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Abstract
In the context of 100% renewable electricity systems, prolonged periods with persistently scarce
supply from wind and solar resources have received increasing academic and political attention.
This article explores how such scarcity periods relate to energy storage requirements. To this end,
we contrast results from a time series analysis with those from a system cost optimization model,
based on a German 100% renewable case study using 35 years of hourly time series data. While our
time series analysis supports previous findings that periods with persistently scarce supply last no
longer than two weeks, we find that the maximum energy deficit occurs over a much longer period
of nine weeks. This is because multiple scarce periods can closely follow each other. When
considering storage losses and charging limitations, the period defining storage requirements
extends over as much as 12 weeks. For this longer period, the cost-optimal storage needs to be large
enough to supply 36 TWh of electricity, which is about three times larger than the energy deficit of
the scarcest two weeks. Most of this storage is provided via hydrogen storage in salt caverns, of
which the capacity is even larger due to electricity reconversion losses (55 TWh). Adding other
sources of flexibility, for example with bioenergy, the duration of the period that defines storage
requirements lengthens to more than one year. When optimizing system costs based on a single
year rather than a multi-year time series, we find substantial inter-annual variation in the overall
storage requirements, with the average year needing less than half as much storage as calculated for
all 35 years together. We conclude that focusing on short-duration extreme events or single years
can lead to an underestimation of storage requirements and costs of a 100% renewable system.

1. Introduction

The viability of 100% renewable electricity supply
continues to be a controversial topic (Jacobson et al
2015, Clack et al 2017, Heard et al 2017, Brown
et al 2018, Bogdanov et al 2019, Tröndle et al 2020).
Because a fully renewable electricity system must
heavily rely on wind and solar energy in most coun-
tries, one frequently discussed aspect is the system
reliability during events with low availability of these
variable energy sources. For the example of Ger-
many, such extreme events have also received pub-
lic and political attention (Wetzel 2019, German
Federal Government 2021), and the German term
for dark doldrums, Dunkelflaute, has made it to the

international debate (Li et al 2020, 2021, Ohlendorf
and Schill 2020, de Vries and Doorman 2021).

Previous studies on renewable scarcity periods
mostly focused on wind energy (Cannon et al 2015,
Patlakas et al 2017, Ohlendorf and Schill 2020). These
studies are similar in their approaches and results.
They define a threshold below which wind power or
wind speed is considered ‘low’. On this basis, they
characterize the frequency and duration of low-wind
periods based on decades-long, national time series.
The maximum duration of low-wind events identi-
fied in these studies is 4–10 d (see appendix table A1
for details).

Further time series analyses found that, due to
geographical smoothing, low-wind events are more
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pronouncedwhen focusing on single locations (Leahy
and McKeogh 2013) and become less extreme when
extending the geographical scope to the continental
scale (Grams et al 2017, Handschy et al 2017, Kaspar
et al 2019). Finally, Raynaud et al (2018) extended the
scope to solar, hydro, and load to examine ‘energy
droughts’, defined as periods when renewables sup-
ply less than 20% of demand. They found that a
mix of renewables reduces the duration of energy
droughts by a factor of two or more when compared
to single energy sources, and that the duration of
energy droughts will not exceed 2 d in 100% renew-
able scenarios. While several studies claimed that the
identified scarcity periods will define storage require-
ments in renewable electricity systems, it remains
unclear whether and how storage requirements can
be inferred from the results.

Meanwhile, many studies have analyzed the cost-
optimal configuration of 100% renewable electricity
systems (see Hansen et al (2019) for a review). These
studies employ optimization models to decide on
the investment in renewable generators and energy
storage, solving the trade-off between storage and
renewable curtailment (Zerrahn et al 2018). Besides
storage, the models usually consider other flexibil-
ity options such as flexible supply from bioenergy,
demand response, and international electricity trade.
The results of five German and European studies are
summarized in the appendix (table A2). The reported
optimal storage energy capacities are large enough to
supply 12–32 d of the average load within the con-
sidered region, which is about 2–3 times longer than
what time series analyses found as the duration of
low-wind events.

Contrasting the results from time series ana-
lyses and optimization models seems interesting for
three reasons. First, the larger storage volumes3 in
the optimization studies suggest that storage require-
ments may not directly be inferred from the length
of the worst Dunkelflaute as identified by time series
analyses. Second, the larger storage volumes in the
optimization studies seem counter-intuitive given
that these studies include flexibility options beyond
storage, which are not considered in the times series
analyses. Third, the above optimization models are
based on 1–3 weather years, and it remains unclear
whether these years include the worst Dunkelflaute
periods as identified by the time series analyses based
on multiple-decades-long datasets. While previous
studies analyzed the inter-annual variability of renew-
ables and implications for system planning in general
(Pfenninger 2017, Collins et al 2018, Schlachtberger
et al 2018, Zeyringer et al 2018, Kumler et al 2019),
the implications for storage energy requirements in

3 Wemean storage volumes in terms of days of average load, which
we use tomake the cost optimization results comparable across dif-
ferent regional scopes and to the duration of the scarcity periods
identified in the time series analyses.

particular remain unclear. A notable exception is a
study by Dowling et al (2020), which relates long-
term storage requirements to the inter-annual vari-
ability of renewables but without analyzing the role
of extreme events.

This study bridges the gap between time series
analyses of extreme events and optimization models.
On the one hand, we analyze 35 years of renewable
and load time series to characterize the Dunkelflaute
in terms of themaximumenergy deficit accumulating
over a certain period. We also calculate the required
storage energy capacity with a stylized cost optimiza-
tion model using the same input time series. The role
of other flexibility options on storage requirements
is analyzed using the example of flexible bioenergy.
Finally, we contrast the optimization results based on
single versus multiple years of data.

Our work contributes to the understanding of
how the variability of renewable sources defines
storage requirements in a 100% renewable electricity
system. Our findings suggest that both time series
analyses and optimization models often come with
simplifications that may lead to an underestimation
of storage requirements. Regarding time series ana-
lyses, it appears insufficient to look at short periods
with extreme scarcity because these can be surroun-
ded by other scarcity periods, which jointly define
storage needs. Regarding optimization models, ana-
lyzing single years seems insufficient because these do
not necessarily include extreme events. Furthermore,
with an increase in other flexibility options, the role of
long-term storage transitions from bridging extreme
events to smoothening the inter-annual variability of
renewables.

The remainder of this paper is structured as
follows. Section 2 describes the applied methods
and utilized data, section 3 presents the results,
section 4 discusses the findings, and section 5 draws
conclusions.

2. Methods and data

This section describes the time series data
(section 2.1), which serve as an input to the
subsequently introduced optimization model
(section 2.2) and time series analysis (section 2.3).
To highlight methodical similarities and differences,
we use rather stylized assumptions—the limitations
of which are discussed in section 4.

2.1. Time series data
Bothmethods use 35 years-long time series data from
the EuropeanNetwork of Transmission SystemOper-
ators for Electricity, ENTSO-E (2020) as an input.
These time series reflect a scenario for 2030 based on
weather reanalysis data from 1982 to 2016. This data-
set is used by European systemoperators for adequacy
calculations and, more generally, reanalysis data have
frequently been used in the literature on renewable
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electricity systems (Cannon et al 2015, Ohlendorf
and Schill 2020, Tröndle et al 2020, Neumann and
Brown 2021). The dataset includes hourly load data
and hourly generation profiles for wind and solar
energy at the national level. Furthermore, daily gener-
ation time series are provided for hydro run-of-river
(hydro ROR), as well as weekly time series for the nat-
ural inflow to hydro reservoirs and to pumped hydro
storage.

Being based on a scenario for the year 2030, these
time series reflect some changes that can be expec-
ted compared to current observations. For example,
the load profiles account for the expected increase in
electric vehicles and heat pumps by 2030, and gen-
eration profiles reflect the expected distribution and
technology of wind and solar power plants in 2030.
It should be noted, however, that a potential 100%
renewable electricity system may only be reached
toward 2050. The load and generation profiles may
exhibit further changes by then, as discussed in
section 4.

2.2. Cost optimizationmodel
We use an optimization model to find the least-cost
100% renewable electricity system for the example of
Germany. The model decides on investment in vari-
able renewable generators and electricity storage in
batteries and via hydrogen. Simultaneously, the dis-
patch of storage is optimized, while considering exist-
ing bioenergy and hydro power (including pumped
hydro storage). The optimization problem extends
over 35 consecutive years with an hourly resolution
of dispatch. For every hour, primary renewable elec-
tricity supply plus storage discharging minus storage
charging and curtailment must be equal to load at
the country level. The storage level at the beginning
of each year is determined by the model but must
be equal to the storage level at the end of the pre-
vious year. For perspective, further model runs are
conducted based on single years, and the results are
contrasted with those of the multi-year optimization
(section 3.5).

The investment variables for variable renewables
include three distinct technologies: solar photovoltaic
(PV), onshore wind, and offshore wind. The invest-
ment in batteries is distinguished into an energy-
specific component (the battery packs) and a power-
specific component (the inverters). For hydrogen
storage, three investment dimensions are considered:
energy (salt caverns), charging power (electrolyzers),
and discharging power (combined cycle gas turbines,
CCGTs). The annualized investment costs and the
fixed operation and maintenance costs for all these
technologies are included in the objective function of
the optimization model.

The hourly dispatch optimization is based on
the time series data described in section 2.3. Load
time series are used as is, and the generation profiles

for wind and solar energy are scaled according to
the corresponding investment variables. Put differ-
ently, the per-MW renewable profiles are multiplied
with the installed capacity as determined by the
cost optimization model. Hydro ROR is fixed to the
provided daily time series, with the hourly genera-
tion being constant throughout the days. Reservoir
and pumped hydro are modeled as one generic dis-
patchable hydro technology (hydro DIS), considering
the weekly inflow profiles and constraints imposed
by existing capacity. For comparability with the time
series analysis, bioenergy is conservatively assumed to
produce at constant load in the base case, and a more
flexible operation is considered in a sensitivity ana-
lysis (section 3.4).

The cost optimizationmodel is described in detail
in the appendix B. Our cost assumptions are repres-
entative of the year 2050, which may be a realistic
horizon for a potential switch to a 100% renewable
electricity system (see appendix C). The program-
ming code of the optimization model is published
open source (see data availability statement).

2.3. Time series analysis
Based on the time series data described in section 2.3,
we define the maximum energy deficit as follows:

Edef,max =max
t0,t1

t1ˆ

t0

Pload (t)− PRE (t) dt, (1)

with:

PRE (t) = Psolar PV (t)+ Ponshore wind (t)

+ Poffshore wind (t)+ Phydro ror (t)

+ Phydro inflow (t)+ Pbioenergy (t) , (2)

where t0 and t1 are start and end timestamps of the
period with the maximum energy deficit. Pload (t)
is the hourly load data and PRE (t) is the sum of
renewable electricity generation. For wind and solar
energy, Ponshore wind (t), Poffshore wind (t), and Psolar PV (t)
are outputs of the cost optimization model. The gen-
eration of hydro ROR Phydro ror (t) is based on the
input time series described in section 2.1, and for
hydro reservoirs and pumped storage, the natural
inflow Phydro inflow (t) is considered. Hence, we are cal-
culating a gross deficit in the sense that available
storage capacity of hydro power is not yet deduc-
ted. Bioenergy is assumed to produce at a constant
load to make the results of the time series analysis
and of the cost optimization model comparable. To
identify the overall maximum energy deficit, t0 and
t1 are two independent arguments of the maximiza-
tion algorithm with t1 > t0. In addition, we compute
the maximum energy deficits for different durations
T= t1 − t0. The resulting periods for the maximum
energy deficits with different durations can possibly
but not necessarily overlap (see section 3.2 below).
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3. Results

This section starts with an overview of the multi-
year cost optimization results (section 3.1). We then
present the output from the time series analysis
(section 3.2) and compare it with the cost-optimal
storage requirements (section 3.3). Furthermore, we
analyze the impact of flexibility on storage require-
ments for the example of bioenergy (section 3.4) and
contrast the results of the multi-year optimization
with those of single years (section 3.5).

3.1. Cost-optimal system configuration and storage
requirements
The characteristics of the multi-year cost-optimal
100% renewable German electricity system are sum-
marized in figure 1. On the supply side, almost
300 GW of variable renewable generators are
installed: 92 GW solar PV, 94 GW onshore wind,
and 98 GW offshore wind (figure 1(a)). For solar
PV and onshore wind power, this is nearly twice as
much as the installed capacity in 2020; for offshore
wind power, this means more than a tenfold increase
(Agora Energiewende 2021). These variable generat-
ors are complemented with about 81 GW of storage
discharging capacity, including mostly hydrogen-
fired CCGT (62 GW). For perspective, the installed
capacity of CCGT almost equals the average load,
while the overall discharging capacity can supply
77% of the peak load (105 GW). The storage char-
ging capacity is about 72 GW, which is somewhat
lower than the discharging capacity. Up to 161 GW
of renewable surplus generation is curtailed because
this is more economical than building more storage.

The storage energy capacity, which is the focus
of the present paper, is 56 TWh (figure 1(b)). Most
of this is hydrogen storage (54.8 TWh), while exist-
ing pumped hydro storage contributes 1.3 TWh and
batteries just 59 GWh (0.059 TWh). Accounting for
discharging efficiency, the storage volume translates
into amaximum supply of 36TWh electricity4. This is
about 7% of the annual load or 24 d of average load—
much longer than what previous time series analyses
find based on their definition of a Dunkelflaute. The
storage duration is 23 d for hydrogen, 6 d for pumped
hydro, and 6 h for batteries5.

The total primary supply from renewable sources
is about 700 TWh, which is roughly 130% of the
modeled annual load (figure 1(c)). The largest con-
tribution comes from offshore wind (53%), onshore
wind (26%), and solar PV (13%). Given the similar
installed capacity of these variable renewable tech-
nologies, differences in energy supply are due to the

4 34.5 TWh from hydrogen, 1.1 TWh from hydro power, and
56 GWh from electricity.
5 Here, we define this as the storage volume in electricity terms
divided by storage discharge capacity (also referred to as energy-
to-power ratio).

diverging average capacity factors of the assumed
generation profiles (0.43 for offshore wind, 0.22 for
onshore wind, 0.11 for solar PV). Only 65% of the
primary energy supply directly serve load (455 TWh),
while 23% are charged into storage (160 TWh)
and 12% are curtailed (84 TWh). Storage discharge
accounts for 92 TWh (17% of load).

Although not in the focus, figure 1(d) reports
the cost for storage (about €30 MWh−1 of load)
and variable renewables (€50 MWh−1 of load). Note
that these costs include neither the cost of exist-
ing hydro and bioenergy, nor grid cost. Neverthe-
less, even the approximately €80 MWh−1 of load
are relatively high compared to previous studies. For
example, Tröndle et al (2020) report total system costs
of €50–60 MWh−1, depending on the distribution
of renewables. On the one hand, the fact that we
model Germany as an island may lead to an over-
estimation of cost. On the other hand, as opposed
to previous studies, we consider multiple years of
data, which means that our estimate includes the cost
related to the inter-annual variability of renewables
(see section 3.5).

3.2. Maximum energy deficit based on time series
analysis
In this section, we analyze renewable and load times
series to find the maximum energy deficit. Recall
that time series of load, hydropower, and bioen-
ergy are directly retrieved from the ENTSO-E dataset
(section 2.1). For wind and solar energy, the ENTSO-
E capacity factors are multiplied with the installed
capacities resulting from the cost optimization
model.

Because previous time series analyses identi-
fied scarcity events with a duration of up to 10 d
(table A1), we first focus on the scarcest 10 d period.
We find that this period occurs in December 2007.
The energy deficit over this period is 12.4 TWh
(8 d of average load), which is only one third of
the 36 TWh of electricity that the cost-optimal stor-
age can supply. Figure 2 displays the hourly elec-
tricity balance, including electricity generation, stor-
age charging and discharging, load, and curtailment6.
The figure reveals that there is very low supply from
all renewable sources throughout this identified 10 d
scarcity period, which is in line with the intuition
behind the concept of Dunkelflaute. However, it can
be seen from figure 2 that the 2 d before and the
first day after the worst 10 d period are also short on
energy, even though supply is not as scarce as dur-
ing the 10 d. As a result, storage requirements can be
expected to be defined by a period longer than 10 d.

6 Recall from section 2.2 that, for every hour, the sum of elec-
tricity sources (generation and storage discharging; displayed in
figure 2 with a positive sign) must equal the sum of electricity sinks
(load, storage charging, and curtailment; displayed in with a neg-
ative sign).
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Figure 1. Cost-optimal system configuration. (a) Cost-optimal power capacity of electricity sources, that is, generators and
storage charging, as well as electricity sinks, that is, storage charging. Peak load and peak curtailment is also displayed for
perspective. (b) Cost-optimal storage energy capacity. (c) The 35 years average annual electricity balance. (d) Breakdown of
generation and storage cost. Note that hydrogen refers to combined cycle hydrogen turbines (source), hydrogen electrolyzers
(sink), as well as salt caverns (storage), and all these components are included in the hydrogen cost. Within the hydro power
technologies, ROR refers to run-of-river and DIS to the dispatchable hydro reservoirs and pumped hydro storage. All storage
technologies are highlighted with hatching.

Figure 2. Hourly electricity balance for the maximum 10 d energy deficit. Electricity supply from generation and storage
discharging is displayed as a stacked area with a positive sign, while electricity demand for final consumption and storage charging
as well as curtailment are displayed as a stacked area with a negative sign. Storage technologies are highlighted with hatching.

In early and late December, there is an oversupply of
electricity, part of which is used to charge the hydro-
gen storage, while the remaining oversupply is cur-
tailed.

This expectation is confirmed in figure 3(a),
which displays the maximum energy deficit as a
function of duration. In fact, the maximum energy
deficit increases monotonically with duration for
up to 14 d and starts oscillating for longer dura-
tions. Intuitively, this means that, for every increase
in duration up to 14 d, another day with renew-
able scarcity is included in the calculation of the
energy deficit; for longer durations, the period
with the maximum energy deficit may also include
single days with energy surplus. Furthermore, it

should be noted that scarcity periods of different
duration do not necessarily overlap (figure 3(b)).
The scarcest periods with a duration of more than
15 d do not occur in December 2007 anymore but
in November 1998; going beyond a duration of
28 d, the scarcest periods occur mostly during winter
1996–1997.

The overall maximum energy deficit is 27 TWh
(18 d of average load) and accumulates over 61 d
(almost 9 weeks). Rather than one period with con-
stantly low supply, these 61 d include several scarce
periods in a row, interrupted by short periods with
energy surplus (figure 4). This finding will be com-
pared to the results from the cost optimization in the
following.
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Figure 3. Characteristics of scarcity periods as a function of the considered duration T= t1 − t0. (a) The maximum energy deficit
as defined by equation (1), and (b) the corresponding start of the period t0.

Figure 4. Hourly electricity balance for the maximum 61 d energy deficit (the overall maximum in the 35 years dataset).
Electricity supply from generation and storage discharging is displayed as a stacked area with a positive sign, while electricity
demand for final consumption and storage charging as well as curtailment are displayed as a stacked area with a negative sign.
Storage technologies are highlighted with hatching.

3.3. Bridging the gap between cost optimization
and time series analysis
The electricity-equivalent storage energy capacity in
the cost optimizationmodel (36TWh) is considerably
higher than the maximum energy deficit identified in
the time series analysis (27 TWh). Thismay be for two
reasons. First, the cost optimization model considers
storage losses, which means that one unit of excess
electricity during the worst period reduces the stor-
age requirement only by one unit of energy times the
storage cycle efficiency (50.4% for hydrogen, account-
ing for the efficiencies of both the electrolyzer and the
CCGT). By contrast, the time series analysis ignores
storage losses, as one unit of excess energy reduces the
energy deficit by exactly one unit. Second, the cost
optimization model accounts for curtailment when
excess electricity exceeds the storage charging capa-
city. As it can be seen in figure 4, such curtailment
occurs even during the worst 61 d period. This means

that it is cost-optimal to build less electrolyzers than
needed to absorb all surplus electricity during the
worst 61 d period and instead build a somewhat lar-
ger underground hydrogen storage to compensate
for the not-absorbed surplus during the scarcity
period with a higher storage level at the start of the
period.

To test these potential reasons, we conduct two
sensitivity runs with the cost optimization model,
fixing renewable capacities. One run ignores stor-
age losses (‘no losses’) and the other ignores both
storage losses and charging capacity limitations
(‘unlimited charging’). Figure 5 reports the result-
ing storage volumes. As expected, both assump-
tions reduce storage requirements, and the results
in the ‘unlimited charging’ scenario coincide with
the maximum energy deficit calculated in the time
series analysis. Put differently, to derive realistic
storage requirements from time series analyses, one

6
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Figure 5. Energy storage requirements resulting from the optimization model in the reference scenario and for the hypothetical
cases of loss-free storage and, in addition to the no-loss assumption, unlimited charging capacity. Note that the renewable
generation capacity has been fixed for these sensitivity runs. For perspective, the figure also displays the electricity equivalent of
the storage requirements in the reference scenario, that is, the aggregated maximum dischargeable electricity from all storage
types.

Figure 6. Hourly electricity balance for the period when storage is fully used. Electricity supply from generation and storage
discharging is displayed as a stacked area with a positive sign, while electricity demand for final consumption and storage charging
as well as curtailment are displayed as a stacked area with a negative sign. Storage technologies are highlighted with hatching.

needs to consider charging limitations and storage
losses7.

Finally, we identify the periods when the over-
all storage volume is fully used in the optimization
model, that is, periods starting when all types of stor-
age are fully charged and ending when the state-of-
charge initially reaches zero. These periods define the
storage requirements in the optimization model. In
the sensitivity runs without storage losses, with and
without charging limitations, the identified periods
perfectly coincide with the worst 61 d identified with
the time series analysis. Accounting for both storage
losses and charging limitations, however, prolongs
the worst period from 61 to 84 d (12 weeks, almost
3 months). Figure 6 reveals that this period includes

7 For example, Heide et al (2011) and Rasmussen et al (2012)
employ a more elaborated time series analysis, which accounts for
storage losses but not for charging limitations.

the 61 d identified with the time series analysis but
also about 3 weeks before this period. Accounting for
charging limitations (in addition to storage losses)
does not lead to a further prolongation of the worst
period.

3.4. Flexibility as a substitute for storage: the
example of bioenergy
To enhance the comparability of the cost optimiz-
ation and the time series analysis, we have so far
assumed that bioenergy runs as baseload. In fact,
German bioenergy-based electricity generation his-
torically runs almost baseload at around 4.6 GW
despite a much higher installed capacity of 8 GW.
However, this is mostly due to inadequate regulat-
ory incentives and market price signals and can be
expected to change in a future 100% renewable elec-
tricity system (Thrän et al 2015). Against this back-
ground, we now relax this assumption, allowing for

7



Environ. Res. Lett. 17 (2022) 044018 O Ruhnau and S Qvist

Figure 7. The implications of bioenergy flexibility, assuming a varying amount of shiftable electricity (x-axis) and a maximum
power adjustment of±4.6 GW compared to the constant 4.6 GW profile in the reference scenario. The figure displays the results
of the cost optimization model for (a) energy storage requirements, including the assumed flexibility of bioenergy, both displayed
in terms of electricity, (b) storage discharging capacity including the assumed 4.6 GW upward flexibility of bioenergy, (c) storage
charging capacity including the assumed 4.6 downward flexibility of bioenergy, and (d) the renewable generation capacity.

bioenergy to reduce and increase its output by±100%
(4.6 GW). As a sensitivity, we increase the maximum
amount of bioenergy that can be shifted in steps of
2 TWhup to 10TWh in electricity terms. For compar-
ison, the assumed annual electricity production from
bioenergy is 40 TWh. This means that 3 months of
production can be stored, which is longer than the
previously identified period when storage was fully
used. The flexibility is modeled as perfect storage
without losses (see appendix B for details). Note that
we use bioenergy as an example of flexibility. Similar
effects may be observed with demand-side flexibility
or international trade.

The impact of flexible bioenergy on the need
for other storage technologies is ambiguous. First,
the electricity-equivalent volume of other storage
decreases less than proportionately with increasing
bioenergy flexibility (figure 7(a)). These somewhat
counter-intuitive results can be explained by the fact
that flexible bioenergy not only substitutes for stor-
age but also for part of the renewable overcapa-
city (figure 7(d)). Second, the decrease in dischar-
ging capacity8 equals almost exactly the capacity
by which flexible bioenergy can increase produc-
tion (figure 7(b)). This is intuitive to understand
given that the discharging capacity must be suffi-
cient to serve the highest residual load, which is
hardly affected by the observed change in renew-
able capacity. Finally, when introducing bioenergy
flexibility, the charging capacity initially decreases
by much more than the capacity by which flexible
bioenergy can decrease production (figure 7(c)). This
makes sense given the reduced renewable capacity
and, therefore, less renewable surplus. When further

8 The overall decrease is mostly a reduction in combined cycle
hydrogen turbines and to a lesser extend a reduction in battery
power capacity.

increasing the amount of shiftable electricity gener-
ation from bioenergy, however, the storage charging
capacity re-increases, mostly due to additional hydro-
gen electrolyzers. To understand this result, it is worth
highlighting that we are increasing the bioenergy flex-
ibility only in energy terms, not in power terms.
Apparently, complementing this increase in energy-
related flexibility of bioenergy with an increase in
power-related flexibility of hydrogen storage is a
cost-efficient solution, enabling a further reduction
in renewable capacity. Interestingly, the decrease in
renewable overcapacity in parallel to the increase in
overall storage volume means that the period when
storage is fully used, that is, the period that defines
storage requirements, is prolonged to more than
1 year (10 October 1995 to 3 February 1997). Hence,
given the additional flexibility of bioenergy, storage
requirements are defined by the inter-annual vari-
ability of renewables rather than more short-term
extreme events.

3.5. Comparing multi- and single-year
optimization
This section contrasts the results from the multi-
year optimization to those based on single years.
In the multi-year optimization, we found that stor-
age requirements are defined by a winter period
crossing the turn of the calendar year. To capture
this period in one of the single-year optimizations,
we now consider 12 months periods from July to
June of the next year instead of calendar years. For
comparability, bioenergy is assumed to be inflexible
again.

Figure 8 presents the distribution of the single-
year results relative to the multi-year results. The
investment in variable renewables varies significantly
(figure 8(a)). This may be linked to the inter-annual
variability of renewable energy sources, but the link
is not straightforward. Relatively high and steady
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Figure 8. Single-year results divided by the results from multi-year optimization. The black lines in the middle of the boxes
indicate the median, the boxes extend from the first to the third quartile (inter-quartile range), and the whiskers include the
5%–95% confidence interval of the observations. Observations outside of this confidence interval are depicted as black dots, and
the white points represent the mean of the distribution.

energy yields of a renewable technology for 1 year
may reduce this technology’s capacity need to sup-
ply a given share of load. However, high and steady
yields may also increase the economic attractiveness
of this renewable technology relative to other tech-
nologies, such that its share in electricity supply may
increase. Apparently, this trade-off is solved in the
single-year optimizations with a tendency toward
more solar and less wind power in single-year optim-
izations. There is also a tendency toward more batter-
ies (figures 8(b)–(d)), which is correlated with solar
deployment. For hydrogen storage, which is decisive
to bridge the largest energy deficit, the relative vari-
ation is less pronounced, but it should be noted that
the absolute hydrogen storage volume is in the TWh
scale while batteries are deployed in theGWh scale. As
a result, hydrogen storage requirements almost dir-
ectly translate to overall storage requirements (recall
figure 1(b)). Remarkably, the single-year optimiz-
ation systematically underestimates long-term stor-
age requirements: the average single-year hydrogen
storage volume is only half of what is needed in
the multi-year optimization. The one single year
that almost matches the multi-year storage require-
ments is the 12 months period from July 1996 to
June 1997—which includes the previously identified
scarcest period. The fact that the required storage
volume does not match exactly can be explained
by a slightly different mix of renewables when this
12 months period is optimized in isolation. The
single-year optimization also tends to underestimate
cost, with 1996–1997 being closest to the multi-year
estimate (figure 8(d))9.

9 Note that the key result that single-year optimization underes-
timates storage volume and cost holds true also for calendar years,
but the worst single year is then different from the worst period in
the multi-year optimization.

4. Discussion

The results of this study can be compared to the lit-
erature. First, our results based on 35 years of data
support the finding from previous time series ana-
lyses that the Dunkelflaute—a period with constantly
high load and low renewables—does not exceed
2 weeks (table A1). However, we demonstrate for the
example of Germany that storage requirements are
defined by a much longer period of about 12 weeks,
including multiple periods with low renewable sup-
ply but also some surplus. With increased flexibil-
ity from bioenergy, the defining period may even be
longer.

Second, our finding that single-year optimization
generally underestimates the required storage volume
when compared to multi-year optimization is in line
with Dowling et al (2020). However, while we find
that the multi-year storage need is almost equal to
that of the worst single year, that study reports that
multi-year storage is even larger than that. This may
be explained by the larger geographical scope ana-
lyzed byDowling et al (2020) compared to the present
study. Like the above-discussed effect of bioenergy
flexibility, geographical smoothing may reduce vari-
ability on shorter time scales such that the remaining
variability, which needs to be addressed by long-term
storage, spans multiple years. Note that both single-
and multi-year results on storage energy capacity lie
within the wide range of results from previous cost-
optimization studies (table A2).

Some limitations of the present study and possib-
ilities for further research may be highlighted. First,
for simplicity and comparability this study narrowly
focuses on Germany, ignoring both international
trade and intra-national grid constraints. While geo-
graphical smoothing within Europe will certainly
reduce challenges and costs related to wind and solar
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variability, the effect on optimal storage deployment
is not trivial due to the trade-off with renewable
overcapacity. In this regard, it should be mentioned
that during the period of the largest energy defi-
cit in Germany—winter 1996–1997—neighboring
countries were suffering severe deficits as well. This
included the Swedish and Norwegian hydroelectric
system, which usually exports electricity to cent-
ral Europe but experienced its historically highest
energy deficit during 1996. It is therefore unlikely that
including modeling of international electricity trade
would fundamentally impact our general results on
storage requirements in 100% renewable electricity
systems. Finally, sub-national grid constraints within
countries may increase the requirement for storage
and/or renewable overcapacity.

Furthermore, this study has a limited view on
changes on the demand side of the electricity sys-
tem. The decarbonization of other energy sectors
may require additional electricity for electric heat
pumps, electric vehicles, and the production of syn-
thetic fuels (Ruhnau et al 2019). Our input load time
series already consider part of this for the horizon
of 2030, but a fully decarbonized system is likely to
require a further increase in electricity demand and
hence larger storage volumes. However, this demand
increase will come with changes in the demand pro-
file and the related flexibility, and further research
will be needed to characterize the impact on stor-
age requirements. Furthermore, we ignore load shed-
ding, which may substitute for part of the storage
requirements.

Finally, future load and renewable profiles may
change due to climate change, which has been neg-
lected in the current analysis. While the impact of cli-
mate change on wind and solar output is subject to
large uncertainty (Bloomfield 2021), extreme events
are likely to increase (Bennett et al 2021). Hence,
storage requirements may be even higher than our
estimates. Furthermore, it should be noted that, even
without climate change, our analysis is limited to
35 years of historical data and more extreme events
may occur within a longer time span (e.g. once in
100 years).

Despite these limitations, our quantitative results
on storage requirements may be compared with the
size of existing energy storage. The estimated 59 GWh
of required battery storage in our reference scen-
ario mean a 40-fold increases versus the 1.5 GWh
installed capacity of small- and large-scale batter-
ies in Germany 2018 (Figgener et al 2020). While
a 40-fold increase in stationary battery storage may
seem a lot, it is relatively little when compared to the
battery requirements of passenger car electrification:
equipping the about 40 million cars in Germany with

50 kWh of battery storage each would make up for
2 TWh of total battery storage capacity.

For underground hydrogen storage, current
installations in Germany are limited to pilot systems.
As an alternative, the currently 250 TWh of German
natural gas storage, which is mostly underground
storage in salt caverns, may serve as a (Sterner et al
2015). After accounting for the 70% lower volumetric
energy density of hydrogen and an about 20% lower
feasible peak pressure10, this is in the same order
of magnitude as the estimated 56 TWh of required
hydrogen storage in our reference scenario. Further-
more, a recent study suggests that the technical poten-
tial for underground hydrogen storage in Germany
is 9.4 PWh, which is two orders of magnitude larger
than our identified storage requirements (Caglayan
et al 2020).

5. Conclusions

This study analyses storage requirements in a 100%
renewable electricity system for the example of Ger-
many, using 35 years of hourly time series data for
renewable generation and load. With a cost optimiz-
ation model, we find that the optimal storage size is
56 TWh for an assumed annual electricity demand of
540 TWh. The storage is primarily hydrogen in salt
caverns (54 TWh) and large enough to supply 24 d
of average load (36 TWh electricity). If one assumes
a larger annual future demand, as it appears likely
fully decarbonized German energy system, the relat-
ive values (i.e. days of average load) may be used as a
rough guidance. Our time series analysis reveals that
the maximum energy deficit occurs over a period of
9 weeks, which is much longer than the previously
identified 2 weeks of consistently low supply. In fact,
this longer storage defining periods consists of mul-
tiple scarcity periods, which closely follow each other.
When considering storage losses and charging limita-
tions for the surplus in between these scarcity periods,
the period defining storage requirements extends over
as much as 12 weeks. Using the example of bioenergy,
we find that adding other sources of flexibility substi-
tutes for storage requirements and renewable overca-
pacity, and the duration of period that defines stor-
age requirements lengthens to more than 1 year. Our
interpretation of this result is that the role of stor-
age transitions from bridging extreme events toward
smoothening out the inter-annual variability of wind
and solar energy. Finally, when optimizing system
costs based on single years rather than multi-year
time series, we find substantial inter-annual variation
in the overall storage requirements with the average

10 250 TWh× (1%–30%)× (1%–20%)= 57.6 TWh.
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year needing less than half as much storage as calcu-
lated for all 35 years together.

Based on our results, we conclude that focus-
ing on short extreme events or single years can be
misleading when estimating the amount of stor-
age needed in 100% renewable electricity systems.
Instead, for the example of Germany, storage require-
ments are defined by a 12 weeks or longer period
of intermittent scarcity, and system planning based
on average years significantly underestimates storage
requirements and system costs. Despite these eco-
nomic challenges and remaining technological uncer-
tainty with a large-scale deployment of hydrogen
infrastructure, the estimated necessary storage energy
capacity seems feasible when compared to the current
German natural gas storage capacity.
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model is available at https://github.com/oruhnau/
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Appendix A. Tabular literature review

Table A1. Previous studies on low-wind events.

Cannon et al (2015) Patlakas et al (2017) Ohlendorf and Schill (2020)

Definition Capacity factor below 10% Wind speed below 3 m s−1 Mean capacity factor below 10%
Regional scope Great Britain North Sea Germany
Temporal scope 33 years 10 years 40 years
Maximum duration <4 d Near shore: 10 d

Open sea: 4–5 d
10 d

Table A2. Storage requirements in cost optimization studies.

Region Optimization period Maximum storage discharge per average loada

Bussar et al (2014) Europe 3 years 15 d
Schill and Zerrahn (2018) Germany 1 year 12 d
Child et al (2019) Europe 1 year 32 d
Tröndle et al (2020) Europe 1 year 12 d
Neumann and Brown (2021) Europe 1 year 23 d
a Including hydro reservoirs.

Appendix B. Detailed description of the
cost optimizationmodel description

This appendix describes the equation system of the
cost optimization model. For the multi-year optimiz-
ation, the model covers the entire 35 years time span
with an hourly resolution with t= {1 . . .306,817}.
Decision variables are written in capitals, and para-
meters are lowercased.

The optimization model minimizes total system
cost:

COST=
∑
tecinv

CAPAtecinv costtecinv

+
∑

tecsto,inv

CAPAcharge
tecsto,invcost

charge
tecsto,inv

+
∑

tecsto,inv

CAPAenergy
tecsto,invcost

energy
tecsto,inv

−µ
∑
t

CURTAILt, (B1)

where CAPAtec are the generation and dis-
charging capacities of all investable generation
and storage technologies tecinv = {solar PV, onshore
wind,offshorewind,hydrogen,batteries}, with the cor-
responding annualized fixed costs costtecinv . Analog-

ously, CAPAcharge
tecsto,inv and CAPAenergy

tecsto,inv are the charging
and energy capacities of the investable energy stor-
age technologies tecsto,inv = {hydrogen, batteries},
costchargetecsto,inv and cost

energy
tecsto,inv are the corresponding annu-

alized fixed costs. Because battery inverters can be
used for both charging and discharging, invest-
ment cost are only considered for discharging and

CAPAcharge
batteries = CAPAbatteries. The sum of the hourly

curtailment CURTAILt is subtracted from the cost
function with a very small coefficient µ= 10−6 to
ensure that electricity is rather curtailed than stored
and, thereby, avoid arbitrary solutions regarding stor-
age utilization.

Themain constraint of themodel is the electricity
balance:

loadt =
∑

tecRE,inv

GENEt,tecRE,inv +
∑

tecRE,exo

genet,tecRE,exo

+
∑
tecsto

DISCHARGEt,tecsto −
∑
tecsto

CHARGEt,tecsto

−
∑
t

CURTAILt,∀t, (B2)

where loadt is the load time series from ENTSO-
E. GENEt,tecRE,inv is the hourly generation from
the investable renewable technologies tecRE,inv =
{solar PV, onshore wind, offshore wind}, and
genet,tecRE,exo is the generation from the exogen-
ously fixed renewable technologies tecRE, exo =
{bioenergy, hydro ROR}. DISCHARGEt,tecsto and
CHARGEt,tecsto are the hourly discharging and char-
ging variables of the storage technologies tecsto =
{hydrogen, batteries, hydro DIS}.

A capacity constraint relates the hourly genera-
tion of the investable renewable technologies to the
corresponding capacity variable:

GENEt,tecRE,inv = profilet,tecRE,inv CAPAtecRE,inv ,

∀t, tecRE,inv, (B3)

where profilet,tecRE,inv are the hourly renewable capacity
factors from ENTSO-E.

Finally, themodel includes the following five stor-
age constraints:
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Table C1. Cost assumptions.

Technology Unit Investment cost (unit) Lifetime (years) Fixed O&Ma (unit p.a.)

Solar PV € kW−1 450 25 10
Onshore wind € kW−1 900 25 13
Offshore wind € kW−1 1800 25 26
Hydrogen CCGT € kW−1 750 25 15
Hydrogen electrolyzer € kW−1 450 25 9
Hydrogen storage € kWh−1 2 25 —
Battery inverter € kW−1 100 15 —
Battery pack € kWh−1 125 15 —
a Operation and maintenance.

LEVELt,tecsto = LEVELt−1,tecsto + inflowt,tecsto

+CHARGEt,tecstoη
charge
tecsto

−DISCHARGEt,tecsto/η
discharge
tecsto ,

∀t, tecsto (B4)

DISCHARGEt,tecsto ⩽ CAPAtecsto ,∀t, tecsto (B5)

CHARGEt,tecsto ⩽ CAPAcharge
tecsto ,∀t, tecsto (B6)

LEVELt,tecsto ⩽ CAPAenergy
tecsto ,∀t, tecsto. (B7)

The first of these constraints equation (B4) relates
the storage level in 1 h to the level in the preceding
hour, considering storage charging, discharging, and
the hourly natural inflow of the dispatchable hydro-
power plants inflowt,hydro DIS according to ENTSO-E
(for the other storage technologies, the inflow para-
meter is zero). The constraints equations (B5)–(B7)
ensure that the maximum discharging, charging, and
energy capacity of storage is respected. For the hydro
DIS, the capacity variables are fixed to the existing
capacity.

For the sensitivity with flexible bioenergy, a new
storage technology bioflex is introduced with char-
ging and discharging capacities fixed to 4.6 GW, and
the exogenously defined storage energy capacity vary-
ing from 0 to 10 TWh. The storage charging and dis-
charging efficiencies are set to unity to reflect our
assumption that electricity generation from bioen-
ergy can be shifted without affecting the overall
generation.

The model was implemented in the modeling
software GAMS and needs less than 2 h to solve on
an individual computer using the solver CPLEX.

Appendix C. Assumptions used for the
cost optimization

The cost assumptions are summarized in table C1.
They are based on the 2050 estimates in de Vita et al

(2018), except for the assumptions on hydrogen stor-
age and electrolyzers, which we take from specific-
ally hydrogen-related studies.More precisely, inform-
ation on the cost of hydrogen storage in salt caverns
is retrieved from the ‘hydrogen supply chain evidence
base’ by element energy (Walker et al 2018), and the
cost of electrolyzer are the average of a recent literat-
ure review (Ruhnau 2022). A discount rate of 6% is
applied to the investment cost.

The natural inflow to the hydro DIS is set to the
sum of the weekly timeseries of natural inflow to
reservoirs and to pumped hydro storage. The reser-
voir size is set to the sumof reservoirs (0.26 TWh) and
pumped hydro (1.02 TWh), and the aggregated tur-
bine and pump capacities are set to 8.85 and 7.96 GW,
respectively. Bioenergy is assumed to constantly pro-
duce 4.6 GW, which is the average value of 2016–
2020.

The cycle efficiency for pumped hydro storage
and batteries is assumed to be 80% and 90%, respect-
ively (www.eesi.org/papers/view/energy-storage-
2019). The conversion efficiency of hydrogen elec-
trolyzers and combined cycle turbines is set to 80%11

(IEA 2019) and 63% (de Vita et al 2018), respect-
ively. As a constraint, the storage levels at the end
of 1 year must be equal to the levels at the begin-
ning of the next year, and the storage levels at the
end of the last year must be equal to the levels at the
beginning of the first year. This ensures that, over
the entire time span, storage charging equals storage
discharging plus losses without fixing the start and
end levels to arbitrary values. To avoid arbitrary res-
ults related to unintended storage cycling, a penalty
term in the objective function ensures that electricity

11 Although not unrealistic, we recognize that this value is in the
upper range of what can be expected in 2050.We therefore conduc-
ted a sensitivity run with an electrolyzer efficiency of 75%, which
leads to very similar results: the capacity of hydrogen salt caverns
and CCGT decreases slightly by 1 TWh (2%) and 0.5 GW (1%),
respectively, while the capacity of hydrogen electrolyzers increases
by 1.7 GW (3%). Battery storage partly compensates for the less
effective hydrogen storage with an increase in power and energy
capacities by 4% and 8%, respectively. The renewable mix shifts
slightly from solar PV (−2%) to wind offshore (+3%). The total
cost increase by less than 1%. The storage-defining period is still
84 d long.
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is only stored when needed and curtailed otherwise
(Kittel and Schill 2021, Parzen et al 2021).
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