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Abstract
The West African Sahel has been facing for more than 30 years an increase in extreme rainfall with
strong socio-economic impacts. This situation challenges decision-makers to define adaptation
strategies in a rapidly changing climate. The present study proposes (i) a quantitative
characterization of the trends in extreme rainfall at the regional scale, (ii) the translation of the
trends into metrics that can be used by hydrological risk managers, (iii) elements for
understanding the link between the climatology of extreme and mean rainfall. Based on a regional
non-stationary statistical model applied to in-situ daily rainfall data over the period 1983–2015, we
show that the region-wide increasing trend in extreme rainfall is highly significant. The change in
extreme value distribution reflects an increase in both the mean and variability, producing a
5%/decade increase in extreme rainfall intensity whatever the return period. The statistical
framework provides operational elements for revising the design methods of hydraulic structures
which most often assume a stationary climate. Finally, the study shows that the increase in annual
maxima of daily rainfall is more attributable to stronger storm intensities (80%) than to more
frequent storm occurrences (20%), reflecting a major rainfall regime shift in comparison to those
observed in the region since 1950.

1. Introduction

Among the various implications of human-induced
climate change, the high-impact weather events
related to water are of special concern (Douville et al
2021). This prompted IPCCWG1 to devote a specific
chapter to extreme events, with an emphasis on the
regional scale (Seneviratne et al 2021).While acknow-
ledging significant advances in the AR6 report,
Seneviratne et al (2021) underline the important gaps
that remain in our knowledge of how the rainfall
extremes are evolving and will evolve at regional to
sub-regional scales. At the same time, because current
mitigation efforts are not sufficient to prevent large
increases in temperature (Rogelj et al 2016, UNEP
2021), adaptation to new regional climates is becom-
ing a central issue (Hulme 2020). Detection, attri-
bution and projection are the three pillars of adapt-
ation policies. Detecting already occurring changes
is needed for guiding present adaptation policies.
Attribution of these changes is the foundation for

reliable projections, needed to anticipate how present
adaptation policies might have to evolve in the future,
depending on various scenarios of anthropogenic for-
cing. Detection is a matter of signal-to-noise ratio,
any speculated evolution of a climate parameter being
embedded in the internal climate variability (see e.g.
Hegerl et al 2015). This signal is notoriously weak
for rainfall due to its intermittent nature, making
detection especially difficult and requiring long-term,
accurate and homogeneous observational series that
only ground-based networks can provide. This paper
is addressing this detection issue for the ongoing
evolution of extreme rainfall in the West African
Sahel.

Dry or semi-arid tropical regions such as the
Sahel are characterized by a strong interannual and
decadal rainfall variability (e.g. Nicholson 2013,
Biasutti 2019) and thus a noisy natural signal. The-
ory (O’Gorman and Schneider 2009, Trenberth 2011)
and models (Sillmann et al 2013, Fischer and Knutti
2016) point to global warming causing longer dry
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spells and stronger storms. In the Sahel, the raw
analysis of observations seems to establish that an
increasing trend in extreme rainfall is already effective
(Panthou et al 2014, 2018, Taylor et al 2017). How-
ever, it remains to infer how robust this trend detec-
tion is at regional scale i.e to quantify its statistical sig-
nificance, given a highly noisy signal. This is the first
objective of the paper.

Increases in peak river discharges have also been
reported in the region (Wilcox et al 2018, Elagib et al
2021) and the impact of floods on Sahelian popu-
lations is now well documented (e.g. Di Baldassarre
et al 2010). The exceptional Niger river discharge
of 2020 and its devastating consequences (Massazza
et al 2021) have highlighted the need to account for
possible rainfall regime changes in the design and
management of flood protection infrastructures. The
second objective of this study is thus to provide relev-
ant metrics for end-users regarding the ongoing rain-
fall intensification.

These two objectives may involve some conflict-
ing requirements. On the first hand, considering lar-
ger spatial scales allows to increase the signal-to-noise
ratio and thus makes the detection of possible trends
more robust (e.g. Fischer et al 2013, Donat et al 2016).
On the other hand, decision-makers often need to
rely on local diagnostics in order to adapt their water-
related riskmanagement policies (Milly et al 2008). In
order to provide support to end-users, the scientific
community must thus address the issue of evolving
rainfall regimes in a way that is relevant and coher-
ent over a continuum of regional-to-local scales. This
requires to rely on non-stationary statistical models
allowing a robust investigation of possible changes in
extreme rainfall distribution at regional scale while
quantifying what it implies locally, through metrics
that can be used as guidance by the various actors
(Katz 2013, Salas and Obeysekera 2014).

Another issue addressed in this paper relates to
climatological considerations. It remains unclear to
which extent a larger annual frequency of extreme
rainfall might result from either a return to over-
all wetter conditions (Nicholson 2005, Lebel and Ali
2009, Sanogo et al 2015) with respect to the great
Sahelian drought of the 70s and 80s (e.g. Dai et al
2004), or to a change in the statistical distribution of
daily rainfall. This is illustrated in figure 1(a), show-
ing an obvious co-fluctuation at both the interannual
and decadal scales between the regional annual total
rainfall (ATOT, in blue) and the annual maximum
daily rainfall (AMAX, in red), with both standard-
ized indices (SIs) increasing since the mid-80s low
(see supplementary material (SM) available online
at stacks.iop.org/ERL/17/044005/mmedia for calcula-
tion details). We will thus seek, as the third object-
ive of the paper, to decipher the influence of an over-
all increase of rain event intensities from that of an
increase of the number of events in the shift of the
distribution of annual maxima of daily rainfall, as

evidenced and quantified in the first two steps of this
work.

Tackling the three aforementioned issues involves
dealing with the strong sampling effect inherent to
Sahelian rainfall extremes: as shown in figure 1(a),
the SI AMAX spatial variability (red shading) is
twice as large as that of the SI ATOT (blue shad-
ing). Moreover, although the regional signal seems
unequivocal, figure 1(b) shows that at the station
scale, the significance of the positive AMAX trend
is not so obvious, with only 13 stations out of 77
displaying a 5% level Mann–Kendall p-value (square
markers); this is nearly 2.5 times less than for the
ATOT (figure 1(c)). The study therefore makes use
of a regional and non-stationary statistical model of
extremes based on a generalized extreme value (GEV)
distribution able to limit sampling effects (Panthou
et al 2012, Chagnaud et al 2021). After being intro-
duced in section 2 together with the dataset used, the
model will allow to provide robust answers to the first
two objectives (section 3) and to investigate the third
one in a prospective way (section 4). Results are sum-
marized and discussed in section 5.

2. Data andmethod

2.1. Raingauge data
The daily rainfall data are extracted from the
BADOPLU data base (BAse de DOnnées PLUvi-
omètres; see Le Barbé et al 2002, Lebel and Ali 2009,
Panthou et al 2018) for the 1983–2015 period, fol-
lowing the years of lowest rainfall (figure 1(a)). The
AMAX samples are extracted from stations having
at least 26 valid years over the study period (i.e.
∼80%, see the quality control procedure in the SM of
Panthou et al (2018) for the definition of a valid year).
The regional AMAX sample gathers all stations meet-
ing the time series completeness criteria located in a
5◦ × 30◦ box framing the 10◦ N–15◦ N, 20◦ W–10◦ E
area and corresponding to the West African Sahel
definition used in this study (figure S1(a)). Smaller
regional samples are also built for investigating the
sub-regional variability. The respective influences of
the study area and of the study period starting year
have been tested with no major influence on the res-
ults obtained (see section 3).

2.2. Regional non-stationary GEV (RNSGEV)
model
In West Africa, daily rainfall at a given point is essen-
tially associated with the passage of well delimited
mesoscale convective system (MCS, e.g. Mathon et al
2002), meaning that daily rainfall amounts can be
considered as independent or short-term depend-
ent (Ali et al 2005, Gerbaux et al 2009). Moreover,
working with AMAX values ensures the independ-
ence between block maxima. Under these condi-
tions and according to the Extreme Value The-
ory (Coles 2001), annual maxima of daily rainfall
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Figure 1. (a) Standardized Indices (SIs) of annual totals (ATOT, blue) and daily rainfall annual maxima (AMAX, red) for the
1950–2015 period. The color shading represent one standard deviation of spatial variability (see SM for the details). Dashed lines
show 11 year running means. (b) AMAX and (c) ATOT Mann–Kendall relative trends (%/decade) over 1983–2015 at the 101
stations used in the study. Trends significant at the 5% level (p-value⩽ 0.05) are indicated with a square, non-significant ones
with a circle. N+ and N− stand for the number of positive and negative trends, respectively (number of significant trends in
parenthesis). The median trend across the stations is also indicated. The bottom right inboxes show the empirical probability
distribution function of the trends. Note that one station has a null AMAX trend.

amounts can bemodeledwith one type of GEVdistri-
butions (equation (S1)). As illustrated in figure 1(b),
the behavior of AMAX series in a supposedly homo-
geneous region may vary significantly from sta-
tion to station, due to their high sampling disper-
sion. Regional approaches based on a pooling of the
point series allow for reducing the influence of this
sampling dispersion, thus providing a more robust
inference of the most uncertain components of the
extreme value distribution, such as its tail behavior
(e.g. Buishand 1991, Blanchet and Davison 2011).
This is a central issue when it comes to estimat-
ing the probability—return period—of an extremely
rare observed event or, reciprocally, the quantile—
return level—for an extremely rare probability of
occurrence (Papalexiou and Koutsoyiannis 2013).
Moreover, regional pooling also improves the trend
detection power of statistical methods (e.g. Fischer
et al 2013, Fischer and Knutti 2014, Martel et al
2018). Here these two issues—robust statistical infer-
ence and trend detection ability—are tightly connec-
ted. Building on the work of Panthou et al (2012), we
implement a regional GEV (RGEV) model wherein

the location (µ) and scale (σ) parameters vary as a
linear function of both the latitude and longitude
(equation (S2)).

The RNSGEV model is obtained by expressing
one or several GEV parameters as a function of time.
Generalized linearmodels are used tomodel the time-
varying GEV parameters (see Panthou et al 2013 and
SM) since they are parsimonious as compared to non-
linearmodels and because a linear form seems accept-
able in a first approximation in view of the AMAX
evolution displayed in figure 1(a). This means that
any non-stationary parameter β of the RNSGEV dis-
tribution (β = µ, σ, ξ) may be expressed as:

β(lat, lon, t) = β0 +β1 × lat+β2 × lon+β3 × t.
(1)

Theoretically, there are thus 12 (4× 3) parameters
to be estimated, a far too large number given the
available information. Inferring the most appropri-
ate model, based on a given sample, then pertains
to identifying which additional parameter provides
a significant improvement in terms of maximizing
the model’s likelihood function, starting from a
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reference time-stationary regional model M0. Prac-
tically, we rather minimize the model’s negative log-
likelihood (NLLH) function (see SM, section 1.4).
The additional flexibility is then tested relying on
the semi-parametric bootstrap procedure thoroughly
described in Chagnaud et al (2021) (after Katz 2013,
see SM, section 1.5). This procedure provides an
empirical assessment of the significance of the vari-
ous compared models while accounting for the spa-
tial dependence between the pooled station samples.
The uncertainty of the inferred parameters is quanti-
fied as the 5th–95th percentile range—corresponding
to the 90% confidence interval (CI)—obtained from
200 bootstrapped sets of RNSGEV parameters.

3. Evidencing a regional trend

3.1. Non-stationarity of extreme rainfall captured
by the GEVmodel
A preliminary visual analysis of our Sahelian data-
set allows reducing the number of model formula-
tions to be tested. First, the large sampling variance
of ξ prevent any robust estimation of either ξ1, ξ2 or
ξ3; ξ is thus assumed stationary in space and time (see
also e.g. Renard et al 2006,Hanel et al 2009, Chagnaud
et al 2021). The RNSGEVmodel cumulative distribu-
tion function (CDF) therefore reads:

GEVlat,lon,t(i)

= exp

{
−
[
1+ ξ

(
i−µ(lat, lon, t)

σ(lat, lon, t)

)]−1/ξ
}
.

(2)

Secondly, since neither the Mann–Kendall AMAX
trend estimates (figure 1(b)) nor the point-wise non-
stationary GEV models indicate any distinct spatial
pattern of trends (figure S2), a spatially uniform relat-
ive trend over the study region is assumed. Therefore,
a multiplicative expression for µ and σ is preferred to
the additive one introduced in equation (1). It then
remains to rule on the time non-stationarity para-
meters µ3 and σ3. Among the various tested mod-
els (SM, section 1.6), the one that proved the most
parsimonious while providing the largest likelihood
improvement according to the NLLH/bootstrap pro-
cedure is the M3 model (p-value < 0.01, meaning
that the improvement brought by this non-stationary
model would happen by chance less than 1% of the
time). The location and scale parameters of the M3
model are defined as follows:

µ(lat, lon, t) = (µ0 +µ1 × lat+µ2 × lon)

×(1+α3 × t)

σ(lat, lon, t) = (σ0 +σ1 × lat+σ2 × lon)

×(1+α3 × t)

(3)

where µ3 = σ3 = α3. This model formulation is char-
acterized by a similar time evolution of µ and
σ (in relative terms). This evolution is estimated

Figure 2. Probability density functions (PDFs) of the
RNSGEV models M3 for the Niamey station with the total
relative change (%) in 10-year (circle) and 50-year
(triangle) return levels between 1983 (blue) and 2015
(green) indicated by the number above the arrows. The
regional stationary model PDF and return levels are
displayed in black. The color shadings correspond to the
90% CI obtained from 200 bootstrapped sets of parameters.
The RNSGEV model parameter values are indicated in the
upper right corner inset, corresponding, from left to right,
to µ0, µ1, µ2, α3 and σ0, σ1, σ2 in equation (3).

at 5%/decade ([2.7:7.5] 90% CI) over the con-
sidered period. Therefore, the statistical distribution
is both shifted toward larger values and widened, as
shown in figure 2. Note that the M1 (time-varying
location parameter only) and M4 (independently
time-varying location and scale parameters) mod-
els are also significant when compared to the time-
stationary regional model (M0), but perform slightly
worse than M3 (figure S3). Also worth mentioning
is the fact that the trend undergoes only small vari-
ations when periods starting as far back as 1970 are
considered (figure S4), demonstrating its significance
even though, of course, its value is dependent on the
year chosen to start the exploration (the linear for-
mulation is not very flexible in this regard but again,
provides the most parsimonious way to model this
trend).

3.2. Return levels
The T-year return level, defined as the daily rainfall
amount having a probability 1/T of being exceeded
for a given year, is computed as follows at any point
in space (lat, lon) and time (t):

iT(lat, lon, t) = µ(lat, lon, t)+
σ(lat, lon, t)

ξ

×

{[
− log

(
1− 1

T

)]−ξ

− 1

}
(4)

where the location and scale parameters are com-
puted according to equation (3) using the values
shown in the inset box on figure 2. Comparing the
value of a given return level at both ends (1983 and
2015) of the study period provides an estimate of the
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Figure 3. Return period change from 1983 to 2015 (90% CI
in blue shading). The point color corresponds to the
T1983/T2015 ratio value (colorbar). The axis are in
logarithmic coordinates for greater clarity.

change in severity of an event of a given probabil-
ity of occurrence (calculation details are provided in
section 7 of the SM). This is illustrated in figure 2
for the 10-year (circle) and 50-year (triangle) return
levels, with the 1983 distribution plotted in blue and
the 2015 distribution in green. Also shown are the
values of these two return levels under the stationar-
ity assumption (black markers). It is noteworthy that
the stationary CI (grey shading) is almost entirely dis-
tinct from the non-stationary 2015 CI (green shad-
ing), implying that computing return levels under the
stationarity assumption likely leads to a significant (at
the 90% level) under-estimation of the present-day
value, and thus to the undersizing of infrastructures.
Note that the formulation of the M3model involves a
similar relative change for all return levels and for all
locations (a 16% increase, [8.8:24.7] 90%CI), a point
that will be further discussed in section 3.4.

3.3. Return periods
Alternatively to changes in return levels, the non-
stationarity can also be expressed as changes in return
periods i.e. in the probability of occurrence of a
given rainfall amount, as shown in figure 3: while
1983 return periods (horizontal axis) range from 2
to 1000 years, their 2015 counterparts (vertical axis)
range from 1.4 to 360. Hence, the change in probab-
ility, defined as the T1983/T2015 ratio, ranges from 1.4
([1.2:1.5] 90% CI) for the 2-year return period to 2.8
([1.8:4.6]) for the largest 1000-year return period.

The potential to derive locally-relevant climate
change metrics from the regional diagnostic is illus-
trated in figure 4 with the time evolution of various
return periods corresponding to specific daily rain-
fall amounts at the Niamey station (13.5◦ N, 2.2◦ E).
Take for instance a daily rainfall event of magnitude
82 mmd−1 (orange line): it is a 10-year rainfall in
1983 and it has become a 5.2-year rainfall in 2015; this
rainfall amount is nearly twice as frequent at the end
than it is at the start of the study period.

The ability of looking at the effects of non-
stationarity either in terms of return levels or in
terms of return periods is a clear benefit of the stat-
istical modeling framework and an important step
forward from previous observationally-based studies
(Panthou et al 2014, Taylor et al 2017). The metric
to be used, either a change in magnitude for an event
with a given probability or a change in probability of a
fixed magnitude event will depend on the application
and the related risk management policy.

3.4. Simplicity versus complexity
The regional approach presented above allows for a
robust detection of the non-stationarity of the annual
rainfall maxima in the Sahel, with both a signific-
ant shift toward larger values and an increase of
their interannual variability, a conclusion that could
not be drawn from analyzing separately the available
point series. The significance of this non-stationarity
is quantified through the NLLH/bootstrap proced-
ure and its effect is straightforwardly derived in terms
of increasing return levels and decreasing return
periods.

These achievements leave room for debating
whether alternate models would more faithfully
depict the rainfall regime evolution in this region.
The discussion comes down to asking whether we
could use a more complex model—and for which
benefits—having in mind that, among the four mod-
els presented in the SM, three (M1, M2, M3) have the
same number (8) of parameters and one (M4) has 9.
Two of the 8-parameter models (M1 and M3) were
found to be significantly better than the stationary
model, M3 being the most significant. M4 is also sig-
nificant, but less than M3.

M4 is less significant but its additional free para-
meter gives it a greater flexibility, allowing for an
independent time-evolution of µ (4.9%/decade) and
σ (3.1%/decade). In M3, µ and σ are assumed to
present the same relative evolution, with the effect
that return levels corresponding to any probability
of occurrence undergo the same relative change. As
further investigated in section 4, a different evolu-
tion of µ and σ might correspond to a more real-
istic account of the underlying changes of the rain-
fall regime. Choosing between the most significant
model and a less significant but possibly more real-
istic alternative is not amatter easily solved, especially
since the M4 model provides return level estimates
close to those given by M3, yet with a slightly smaller
rate of increase (∼4%/decade). That is a fairly open
question, keeping in mind that it is well possible that
with longer time series M4 could prove as significant
asM3. This, however, is just a conjecture at that point.

A still more complex model would be to assume
that the shape parameter of the RGEV distribution,
ξ, could also vary in time. Given the high sampling
variance of ξ, detecting a trend of its value is out of
reach with the dataset used here and we thus kept to
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Figure 4. Time evolution of the 5- (blue), 10- (orange), 50- (green) and 100-year (red) return periods at the start of the study
period (1983) at the Niamey station (13.5◦ N, 2.2◦ E). See the caption for the corresponding daily rainfall amount and return
period values. The numbers in brackets correspond to the 90% CI of the T1983/T2015 ratios 3(return period 90% CI are shown
with the color shading).

the conservative hypothesis that it is constant. Explor-
ing whether the increase of return levels could be
magnified for large return periods—typically beyond
T = 100 years—remains a challenge, and their evol-
ution as provided by the M3 model should be con-
sidered very cautiously.

Another issue relates to the spatial behavior of
the trend, assumed here to be uniform in relative
terms. This is probably not strictly true, as vari-
ous mechanisms may modulate the overall regional
trend. For instance, two types of atmospheric disturb-
ances called African Easterly Waves (AEWs) support
the development and propagation of sahelian storms:
those originating to the north of the African East-
erly Jet and those to the south, accounting for 71%
and 29%, respectively, of the total number of AEWs
(Chen 2006). Since these two types of AEWs have
different genesis mechanisms, one may expect a dis-
tinct response to any large-scale forcing, thus poten-
tially influencing the interannual variability as well
as a long-term trend in different ways. Here, how-
ever, there is no detectable latitudinal gradient affect-
ing the evolution of the regime of extreme rainfall
(see SM, section 8.2). Likewise, the trends computed
on smaller areas display a striking zonal similarity
(SM, section 8.1). As a consequence of this spatial
homogeneity, the signal is more robustly detected
when considering the Sahel as a whole. Moreover,
the derived metrics are associated with narrower
CI as compared to their sub-regional counterparts
(figure S7 and table 1 in the SM), evidencing a more
robust ability for detecting trends when working on
large regions, provided that they are climatologically
homogeneous (e.g. Donat et al 2016). Whether the

absence of spatial gradient is due to a limited detec-
tion ability or to the dominance of a mechanism act-
ing on the whole region remains elusive at this point.
Again, it may happen that with longer time series, a
finer description of the spatial pattern of the trend
could emerge.

All in all, the regional vision provided here may
be considered as a first order representation of an
undoubtedly more complex reality. It is only by
developing and maintaining regional- and local-scale
in-situ rainfall monitoring systems that we will obtain
the necessary information for a more detailed char-
acterization of this reality, needed to support locally-
relevant decision-making in various fields pertain-
ing to agriculture, flood warning or water resources
management.

4. More severe extreme rainfall as a
consequence of an overall rainfall regime
evolution

An increasing frequency of heavy rainfall may res-
ult from two essential climatological trends: a change
in rainfall intensity distribution (mean, variance or
highermoments) and/or an increase of the number of
rainy events per year. The latter produces a global shift
of the AMAX distribution, meaning a similar relat-
ive decrease of the return periods for the whole spec-
trumof intensities, while the former produces a larger
decrease of the return periods for larger intensities,
as illustrated in figure 4. From their empirical ana-
lysis of the evolution of Sahelian daily rainfall from
1950 to 2014, Panthou et al (2018) revealed that both
the average daily rainfall (R) and the number of rainy
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events (N) have been increasing over the past three
decades. However, they point to R starting to increase
a bit earlier and at amuch higher rate thanN.Concur-
rent with this, figure 1(a) shows that at the Sahelian
scale the regime of extreme rainfall (red line)might be
changingmore rapidly than that of annual totals (blue
line). In order to investigate to which extent the GEV
statistical framework allows to capture this import-
ant climatological trend, we will resort to a degener-
ated version of the M4 model where ξ is prescribed
to 0 while µ and σ are free to vary independently in
time (hereafterM4 ′). M4 ′ andM3 have consequently
the same number of degrees of freedom but M4 ′ is
slightly less optimal than M3 in describing the time
evolution on our data.However, it is still able to detect
the intensification trend (not shown). A GEV model
with ξ = 0 is commonly known as the Gumbel law. It
results from a point process whose values are asymp-
totically exponentially distributed. Assuming rainfall
occurrences to follow a Poisson process with an expo-
nential distribution of the durations between two suc-
cessive events, the following relationship between the
parameters of the point rainfall process and the para-
meters of the extreme rainfall distribution can be
derived:

σ = α (5)

µ= σlnλ (6)

whereλ is themean number of rainfall events per year
and α is the mean daily rainfall intensity, while µ and
σ are the two parameters of the Gumbel distribution.
In M4 ′, the parameters of the Gumbel distribution
are a function of space and time, and its CDF reads:

Glat,lon,t(i) = exp

{
−
[
exp−

(
i−µ(lat, lon, t)

σ(lat, lon, t)

)]}
.

(7)

The parameters are inferredwith theNLLH/boot-
strap procedure used in section 3. The relative aug-
mentation of the parameters of equations (5) and (6)
between 1983 and 2015 are:

∆µ= 16%, ∆σ =∆α= 10.7%, ∆lnλ= 4.8%.

This leads to estimate an increase of daily rainfall
intensity of 10.7% over 33 years, a value fully consist-
ent with the ∼11% found by Panthou et al (2018) in
their analysis of the raw daily rainfall data over the
period 1980–2014. This M4 ′ model gives similar res-
ults toM3 as far as the impact on return period is con-
sidered: they have been divided by a factor close to or
larger than 2 for intensities ranging from 80 mmd−1

(47% decrease) to 120 mmd−1 (60% decrease) (see
table 3 in the SM), thus confirming the robustness of
the non-stationary signal in that range of occurrences.
The advantage of resorting to M4 ′ for exploring the

climatological context is that it allows deciphering
the respective shares of the return period diminution
associated with the increase of the mean intensity of
the rain events, on the one hand, andwith the increase
of the number of events per year, on the other hand.
This is done by computing which diminution would
have been caused by ∆µ being equal to ∆σ (in that
case λ is unchanged). It turns out that the sole modi-
fication of σ accounts for 80% to 90% of the diminu-
tion of the return periods (83% for 80 mmd−1 to
89% for 120mmd−1, see calculation details in section
9 of the SM), confirming the large predominance of
more intense rainfall events for explaining the change
of the statistical distribution of extreme rainfall in the
region.

5. Main results and concluding remarks

Using a regional non-stationary GEV model on
an extensive raingauge dataset covering the West
African Sahel, we detect a 5%/decade ([2.7:7.5] 90%
CI) increase in the location and scale parameters
of the daily rainfall extremes distribution over the
1983–2015 period. This trend leads to an overall
16% increase of return levels and to a 50%–60%
decrease of return periods, with larger decreases for
the strongest events. It is highly significant (p-value<
1%) and robust over the last 30–40 years, although its
magnitudemay vary slightly. Hence, we stress that the
figures reported here should be considered by engin-
eers and decision-makers for planning adaptation
strategies as far as water resources and water-related
risks are concerned, though how to use this inform-
ation to project strategies remains an open question
(see e.g. Sharma et al 2021). Moreover, because these
figures are not to remain constant in a rapidly chan-
ging climate, it is essential to regularly update them; it
is thus crucial to continuously monitor the evolution
of the daily rainfall regime at the regional scale.

One may question whether this trend in extreme
rainfall is not just a consequence of the rebound
of the annual rainfall, itself attributed to a com-
bination of sea surface temperature (SST) variabil-
ity (Mohino et al 2011, Marvel et al 2020), anthro-
pogenic aerosols emissions shrinking (Marvel et al
2020) and increasing greenhouse gases (GHG) con-
centration (Dong and Sutton 2015). Two key ele-
ments shed some light on this debate. First, extremes
have been providing an increasing share of the annual
rainfall (as already reported in Panthou et al 2018).
Secondly, while the historical drought was character-
ized by a drastic decrease of the number of rain events
(Le Barbé et al 2002), the annual rainfall rebound
at the end of the 20th century is mostly associated
with an increase of rain event intensity (Giannini
et al 2013, Panthou et al 2018). We show here that
this increase in mean daily rainfall intensity since the
early 80s accounts for about 80% of the increase in
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extreme daily rainfall amounts, the remaining 15%–
20% being due to an increasing number of wet days.
Thus, it is not just a return to the antecedent rainfall
regime but the entry in an intensified hydro-climatic
era, in the sense defined by Giorgi et al (2011).

The detected trend of 5%/decade being stronger
than the one expected from the sole Clausius-
Clapeyron effect is also food for thought. The unique
combination of changes in large scale forcing factors
(SST, aerosols, GHG) mentioned above might have
induced a reinforcement of the AEWs, which have
long been known to play a key role in initiating
and driving intense Sahelian MCS (e.g. Peters and
Tetzlaff 1988, Fink and Reiner 2003). Recent stud-
ies have indeed highlighted that AEWs are involved
in some of the heaviest storms ever recorded in the
Sahel (Engel et al 2017, Lafore et al 2017, Vizy and
Cook 2021). Our capacity to anticipate how the rain-
fall intensification will evolve over the next decades
thus largely depends on an improved understanding
of the interactions between large scale forcings and an
array of thermodynamical and dynamical processes
(Tomassini 2018).
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