and
other allometric equations are poorly constrained for
tundra (Mokany et al 2006, Wang et al 2016). Our
detailed soil analysis based on particle dimensions
also provides detailed information on the RB pro-
file, RB(z), and SOMprofile, SOM(z). As described in
equation (5), the total subsurface OM profile OM(z)
at each sample site is associated with different sub-
surface constituents, including RB(z), SOM(z), gravel
fraction (GF(z)), and mineral fraction of the soil
through mass fraction (table S1).

OM(z) = RB(z)+ SOM(z)

(
1− RB(z)+GF(z)

100

)
.

(5)

RB(z) and SOM(z) can be derived from the in-situ
observations. The best profile model for RB(z) is
an exponential function, as shown in equation (6),
where 0 ⩽ RBz0 ⩽ 100% is the surface RB and κ⩽ 0
is the exponential decay factor. SOM(z) follows an
S-shaped behavior similar to OM(z), where the cor-
responding parameters are also similar to what was
described in equation (4).

RB(z) = RBz0e
κz (6)

SOM(z) = SOMz0 +
SOMM − SOMz0

1+ e−β(z−m)
. (7)
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Figure 4. PTFs that find porosity and bulk density from mineral texture and OM. Figure (a) shows the model behavior that
derives ρb from soil mineral texture and OM; the FB samples are outliers and excluded from modeling. (b) Shows the linear
relation between φ and ρb. (c) Shows the behavior of φ against OM, herein for mineral texture we considered the mean value of
Savg = 39%, and Cavg = 25%.

Note the two different expressions for OM(z) in
equations (4) and (5). In reality, wemeasure SOM(z),
RB(z), GF(z), and find the total OM(z) based on
equation (5). However, one can also fit an S-shaped
behavior for total OM as described in equation (4).
Among the 8 soil pits, except for SGW-1, the rest show
negligible gravel fraction (figure S4). In equation (4),
which we refer to as model 1, for convenience we
ignore the gravel fraction (GF(z)= 0). A comparison
between these two models is depicted in the results
section (figures 5 and 6). For the purpose of the radar
retrievals, we use equation (4) as it requires fewer
parameters to characterize the total OM profile.

3.3. Soil moisture profile model
Because the porosity (φ), or maximum saturation
level, substantially changes within different active
layer soil horizons, the saturationwater fraction (SW)
is a better representation for soil moisture (θ), where
it can be denoted as a normalized soil moisture level.
This also allows for estimating the water table depth
(zWT), where SW reaches 1. The soil moisture profile
θ (z) can be found as the product of SW fraction and
porosity:

θ (z) = SW(z)×φ(z) . (8)

The porosity profile φ (z) is found by substituting
equation (4) into equation (2), and knowing the soil
mineral texture; then the resulting ρb (z) profile is
applied to equation (3) to find φ (z). Our field obser-
vations show the best fit to characterize the SW(z) is
represented by a quadratic function:

SW(z) =

{
1− (1− SWz0)

(
z

zWT
− 1

)2
z ⩽ zWT

1 z > zWT

(9)

where SWz0 indicates the surface SW fraction, which
varies between 0 and 1, and zWT is the water table
depth.

4. Results

Soil mineral texture and organic properties serve as
inputs of the PTF model (figure 4). We assumed an
average value for the mineral texture, with Savg =
39%, and Cavg = 25%. The model showed close
agreement with the measurements and was able to
estimate ρb (z)with a rootmean square error (RMSE)
of 0.15 (gcm−3) (figure 4(a)). Once the bulk dens-
ity was found, it was used in equation (3) to recon-
struct soil porosity with RMSE of 0.05 (cm3 cm−3)
(figures 4(b) and (c)). The FB samples were outliers in
the PTF development, the major feature of the FB soil
is a thin RB layer with a homogeneous mineral tex-
ture profile having an average sand fraction around
60%− 70% and OM less than 35%. Therefore, the
PTF model developed in section 3.1 and the corres-
ponding results suggest that themodel is overestimat-
ing ρb for mineral soil that contains a high sand frac-
tion (figures 4 and 5(e) FB-1).

Next, we show the in-situ measurement results
and profile model behavior for all of the soil pits in
tundra sites (figure 5), which are the OM, ρb, and φ.

At each depth, the measured value for adjacent
samples ‘a’ and ‘b’ (figure S2) is reported. In most
cases, the twomeasurements are consistent. However,
due to microtopography variation within a site, pro-
file behavior at each soil pit is distinct from other
neighboring pits at the same site. Here, the OM(z)
profile follows the suggested S-shaped (sigmoid func-
tion) behavior in both soil pits (figures 5(a) and (d)).
For the SGW-1 andHV-1 (compare SGW-1 (red) and
HV-1 (black) in figure 5(a)) locations, the organic
layer is shallower, and OM(z) rapidly decreases from
the surface to the mineral layer. However, the SGW-2
and HV-2 (compare SGW-2 (blue) and HV-2 (mag-
neta) in figure 5(a)) and IMN-1, ICC-1 and ICC-2
(compare IMN-1 (blue), ICC-1 (black), and ICC-2
(magneta) in figure 5(d)) locations include a thicker
organic layer of about 20–30 cm. FB shows a fairly
homogenous mineral soil throughout the profile (see
FB-1 (red) in figure 5(d)). The corresponding ρb, and
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Figure 5. Soil active layer profile physical properties from soil pit measurement and model estimated at tundra sites; including
(a) OM at SGW-1 (red circle), SGW-2 (blue triangle), HV-1 (black square), and HV-2 (magneta diamond), (b) bulk density,
(c) porosity, (d) OM at FB-1 (red circle), IMN-1 (blue triangle), ICC-1 (black square) and ICC-2 (magneta diamond), (e) bulk
density, and (f) porosity. At each depth two replicate samples were harvested. Both measured values are shown. For profile
modeling, the average value was selected. OM profile was found based on sigmoid function and accordingly porosity and bulk
density profiles were found by inserting OM profile into PTF models.

φ, profiles were acquired by applying the OM(z) pro-
file from equation (4) and inserting it into the PTF
models (figures 5(b), (c), (e), and (f)). In almost all
soil pits except FB, which was outlier, the porosity and
bulk density profile behavior also follows the meas-
ured values.

The determination of FB measurements as an
outlier was in part visually and also based on the soil
type analysis, and not based on any statistical test
for outlier detection. For FB, the soil type is sandy
clay loam, and therefore higher bulk density is expec-
ted (because it should have larger but fewer pore
spaces). However, this behavior is not observed in
our measurement (table S6). Compared to SGW-1,
which is the same soil type and follows a higher bulk
density and lower porosity, we considered FB-1 to
be an outlier. Although it is also important to note
that SGW-1 shows a relatively smaller porosity and
higher bulk density due to the presence of gravel frac-
tion. Nevertheless, the bulk density in FB-1 is smal-
ler than expected within the range for sandy clay
loam.

As for ICC, the model also cannot estimate the
porosity well; however, the profile behavior still fol-
lows the measurements (figures 5(d)–(f)). Therefore,
to summarize, we refer to FB site as an outlier, because
not only the model shows error in estimating the
absolute values, it also cannot show the profile beha-
vior.

Comparing R2 and the RMSE values shows that
the total OM, found from equation (5), does not show
better performance in comparison to the OM pro-
file that is based solely on equation (4), except at the
IMN site (figures 6(a), (d), and table S4). Further-
more, onemust note the difference between SOMand
OM. The conventional LOImethods exclude particles
with a dimension greater than 2 mm prior to the
LOI process. Our method distinguishes between RB
and SOM based on the sample particle dimensions as
described in section 2.3. RB is not considered as soil;
therefore, conventionally, it is being excluded from
the LOI, resulting in the underestimation of the total
OM content. However, this layer is in the subsurface
and could substantially change subsurface thermal,
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Figure 6. Observed vs estimated SOM and RB profiles for the SGW tundra site (sampling location SGW-1 in red and sampling
location SGW-2 in blue). The model RB and SOM profiles are derived from equation (6) as shown and plotted against the
associated site measurements. Total OM, was found based on RB and SOM profile. (a) OM at SGW-1 (red circle), SGW-2 (blue
triangle), HV-1 (black square), and HV-2 (magneta diamond), (b) RB, (c) SOM, (d) OM at FB-1 (red circle), IMN-1 (blue
triangle), ICC-1 (black square) and ICC-2 (magneta diamond), (e) RB, and (f) SOM.

hydraulic, and electromagnetic properties. The sug-
gested exponential profile in equation (6) effectively
captures the RB profile (figures 6(b) and (e)), while
the S-shaped function shows similar utility in repres-
enting the SOM profile (figures 6(c) and (f)). Over-
all, the OM profile behavior performs well when it
is reconstructed from the S-shape function, which
is recommended for polarimetric SAR (PolSAR) and
interferometric SAR (InSAR) retrievals. With the way
that we distinguish between RB and SOM one can
develop an empirical approach to finding RB from
the total OM content. Such an approach has poten-
tial utility in estimating RB and the root layer from
radar remote sensing but requires further research.

Following soil texture characterization, the beha-
vior of soil dielectric permittivity, electrical conduct-
ivity, soil moisture, and the corresponding SW frac-
tion is of interest (figure 7). At the surface, due
to faster evapotranspiration and lower soil moisture
(figures 7(c) and (g)), and a highly porous RB layer,

almost all of the samples exhibit a low dielectric
constant (figures 7(a) and (e)). Among these sites,
SGW-2, IMN-1, and FB-1 show a higher surface
dielectric value because of higher moisture content
(compare SGW-2 (blue), IMN-1 (blue), FB-1 (red)
in figures 7(c) and (g)). As we go deeper into the act-
ive layer, the dielectric constant in all soil pits (except
FB-1) reaches a maximum value (saturated organic
layer) and then decreases as it reaches the deepermin-
eral layer. The transition depth varies based on the
organic layer thickness (compare SGW-2 (black) and
ICC-1 (blue) in figures 5(a), (d), 7(a), and 7(e)). The
dielectric variation for the mineral layer is relatively
constant due to saturation.

The SGW-1 samples exhibit an unexpected low
dielectric constant, and low soilmoisture even though
the mineral layer is fully saturated (figures 7(a),
and (c), (d) SGW-1 (red)). The SGW-1 and SGW-
2 soil samples are mostly sandy clay loam types
(table S6). However, the measured porosity at the
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Figure 7. Active layer measured soil dielectric constant and electrical conductivity profiles using TEROS 12 probes. Measured and
modeled soil moisture and SW fraction (quadratic model) the tundra site, including, (a) real parts of the dielectric SGW-1 (red
circle), SGW-2 (blue triangle), HV-1 (black square), and HV-2 (magneta diamond) (b) electrical conductivity, (c) volumetric soil
moisture, and (d) SW fraction, (e) real parts of the dielectric FB-1 (red circle), IMN-1 (blue triangle), ICC-1 (black square), and
ICC-2 (magneta diamond) (f) electrical conductivity, (g) volumetric soil SW fraction.

mineral horizon for the SGW-1 location is much
lower than the expected porosity of sandy clay loam
soils (compare SGW-1 (red) and SGW-2 (blue) in
figure 5(c)). Furthermore, themineral layers in SGW-
1 and SGW-2 are fully saturated, but the dielectric
constant and the soil moisture in SGW-1 are almost
half of what they are in SGW-2 (figures 7(a) and (c)).
The underlying reason for this behavior in SGW-1 is a
substantially higher gravel fraction, leading to a lower
porosity (figure S4).

The electrical conductivity, which determines the
imaginary part of the soil dielectric constant and
accounts for the lossy behavior of soil, is higher for
the mineral layer compared to the surface organic
layer. The abundance of cations in the mineral layer
explains a higher electric conductivity (figure 7(b)
SGW-2 (blue), HV-2 (magenta)) and, in turn, a
higher loss for the mineral soil layer, which is consist-
ent in all soil profiles (figures 7(b) and (f)). This is in
agreement with the fact that the radar signal attenu-
ation is greater in deeper soil layers, and radar sensit-
ivity decreases accordingly (Chen et al 2019b).

5. Discussion

While one can use various data-driven regression-
based methods to develop a model to study the
inter-relationships among soil physical properties, we
focused on deriving a correlation-based PTF model
that would be useful for further parametrization

and prediction of Arctic soil hydraulic and dielectric
permittivity behavior (Bakian-Dogaheh et al 2019,
Chen et al 2019c). The developed PTF suggests that,
except for sandy soils, the two essential soil physical
properties ρbandφ can be found solely based onmin-
eral soil texture and OM. This is of particular interest
for developing a soil dielectric model for the perma-
frost active layer.

The detailed analysis and results findings suggest
fewer independent variables as input parameters for
soil dielectric modeling, which can avoid unneces-
sary modeling complexity and the need for including
too many unknowns in the radar retrievals. We leave
the topic of soil dielectric modeling to a future paper
because of the need for extensive dielectric measure-
ment for a wide range of organic soil and full soil
moisture ranges from saturation to oven dry.

We showed that the PTFmodel was able to accur-
ately find ρb for the relatively high OM content soils
in the near-surface layer. However, the model under-
estimates ρb for the deeper mineral soil layers. This
underestimation also propagates to the estimation of
soil porosity depends on the mineral texture. How-
ever, the OM(z) profile model can reconstruct a real-
istic soil physical model, in particular, by estimat-
ing the porosity profile φ(z); where φ(z) may have
additional utility for estimating surface subsidence
from permafrost degradation using InSAR remote
sensing methods (Zwieback et al 2015, Hu et al 2018,
Michaelides et al 2019, Chen et al 2020).
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Figure 8. The framework of radar remote sensing forward model in the physics-based retrieval of active layer properties.
Subsurface properties can be categorized into three groups, (a) OM profile parameters X̄t

OM = [OMz0,OMM,β,m], (b) soil
saturation profile parameters X̄t

SW = [SWz0,zWT], and (c) active layer parameters X̄t
ALT = [h, zALT], which are surface roughness

height and ALT respectively. These parameters, serve as unknowns in a radar retrieval procedure, and through an iterative method
their value estimated at each radar pixel cell.

As depicted in the results, soil moisture and
OM variations can explain the soil dielectric beha-
vior throughout the active layer profile. These pro-
filemodels are of particular interest for radar retrieval
algorithms using both PolSAR and InSAR methods
(figure 8). In a physics-based PolSAR retrieval, the
subsurface parameters (X̄t) serve as unknowns (for
each radar pixel). At each retrieval iteration, an estim-
ation of parameters reconstructs the subsurface pro-
file (soil SW fraction and OM). Accordingly, these
subsurface profiles translate into the dielectric pro-
file by employing an organic soil dielectric model.
Subsequently, the subsurface discretized into a multi-
layer structure with N-layer and a depth interval
of ∆z = zALT

N . This discretized multi-layer dielectric
structure alongwith the soil roughness height (h) feed
into a multi-layer electromagnetic scattering model
to find the simulated backscattered response of sub-
surface, where eventually these simulated values com-
pared with the measured radar backscattered signal
(figure 8).

In summary the physics-based radar retrieval
using PolSAR data requires three models: (a) A
realistic subsurface soil properties profile model
(SW(z) , OM(z)) (b) A well-established organic soil
dielectric model (ϵ̃(z)), and (c) Amulti-layer electro-
magnetic scattering model (figure 8).

The subsurface parameters can be categorized
into three subgroups: (a) OM profile parameters
X̄t
OM = [OMz0,OMM,β,m], (b) soil saturation pro-

file parameters X̄t
SW = [SWz0,zWT], and (c) active

layer parameters X̄t
ALT = [h, zALT], which are sur-

face roughness height and ALT respectively. The
distribution analysis of OM profile model parameters

Figure 9. Profile model parameter ranges. The red bar
shows the median and the box boundaries show the
25%− 75% range of value within the distribution.

suggests that the deep OM content in the mineral
layer OMM can be assumed to vary conservatively
over the range from 5 to 7 (ignoring cryoturba-
tion). Furthermore, the decay parameter β can also
be assumed to be nearly constant, at around 0.5
(figure 9). In a PolSAR retrieval algorithm, these pro-
file parameters serve as unknowns. The above analysis
reduces the number of unknowns for OM(z) from
four to two, which is crucial for the PolSAR retrieval
algorithm, given very few radar measurements (usu-
ally 2) are available.

There are four primary sources of uncertainty in
our measurements: (a) compressing highly organic
porous samples, which results in over-estimating
soil moisture and bulk density, (b) over-saturation
while adding water to reach saturation, which may
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Figure 10. The distribution of correlation coefficients
between adjacent samples, showing the precision of soil
properties measurements as listed in equations (10a) and
(10b), assuming two harvested sample at each layer exhibit
similar physical properties.

lead to overestimating porosity, (c) crushing/rubbing
samples and passing excessive amount ofOMthrough
2 mm sieve, which can lead to underestimating RB,
and (d) the apparent dielectric permittivity measured
by TEROS 12 sensors has an accuracy of±1 for soil in
the relative permittivity range of 1−40 and 15% for
soil with a relative permittivity range of 40–80.

Estimating the error and uncertainty of items
(1)–(3) above will be qualitative because the error
value is variable for different soil types, and since such
an analysis will require a larger data set, we will leave
this analysis to future work and a more comprehens-
ive field campaign.

However, given that we have extracted multiple
samples at each sampling depth, an estimation of
the measurement precision (figure 10) can be calcu-
lated. Assuming the two adjacent samples (figure 2)
should exhibit a similar soil physical property, we can
find a distribution of correlation coefficient based on
equation (11).

a= [ρab,ϕ
a,RBa,OMa,SOMa,Sa,Sia,Ca,θa,SWa]

(10a)

b=
[
ρbb,ϕ

b,RBb,OMb,SOMb,Sb,Sib,Cb,θb,SWb
]

(10b)

ρ(a,b) =

∑
(ai − ā)

(
bi − b̄

)√∑
(ai − ā)2

(
bi − b̄

)2 . (11)

6. Conclusion and future work

In this paper, we presented a detailed study of soil
properties in the active layer profile of Alaskan tun-
dra. A fine-resolution dielectric (ϵr ′, and σ) pro-
file characterization was provided, along with soil

physical properties (OM, RB, SOM, ρb, φ, θ, SW)
throughout the profile. The interrelationship between
different soil textures (OM, S,and C) and soil phys-
ical properties (ρb,φ) was used to develop a new PTF,
which could be used in further modeling, especially
to develop a soil organic model with a minimum
number of parameters.

Furthermore, we showed that OM(z) and SW(z)
follow independent S-shaped and quadratic profile
distributions within the active layer. The paramet-
ers used to characterize these models were also stud-
ied. The resulting profile model can in turn be used
to develop more realistic organic soil dielectric mod-
els for tundra, and the resulting dielectric profile
can feed into a multilayer electromagnetic scattering
forward model for predicting the radar backscatter-
ing coefficients (Tabatabaeenejad and Moghaddam
2006). Subsequently it improves the assessments and
monitoring of permafrost active layer from airborne
and spaceborne SARs.

Also, the study of the cryoturbation effect, in
which the surface organic layer relocates to a deeper
layer below the mineral horizon, has not been dis-
cussed in this work, although some of our observa-
tions were able to capture this phenomenon. This will
be further studied in the future. The method used
in this paper is a baseline study, and more extens-
ive fieldwork and datasets could provide more insight
into the fine resolution profile behavior of active layer
soils.
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