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Abstract
Estimates of change in global land evapotranspiration (ET) are necessary for understanding the
terrestrial hydrological cycle under changing environments. However, large uncertainties still exist
in our estimates, mostly related to the uncertainties in upscaling in situ observations to large scale
under non-stationary surface conditions. Here, we use machine learning models, artificial neural
network and random forest informed by ground observations and atmospheric boundary layer
theory, to retrieve consistent global long-term latent heat flux (ET in energy units) and sensible
heat flux over recent decades. This study demonstrates that recent global land ET has increased
significantly and that the main driver for the increased ET is increasing temperature. Moreover, the
results suggest that the increasing ET is mostly in humid regions such as the tropics. These
observation-driven findings are consistent with the idea that ET would increase with climate
warming. Our study has important implications in providing constraints for ET and in
understanding terrestrial water cycles in changing environments.

1. Introduction

Evapotranspiration (ET), the turbulent exchange of
moisture and heat fluxes between the land and atmo-
sphere, is a key process affecting the terrestrial hydro-
logical cycle and climate variability (Gentine et al
2016, Miralles et al 2020). As a key component of
water and energy balances, change in surface ET is an
important metric for quantifying the evolution of the
global water cycle in a changing environment. It was

reported that due to climate change and global warm-
ing, global land ETmight have increased by 10% dur-
ing the period of 2003–2019 (Pascolini-Campbell et al
2021). In addition to the radiative effect, vegetation
biophysical controls also play a key role in regulating
land ET (Wagle et al 2015, Zhou andWang 2016); the
canopy structure and vegetation physiological effects
in response to rising atmospheric CO2 concentrations
are typically modifying ecosystem transpiration and
surface energy fluxes (Williams and Torn 2015, Yang
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et al 2019, Forzieri et al 2020). Changes in surface
vegetation affect the partitioning of latent heat flux
(LE) (ET in energy units) and sensible heat flux (H)
through land–atmosphere interactions (Swann et al
2016, Lemordant et al 2018, Teuling et al 2019, Lansu
et al 2020). However, it remains a challenge to repres-
ent the nonlinear response of LE andH to the changes
in surface conditions such as vegetation physiological
regulation and human water/land management.

Own to the limitations of direct in situ obser-
vation, ET at continental and global scales is usu-
ally estimated using model simulation, remote sens-
ing retrieval, and upscaling of in situ observations
(Jung et al 2010, 2019, Haddeland et al 2011, Mueller
et al 2011, Mu et al 2011, Miralles et al 2013). Among
these, machine learning approaches to estimate sur-
face fluxes based on accessible data (e.g. flux tower,
satellite remote sensing, and weather station obser-
vations) has emerged in recent years, mainly due to
their accuracy in deriving observational surface fluxes
(Jung et al 2011, Alemohammad et al 2017, Jung
et al 2019, Reichstein et al 2019, Wang et al 2021).
Artificial neural network (ANN) and random forest
(RF) are the most commonly used machine learn-
ing methods for estimating global LE and H based
on the FLUXNET, satellite remote sensing, and met-
eorological observational data. For example, Alemo-
hammad et al (2017) developed anANNmodel which
used remote sensing information and other meteor-
ological data as inputs to retrieve monthly LE and H
on a global scale. Jung et al (2010) trained a model
tree ensemble (MTE) based on the global measure-
ments of FLUXNET towers, and then retrieved LE
and H using instantaneous satellite remote sensing
and reanalysis data as driven data. Recently, Jung et al
(2019) further provide an ensemble product of sur-
face energy fluxes based on MTE (i.e. the FLUX-
COM), which are based on two methods of driven
data: pure remote sensing and remote sensing plus
meteorological data. However, the surface flux estim-
ation results of the neural network and the treemodel
can be inconsistent.

Existing studies have reported different trends in
global land ET due to the variousmethods and driven
data. Jung et al (2011) found that the global land
ET showed a decreasing trend during the 1982–2008
period, mainly due to the limitation of soil mois-
ture water supply. Another study finds positive trends
in land surface ET during the 1980–2011 period,
and it was suggested that interdecadal changes in ET
can be significantly impacted by the activity of the
El Niño-Southern Oscillation (Miralles et al 2013).
Pascolini-Campbell et al (2021) used gravity satel-
lite observation and the water balance principle to
estimate global land ET and found an 10% increase
in global ET, which was mainly due to the rising air
temperature. These various trends highlight the need

to better constrain the estimates of global land ET and
understand the drivers of ET change. Beside a small
sensitivity as to the choice of the algorithm, land sur-
face conditions are usually assumed to be stationary,
i.e. the changes in CO2, nutrients or vegetation are
not directly captured by remote sensing and reanalysis
data. Moreover, these trends in ET driven by satel-
lite remote sensing and reanalysis data are relatively
short-term. Themajor advantage of remote sensing in
ET is that it can provide large-scale and high-spatial
coverage ET estimates, but it also can lose key sig-
nals in surface processes such as plant physiological
regulation. However, vegetation physiologal response
to rising CO2 concentrations is thought to be critical
for estimating long-term changes in land surface ET
and terrestrial water cycles (Swann et al 2016, Scott
and Biederman 2017, Lemordant et al 2018). There-
fore, it is critical to better assess long-term changes in
global land ET while also accounting for land surface
conditions.

In this study, we present a modified ANN and
RF model for retrieving global land ET. This strategy
retrieves consistent LE (ET in energy units) and H
based on boundary layer energy budget and driven
by ground-based observations of flux towers and
weather stations. A major advantage of such retrieval
is that it does not rely on any parameter assumptions,
as it is directly informed by boundary layer heat and
moisture budget (Gentine et al 2016), and thus it can
reflect the effects of CO2 fertilization or land condi-
tion changes on long-term surface fluxes. This study
aims to provide an ensembled retrieval of land ET
on a global scale and to improve our physical under-
standings of the driving factors of ET variability in a
changing environment.

2. Datasets andmethodology

2.1. Model training data
The original observational dataset used to train
machine learning models were collected from
the half-hourly/hourly and integrated daily
products from the FLUXNET2015 FULLSET data-
set (Pastorello et al 2020) (https://fluxnet.org/data/
fluxnet2015-dataset/). To control the quality of
the observational data, we only used the meas-
urements and the high-quality gap-filling data
from the 212 globally distributed flux towers. The
distributions of the flux towers covers different
climate zones and vegetation types (supplementary
figure S1(a) available online at stacks.iop.org/ERL/17/
024020/mmedia), and thus the observation data has
representative under various climatic conditions.
Based on the same flux tower observational data,
two typical machine learning models (ANN and RF
models) were employed to retrieve global land LE
and H at a daily scale from 1975 to 2017. After model
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Figure 1. Influence of rising atmospheric CO2 level on surface fluxes. WUE stands for vegetation water use efficiency.

testing, shortwave radiation at the top of atmosphere
(SW_IN_POT), monthly moving average precipita-
tion (monthly P), maximum temperature (max T),
minimum temperature (min T), relative humidity
(RH), and surface wind speed (WS) were determ-
ined to be the variables for building the ANN and RF
models (supplementary table S1). In this study, daily
RH is calculated by using the daily data of vapor pres-
sure deficit (VPD) based on the Clausius–Clapeyron
equation.

2.2. Strategy for estimating ET using weather
observations
The diurnal courses of air temperature and humidity
are directly related to the rate of changes in LE and
H. One of the main advantages of using the diurnal
changes in temperature and humidity observed by
weather stations to retrieve LE and H is that it does
not rely on any assumptions as to the relationship
between environmental and surface fluxes (Salvucci
and Gentine 2013, Rigden and Salvucci 2015, 2016,
Gentine et al 2016). Thus, the diurnal course of sur-
face temperature naturally reflects the influences of
vegetation photosynthesis and any changes in veget-
ation response to CO2. For instance, if the open-
ing rate of vegetation stomata are decreased due to
changes in plant water use efficiency (WUE) or bio-
mass, they will increase H and decrease LE. This will
in turn lead to an increase in daily temperature range
in the boundary layer and a decrease in air humid-
ity (figure 1). Wang et al (2020) found that the fer-
tilization effect of vegetation has declined over recent
decades, and thus the Fluxnet observational periods
are long enough to capture the influence of vegeta-
tion physiological regulations on ET. This presented
strategy can be used to estimate ET while also con-
sidering any changes in land surface conditions, as
long as the environmental factors affect the variab-
ility of surface fluxes. In addition, the retrieval does
not require remote sensing information on vegeta-
tion (such as leaf area index), and thus the surface

fluxes can be retrieved over long time periods that are
not covered by satellites. The relationships between
surface fluxes and various environmental factors are
very nonlinear, and thus we embed our strategy into
machine learning models as they have powerful non-
linear regression capability.

2.3. ANNmodel
ANN is a machine learning algorithm with power-
ful ability for nonlinear regression. ANN can repro-
duce complex nonlinear relations between various
environmental conditions (e.g. supplementary figure
S2(a)). Previous studies have shown that ANN mod-
els have good performance in retrieving surface water
and heat fluxes (Zhao et al 2019, Chen et al 2020).
In this study, we trained two multi-layer feedforward
neural network models for predicting daily LE and
H, respectively. In this study, the ANN model has
one input layer, five hidden layers, and one output
layer. Daily LE and daily H are the output of the ANN
model. In the process of training ANN models, the
input data is randomly divided into three subsets,
with a percentage of 80%, 10%, and 10% for training,
validating, and testing, respectively. Mean squared
error (MSE) is set to be the metric used to evaluate
model performance in the process of model train-
ing and adjustment of weights. The root mean square
error (RMSE) and the Pearson correlation coefficient
(R) are used to analyze the results of the predicted LE
and H. Moreover, an optimal neural network model
was found to be consist of five hidden layers and
20 neurons in each hidden layer. The activation func-
tion of hidden layers is set to be the tangent sig-
moid function, and the output layer is a linear func-
tion. The maximum number of training epochs and
the training accuracy target are set to be 500 epochs
and 0.0001, respectively. Once one of the paramet-
ers exceeds the setting thresholds, early stopping was
activated to control the risk of overfitting. Consist-
ent with the inputs used to train ANN model using
the Fluxnet observational data, daily SW_IN_POT,
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monthly averaged P, daily max T, daily min T, daily
RH, and daily WS are used to drive the well-trained
model.

2.4. RFmodel
RF uses a bootstrap resampling method to extract
multiple sample subsets from the original sample
to construct multiple decision trees, and then fuse
the prediction results of those multiple decision
trees (e.g. supplementary figure S2(b)). RF regres-
sion is a method based on non-parametric regres-
sion, which does not require statistical assumptions
on predictor and target variables. With this flexibil-
ity, the RF algorithm is suitable for detecting the non-
linear response of surface water and heat fluxes to
the changes in various environmental factors. In this
study, we use the same Fluxnet data that has been used
to train the ANN models to train two RF models for
predicting daily LE and H, respectively. As with the
well-trained ANN models, SW_IN_POT, monthly P,
max T, min T, RH, and WS are the input variables
of the RF model. Daily LE and daily H are the output
targets. R and RMSE are also used to evaluate the per-
formance of the RF model in the training process. In
the training process of RF, 90% of the entire Fluxnet
data was randomly used as the training data set, and
10%was retained to be the test data set. Generally, the
complexity of the RF model is directly proportional
to the number of decision trees (Ntree); the larger the
Ntree, the greater the consumption of training time.
Therefore, to ensure the diversity of classifiers, the RF
model is trained using 800 trees in this study. Tomax-
imize the performance of the RF model, we set the
maximum depth of tree and the maximum leaf node
as default.

2.5. Model-driven data fromweather stations
This study used globally distributed weather sta-
tion observations during the 1975–2017 period to
drive models (supplementary figure S1(b)), as the
increasing trends in global air and land surface tem-
perature have become more pronounced since the
1970s (Hartmann et al 2014). We collected daily
observation records of precipitation, mean tem-
perature, maximum and minimum temperature,
dew point temperature, and surface wind speed
from the weather records of the Global Daily Sum-
mary (GSOD) product, which are available from
the National Centers for Environmental Information
(NCEI) (www.ncei.noaa.gov/data/global-summary-
of-the-day/archive/). The quality of the meteor-
ological observational records that have strictly
controlled the dew point temperature is used to cal-
culate the actual vapor pressure. The details of pro-
cessing weather station data and the semi-empirical
model for calculating SW_IN_POT at the weather
station position can refer to Wang et al (2021).

3. Results analysis

3.1. The predictions of LE and H
The ANN and RF models showed very similar per-
formance for estimating LE and H at the daily scale
(figure 2). In these 212 flux towers, all correlations of
predicted and observed daily LE reached 0.83, and all
are statistically significant at the p< 0.001 level. As for
the prediction of H, all correlations of predicted and
observed daily H can reach 0.79 (p < 0.001). There-
fore, the predicted results of both models are highly
and significantly correlated with the observed values.
As for the RMSE of the twomodels, the RMSE of pre-
dicted and observed LE are less than 24.09 W m−2,
and the RMSE of predicted and observed H areless
than 28.18 W m−2. In spatial patterns, the predic-
tions of the ANN and RF models show high correl-
ation and the R in most global land areas exceeds
0.90, especially in the northern hemisphere (supple-
mentary figure S3). The R and RMSE between the
predicted and observed LE and H ensembles are also
examined (supplementary figure S4). We found that
the at the locations close to the ocean, the predicted
results differ greatly from the actual observations.
The bias of estimated LE and H are relatively large
in the coastal areas of Australia, while the machine
learning approach performs better in the northern
hemisphere. In terms of the average of different lat-
itudes, both models predict that tropical and sub-
tropical regions are areas with high LE, and the high
latitudes of the northern hemisphere are areas with
low LE (supplementary figure S5). The spatial pat-
tern of H is similar to the pattern of LE. For example,
southwest North America, eastern Amazon, North
Africa, and Australia are regions with relatively high
H. As for the bias of estimation, the predicted LE (H)
of the two models show larger RMSE in the trop-
ics and its nearby regions such as southeast Asia.
Although the ANN and RF models have very sim-
ilar performance in predicting surface fluxes, there
are slightly different in spatial distribution charac-
teristics. In order to reduce the uncertainties caus-
ing by different algorithms and model structures,
we calculate the ensemble of global land LE and H
from the ANN and RF models. The global mean
daily LE predicted by the ANN and RFmodels ranges
from 0 to 120 Wm2 d−1, or equivalently to mean
daily ET of 0–4.23 mm d−1 and mean annual ET of
0–1545 mm. The mean annual ET is comparable to
estimates of the MTE model (0–1400 mm) during
1982–2008, when remote sensing data are available
(Jung et al 2010).

3.2. Trends in the global surface fluxes
The long-term trends in ensemble LE, H, and evap-
orative fraction (EF), i.e. the ratio of LE to the sur-
face available energy, are further estimated over our
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Figure 2. Performance of well-trained ANN and RF models for predicting daily LE and daily H based on the same Fluxnet 2015
dataset. The validation samples are randomly retained from the training data using a ratio of 10%. The legend shows the number
of daily records.

study period. In space, the trends in LE (H) pre-
dicted by the ANN and RF models are overall con-
sistent with each other (supplementary figure S6).
Meanwhile, there are some differences in the trends
between the prediction of the ANN and RF models.
The downward/upward trends of LE and H predicted
by the ANN model are slightly larger than those pre-
dicted by the RFmodel, such as in Australia. Here, we
typically focus on the changes in the ensemble of ET
(figure 3). The ET ensemble mainly shows an upward
trend of 0–7.00 mm yr−1 for most global land areas.
EF can be used as a proxy for soil moisture (Gentine
et al 2007, 2010), and thus the declining trends in ET
ensemble in West Asia and western Russia are mainly
caused by the limitation of soil moisture or a decrease
of surface conductance (figure 3(b)). Overall, the ET
andEF ensembles showupward trends onmost global
land, except for some fractional land surfaces such as
Western Russia, West Asia, theMediterranean region,
and southwestern United States (figure 3). As for
the latitudinal averaged trends, tropical and subtrop-
ical regions are the primary areas where ET and EF
increased significantly, as these humid areas have suf-
ficient water supply to meet the demand for evapora-
tion in awarmingworld.Moreover, a positive trend in
the ET ensemble is detected in the temporal changes
of ETover the past 43 years, and themeanupward rate

is 1.11 mm yr−1. Therefore, our observation-driven
ET trends are consistent with the idea that global land
ET should increase in a warming climate.

3.3. Influences of climate variability
Precipitation is the main source of water supply
for land ET, and temperature is a main driver of
atmospheric evaporation demand. Climate change
and global warming may have a significant impact
on global land water cycles. To investigate the two
respective influences of precipitation and temperat-
ure on ET changes, we designed two sets of exper-
iments, i.e. the models are driven by the weather
station data (a) that removes the linear trend of pre-
cipitation (detrend P) and (b) that removes the linear
trend of max T andmin T (detrend T). Mean air tem-
perature on the global land ismainly dominated by an
upward trend, especially in the mid-to-high latitudes
of the northern hemisphere (supplementary figure
S7(a)). The global mean ET andmean T show a signi-
ficant correlation (R = 0.89, p < 0.001) (figure 4(a)).
After removing the linear trend inmean air temperat-
ure, the ET (detrendT) presents amean positive trend
of 0.52 mm yr−1, while the ET (detrend P) shows a
mean positive trend of 1.01 mm yr−1. Although the
rates of change in precipitation are larger than tem-
perature (figure S7), our results emphasize that the
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Figure 3. Global patterns of long-term trends in the ET and EF ensembles during the 1975–2017 period. The blue lines in right
panels show the median trends at different latitude zones.

Figure 4. Long-term trends in global mean land ET, ET (detrend T), ET (detrend P), and mean T. (a) Temporal changes in annual
mean ET and mean T. The shaded area represents the 95% confidence level range. (b) Temporal changes in ET (detrend T) and
ET (detrend P). All trends are calculated by linear trend estimation method.

recent rising temperature has played a more import-
ant role than the changes in precipitation for the
increase of global land ET. This is because even a small
increase in temperature has a positive effect on the
increase in ET. Meanwhile, we note that precipita-
tion is a second-order effect. Therefore, our results

recognize P and T to be two independent variables.
In this case, the contribution of rising temperature to
the increase in global land ET reached 87% over the
past few decades.

The global land ET in response to climate change
also presents large regional differences. Significant

6



Environ. Res. Lett. 17 (2022) 024020 R Wang et al

Figure 5. Hot spots where precipitation and temperature affect land ET variability. (a) The spatial pattern shows the Pearson
correlations of mean ET and mean T. (b) The spatial pattern shows the trends in ET when removing linear trends in temperature.
(c) The spatial pattern shows the trends in ET when removing linear trends in precipitation. The red curves mark the hotspot at
mid-to-high latitudes of the northern hemisphere (RMHL) and the hotspot in tropic and subtropic (RTS). The hotspots are areas
where there is a relatively significant correlation between mean ET and mean T.

correlations between mean ET and mean T are
observed in the hotspots, i.e. the region at mid-
to-high latitudes of the northern hemisphere
(RMHL) and the region in tropic/subtropic (RTS)
(figure 5(a)). Mean ET and T show a negative cor-
relation on several land surfaces, i.e. southwestern
North America, theMediterranean region,West Asia,
South Africa, and Western Australia. Since global
temperatures mainly are substantially increasing over
recent decades, these regions are the typical areas
where drought event are prone to occur under global
warming and climate change. Thus, a declining trend
in ET is mainly due to the limitation of soil moisture
in these areas (Zhou et al 2019).

In terms of the magnitude of upward trend, the
influence of climate warming on ET is more signi-
ficant in humid regions such as the Amazon region,
West Africa, and Northwest India. The land ET
(detrend T) shows a downward trend for most land
areas (figure 4(b)). This is because the water vapor
contained in the air usually follows the Clausius–
Clapeyron relation that the atmosphere can hold
7% more water for every 1 ◦C temperature increase,

which potentially leads to an increase in annual P and
thus result in a wet trend (Ban et al 2015, Papalexiou
and Montanari 2019). However, the changes in the
ET trend are very small when removing the trends in
P (figure 4(c)). Therefore, the warming climate has
an important impact on ET changes in the mid-to-
high latitudes of the northern hemisphere and in the
tropical region. As for the temporal changes of land
ET in the these hotspots, the correlations of mean ET
and mean T in the RMHL and the RTS are 0.89 and
0.78, and both correlations are significant (p< 0.001).
The mean upward trend of land ET at the RMHL is
0.05 mm yr−1, while the mean upward trend of land
ET at the RTS is 1.81 mm yr−1 (supplementary figure
S8). Therefore, although temperature rises rapidly at
mid-to-high latitudes of the northern hemisphere,
the humid regions including the tropics and their sur-
rounding regions are identified to be the areas con-
tributing more to the increase in global land ET. This
is mainly due to the fact that the humid regions can
provide sufficient water supplies tomeet atmospheric
evaporation demand and the physiological activities
of vegetation.
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4. Discussion

This study retrieved an ensemble of ET based on
the boundary layer energy budget and using machine
learning models driven by ground observations. In
the stage of model training, we found that the
machine learning approaches for retrieving LE and H
have relatively larger uncertainty in Australia, espe-
cially in coastal areas. The reason for this uncertainty
may be that Australian land is surrounded by the
ocean, and thus the surface fluxes are easily affected by
the atmospheric circulation such as water vapor from
the ocean. Yet, the nonlinear machine learning mod-
els cannot well characterize the surface fluxes under
such unstable conditions. Our observation-derived
global land ET results show that the global land ET
increased over the 1975–2017 period, with a posit-
ive linear trend ranging from 0 to 7.00 mm yr−1, and
the global land mean ET shows an upward trend of
1.11 ± 0.03 mm yr−1. The rate of increased ET dur-
ing the 1975–2017 period is lower than the positive
trend of 2.30 ± 0.52 mm yr−1 during the 2003–2019
period, which is reported by the existing ET estima-
tion derived from the Gravity Recovery and Climate
Experiment (GRACE) and water balance method
(Pascolini-Campbell et al 2021). As our study is con-
ducted over a relatively longer period of time, the
estimated range of upward trend is acceptable.

The increased global land ET is a key metric for
the accelerated hydrological cycle under global warm-
ing. An increased ET indicates more loss of land sur-
face water, which can intensify the drought stress
on terrestrial ecosystems, thereby affecting water
resources, climate, and agriculture (Jagermeyr et al
2021). Our observation-driven results show that the
positive trend of land surface ET is mainly driven by
the increasing temperature, which can also cause an
increase in extreme precipitation, creating a negative
feedback to offset the warming trend. Yet, we found
that the warming climate dominates the increase in
global land ET, and that the contribution of precipit-
ation variability to the increase in ET is limited. Thus,
the acceleration of the global water cycle was initially
caused by the global warming trend. It is worth noting
that the increase in ETmay be related to other factors
such as changes in VPD in addition to rising mean
temperatures (Zhang et al 2013, de Kauwe et al 2017,
Yin et al 2021). It seems intuitive that the increas-
ing VPD increases the atmospheric water demand.
Although ET incresases in response to an increase in
atmospheric demand, plants can reduce ET by closing
stomata in response to increased VPD. ET responses
are due to climate change and plant photosynthesis
strategy. Massmann et al (2019) found that tropical
and temperate climate zones are more likely to show
positive ET responses to the increase in VPD than
northern and Arctic climates. Meanwhile, different
ecosystems have different ET responses. Therefore,

the deeper mechanisms of ET responses need to be
further explored on different time scales.

Our ET estimates are derived from ground-based
observations of FLUXNET towers and global weather
stations, and thus they do not rely on any para-
meter assumptions and can capture signals of changes
in surface conditions such as the effects of vegeta-
tion change and human activities on terrestrial water
cycles. It should be emphasized that the performance
of observation-driven machine learning models for
ET estimation can be influenced by the quality and
the distribution of weather stations. Therefore, our
models and results may have limitations in areas with
few weather stations. Meanwhile, the models show
limited performance over areas with significantmois-
ture and heat exchange such as the Amazon and Aus-
tralia coastal region.

5. Conclusions

In this study, we retrieved consistent global land LE
and H ensembles over recent decades using machine
learning approaches, informed by boundary layer
energy budget and ground-based observations. The
results can provide observational controls on the pre-
diction of global land ET while also accounting for
surface condition change. Furthermore, the responses
of global land ET to climate change were quantitat-
ively analyzed. Major conclusions are summarized as
follows.

(a) Recent global land ET has increased signific-
antly (p < 0.001), and the increased ET is mainly
attributed to the rising temperature, which is
consistent with the thermodynamic hypothesis
that global land ET would increase with climate
warming. On a global average, the rising temper-
atures contributed about 87% to the increase in
global land ET over the past few decades.

(b) The long-term trends in global land ET present
large spatial differences. Humid regions such
as the tropics and their surrounding areas are
identified to be the areas with relatively larger
increase trend andwithmore contribution to the
increase in global land ET.

(c) Our observation-driven results can provide con-
straints for long-term global land ET, and
the observation-derived findings have import-
ant implications for further understanding the
global terrestrial water and energy cycles in a
changing environment.
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