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Abstract
Food systems are particularly sensitive to changing precipitation patterns. Resilience via irrigation
will depend on baseline conditions, water source, and institutional constraints which have not been
studied jointly. We draw on over 100 years of agricultural production and weather data across the
United States to identify the extent to which access to stored water—distinguished by its source and
location—affects drought resiliency. Arid regions with access to stored water avoided the 13%
losses in crop value experienced in irrigated areas with more limited storage during droughts.
Humid regions are also beginning to adopt irrigation, but with less aggregate impact during
drought. The incomplete governance of groundwater withdrawals in many areas allow resiliency in
the near-term, but potentially at the expense of future water availability. Conversely, surface water
rights allow for the widespread application of irrigation water, but with less resiliency during
significant periods of drought.

1. Introduction

As extreme weather events become more common
under climate change, understanding the resiliency of
food systems, which are particularly sensitive to chan-
ging precipitation patterns, is critical (Wheeler and
Von Braun 2013, Challinor et al 2014, Rosenzweig
et al 2014). Irrigation has been a long-term adapta-
tion strategy to increase production in arid regions
and has been shown to increase crop yields during
extreme heat and drought (Troy et al 2015, Zhang
et al 2015, Tack et al 2017, Edwards and Smith 2018,
Zaveri and Lobell 2019). Irrigation’s contribution
to agricultural resilience, defined here as the capa-
city to absorb yearly deviations from mean weather
without production losses, has become a key area
of interest (Di Falco and Chavas 2008, Michler et al
2019). However, few studies integrate the multiple
margins of adaptation, shaped largely by institutions,
upon which farmers adjust irrigation to increase resi-
lience. This paper considers how farmers have utilized
stored water for resiliency in the Unites States across

time, regions, and water sources, showing that ‘irrig-
ation’ is not a panacea, and we should carefully con-
sider how institutions and the natural and built envir-
onment affect farmer adaptation.

The physiological relationship between crops
and water informs the challenges drought presents
(Alexandrov and Hoogenboom 2000, Carter 2013)
or conversely, the value of providing supplemental
water through irrigation (D’Odorico et al 2020).
In practice, however, effective deployment of irriga-
tion for climactic resiliency requires access to water
reserves—costly in dollars and to the environment
whether through surface reservoirs or groundwater
depletion—and is constrained by institutions, which
differ across regions and by water source (Porter et al
2017, Martinich and Crimmins 2019). Consequently,
empirical evidence of the resiliency maintained by
stored water, and the associated institutional con-
straints that shape farmers’ adaptation decisions, is
critical to understanding agricultural performance
under future climate scenarios (Famiglietti 2014,
Grafton et al 2013).
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https://doi.org/10.1088/1748-9326/ac358a
https://crossmark.crossref.org/dialog/?doi=10.1088/1748-9326/ac358a&domain=pdf&date_stamp=2021-11-19
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-9653-2663
https://orcid.org/0000-0002-0433-0635
mailto:ssmith1@mines.edu
http://doi.org/10.1088/1748-9326/ac358a


Environ. Res. Lett. 16 (2021) 124020 S M Smith and E C Edwards

Figure 1.Water storage access in the United States.
Notes: Irrigated acres are bifurcated by the 98th meridian based on county centroids.

Sources: Authors’ rendering of data; see text. Irrigated acreage tabulated from the U.S. Agriculture Censuses.

In pursuit of clean causal identification, many
assessments of the economic impact of climate change
and weather shocks on agriculture have excluded
irrigated areas on the grounds that irrigation is insti-
tutionally complex (water allocation rules are loc-
ally specific) and their inclusion obfuscates the dir-
ect effect of weather, i.e. irrigated areas are poor
proxies for non-irrigated areas (Schlenker et al 2005,
Schlenker and Roberts 2009, Burke and Emerick
2016). Despite these challenges, a more complete
accounting of irrigation’s role in climate resiliency is
necessary. Irrigated cropland, institutionally complex
or not, comprises a large share of the world food pro-
duction system, and in theU.S. produced 53%of total
crop value in 2017 (USDA 2019).

Studies that explicitly examine the role of irrig-
ation typically define areas as irrigated by their
prior observed levels of irrigation at a particu-
lar time (Kuwayama et al 2019, Cui 2020). This
approach assumes away some dynamic and endo-
genous year-to-year decision making that could help
explain adaptation behavior. In addition, empirical
trends undercut the narrative that irrigation is not a
potential margin for adjustment in historically non-
irrigated regions. Although it is unlikely that the U.S.
will witness another dam bonanza like the aridWest’s
in the mid-20th century, farms in the humid east-
ernU.S. have nonetheless doubled irrigated area since
1978, and now account for over one-third of the
country’s total irrigated acreage (Edwards and Smith
2018).

In this paper, we draw on over 100 years of
county-level crop production andweather data across
the U.S. to identify resiliency garnered through
stored irrigationwater to locally defined precipitation

shocks. Our main analysis focuses on the arid West
given its long history with irrigation adaptations. This
historical perspective of agricultural adaptation to cli-
mate variation can provide a wealth of insights for
future adaptation (e.g. Hansen et al 2011, Olmstead
and Rhode 2011). Rather than taking the irrigation
decision as given, we utilize the presence of larger
streams (associated with large federal reservoir pro-
jects) and aquifers, both shown in figure 1, to pre-
dict the availability of stored irrigation water at the
county level. Comparison before and after these stores
of water were developed in the mid-twentieth cen-
tury shows these counties saw significant overall gains
in production, particularly in the arid West (Edwards
and Smith 2018).

We account for the long-term average gains
from irrigation, but our focus is on the extent
to which stored water provides short-term resili-
ence to drought. By differentiating the responses by
the source—ground or surface water—our results
identify distinct patterns, yielding an empirically-
based foundation to assess emerging institutional
challenges associated with water management for
agricultural resiliency in the U.S. These challenges
are shaped by the distinct water rights broadly dif-
ferentiated by source and geography. While surface
water rights in the western U.S. are shaped by quan-
tified limits and other rules of the prior appropri-
ation doctrine, groundwater was generally an open-
access resource with local limitations emerging more
recently in some areas (Ayres et al 2018, Hrozencik
et al 2017, Smith et al 2017, Drysdale and Hendricks
2018). Eastern water rights remain unquantified
and are generally less regulated across both water
types.
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Figure 2. Fraction irrigated by east/west, storage access, and precipitation conditions, 1950–2017.
Notes: Local polynomial of the fraction of the county irrigated and the fraction of the county with access to an aquifer or within
15 miles of a large stream (or both). Drought is being below 1.5 standard deviations of the county’s historical precipitation
distribution. The left panel shows the response for irrigated counties west of the 98th meridian. The right panel shows the

response for counties east of the 98th meridian.
Sources: Authors’ rendering of data; see text.

2. Irrigation response to drought

In the U.S., irrigation is typically associated with the
West. However, the eastern portions of the coun-
try are increasingly investing in additional irrig-
ation infrastructure, often in response to recent
drought conditions (see table A1, SImaterial available
online at stacks.iop.org/ERL/16/124020/mmedia).
The investment is not for annual use, but an adapt-
ation used during drought. Over 90% of the acreage
taken out of irrigation in 2018was discontinued ‘tem-
porarily,’ and the most common explanation for the
action was ‘sufficient soil moisture’ (USDA 2019).
Figure 2 shows local polynomials plotting the frac-
tion of U.S. counties irrigated against the share of
the county with access to stored water (surface or
ground) separately for the west and east as well as
by drought condition. Access to water storage leads
farmers to irrigatemore acres in normal precipitation
years (defined at the county level). During drought
years, access to water storage also allows farmers to
add irrigated acres relative to areas with lower levels
of storage access. This pattern is consistent in both
the west and the east, but with some important dis-
tinctions. Indicative of more widespread water avail-
ability, overall irrigated share remains smaller and
eastern counties increase irrigation across all storage
access types. Conversely, in the west, areas with less
storage are not able to increase irrigation in drought
years. Only western counties with the most access

to stored water are able to respond to drought by
increasing irrigated acreage.

3. Empirical approach

A key barrier to statistically estimating the contribu-
tion of irrigation to resilience is that it is not randomly
turned on and off. To overcome this issue, we go
back in time to the adoption of significant additional
stored water across the western U.S. to apply the intu-
ition of a difference-in-difference framework. Prior to
1950, irrigation development across theWestwas lim-
ited to small diversion works for surface sources, and
the storage potential of large rivers and subsurface
aquifers remained mostly untapped and mattered
little. But these water resources strongly predict the
location of expanded water stores in the second half
the century (Edwards and Smith 2018). The comple-
tion ofHooverDam in 1936was the first of numerous
large federal reclamation projects augmenting water
availability on large streams, far outstripping the stor-
age previously made by private and early government
efforts (see SI figure A1). Shortly thereafter, tech-
nological innovation made stored groundwater eco-
nomically viable for irrigation on the Great Plains
(Hornbeck and Keskin 2014) and across the West
(Edwards and Smith 2018).We characterize two time-
periods and two groups to assess the impact of stored
water on resilience: pre/post-1950 and access/no-
access to storable irrigation water.

3
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The location where stored water is developed is
likely endogenous to other productive characteristics
of the immediate area, so we instead rely on ‘access’
to predict development choices. Specifically, for each
county we calculate the share over an aquifer and the
share within 15 miles of a ‘large’ stream (and share of
both). Edwards and Smith (2018) demonstrate that
these define areas more likely to develop ground-
water wells, if over an aquifer, and receive stored
water from Bureau of Reclamation projects, if near a
large stream. To create the categorical assignments for
counties used in the analysis, we took counties in the
bottom 25th percentile of total access and assigned
them as ‘small streams’—those which may irrigate
but have limited access to surface storage or ground-
water supplies—assigning the remaining counties the
access type that covers the largest share of county. See
figure A2 in the SI for a mapping of the measures.
Details on data construction and descriptive statistics
(tables A2 and A3) are provided in the SI.

To test how storage access affects resiliency, we
construct a panel data set measuring crop production
(the combined value of all crops produced), irrig-
ated acreage, and yields of corn and soybeans con-
sisting of 2920 U.S. counties from the 20 Agricultural
Censuses from 1910 to 2017 (Haines et al 2018, USDA
2019). To capture precipitation shocks, we calculate
the mean cumulative growing season precipitation,
µ̄i, and standard deviation, σ̄i over the sample period
for each county based on historical records from
PRISM (2004). Ourmeasure of precipitation shock in
year t is then calculated as a normalized precipitation
anomaly:

ŷi,t =
µ̄i − p̂recipi,t

σ̄i
. (1)

This variable is used to group precipitation into five
bins to facilitate interpretation of interacted vari-
ables in our empirical approach. Normal years are
assigned as within one standard deviation centered at
zero, somewhat dry years as falling between 0.5 and
1.5 standard deviations below the mean, and severe
drought years precipitation below 1.5 standard devi-
ations. We similarly define wetter years on the other
side of the distribution. On average, severe drought
corresponds to a reduction of 6 inches of growing sea-
son precipitation in theWest and 9 inches in the East.
Distributions, temporal and spatial, of the normal-
ized measure in the arid west are provided in figures
A3 and A4.

Ourmain analysis draws on the irrigated counties
of the arid-West, delineated by the 98th meridian,
allowing causal inference of the stored irrigation
water developed after 1950 as predicted by the pres-
ence of potential stores of water. To ensure we are
looking at the effect of stored water compared to
other irrigated areas, we keep only the counties in the
top 70% of average irrigated share in the post-1950

period. Counties excluded average 12% of farmland
irrigated, whereas the sample of counties we analyze
average 44% of farmland irrigated. Prior work has
utilized percentage as cutoffs for ‘irrigated counties’
ranging from 5%–20% (Schlenker et al 2005, Fisher
et al 2012, Kuwayama et al 2019) or simply the 100th
meridian (Burke and Emerick 2016).

To examine the effect of increased storage across
the k different types of storage technologies (surface
dams, groundwater, and both) on resilience to precip-
itation anomalies, we regress the outcome variables of
interest on the interactions between the realized pre-
cipitation shock bin, Binjit, j ∈ (−2,2), and indicator
variables for whether county i receives a particular
storage treatment after 1950, Storki ,k ∈ (1,3):

Yit =
2∑

j=−2

αj ·Binjit +
∑
k

2∑
j=−2

βjk · Storki ×Binjit

+ f(tempit)+ τt + γi + uit. (2)

In these regressions we exclude the ‘normal’ precip-
itation bin (Bin0it = 1 [−.5⩽ ŷi,t ⩽ .5], where ŷi,t is
defined by equation (1)) and counties without stor-
age are the baseline. Here the coefficient βjk shows the
effect of storage type k on climate bin j relative to the
same county with precipitation in the middle bin and
no storage. Our use of categorical storage availabil-
ity eases the interpretation and visual representation
of coefficient estimates, but we also provide results
in the SI material that utilize the continuous meas-
ure of irrigation access—the fraction of a county (a)
overlaying an aquifer, (b) within 15 miles of a large
stream, (c) or both—for robustness. To get the aver-
age effect across storage types, we also provide in the
SI material a specification and results that combine
counties of different storage types into a single cat-
egory of ‘storage’.

We do control for annual growing season temper-
ature using a flexible polynomial function, f(tempit).
For the main analysis we utilize a third-order polyno-
mial, but results are not sensitive to different ordered
polynomials. τt and γi absorb time and county fixed
effects. The key identifying assumption is that condi-
tional on covariates county precipitation shocks affect
outcome variables only through their effect on agri-
cultural production.

The above regression is run separately on pre- and
post-1950 observations. This comparative approach
establishes different county means before and after
1950, netting out the average gains generated by
the development of these water sources. The use-
fulness of the approach is demonstrated in figure
A5 of the SI material. Before 1950, counties with
and without future storage irrigated similar amounts
while responding with less irrigation when water was
plentiful (reduced demand) or lacking (reduced sup-
ply). After 1950, counties with more access to stored
water irrigated more under ‘normal’ precipitation,

4
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Figure 3. Effect of irrigation water storage on crop value by precipitation conditions, in the West.
Notes: Coefficient estimates of equation (2) for crop value per acre (logged) by time period. The estimates represent deviations

from a county’s average relative to normal levels of precipitation.
Sources: Authors’ estimation; see text.

but also had the ability to increase irrigated acreage
in drier years whereas the low-access counties irrigate
less.

Finally, we also run the regressions for the
counties east of the 98th meridian. The natural
experiment is not as strong in this context with little
pre-1950 irrigation development to provide a baseline
and we do not screen the sample by observed irriga-
tion levels. These estimates are informative of emer-
ging trends in the East, although the causal claim is
weaker.

4. Results

Figure 3 shows that areas with access to stored
water—particularly groundwater—provide resilience
for crop production during severe droughts after
those sources have been developed. Panels A and
B of figure 3 plot the coefficients from estim-
ating equation (2) with (logged) crop value per
county acre as the outcome variable in the two dif-
ferent time-periods. Prior to 1950 (panel A), dry
and significantly dry years reduced crop value per
acre relative to normal years: counties predicted
to gain access after 1950 to storage experienced
large losses of up to 0.27 log points on average,
or roughly 24%, in years of significant drought4.
Notably, counties dominated by groundwater sup-
plies suffered the most under drought before 1950,
when technology did not exist to access the water
at all. In contrast, small streams and large streams

4 The ‘average’ comes from the specification that combines
counties in all storage types into a single category of ‘storage’. These
results are in the supplemental material, figure A6 and table A4.
Point estimates shown in figure 3 are provided in table A5. Results
are similar if we utilize a continuousmeasure of stored water access
(tables A6 and A7).

provided some resilience at average production levels
pre-1950.

Panel B provides the estimates for after 1950.
Consistent with other advances—in seed techno-
logy, better forecasting, advances in fertilizers, etc.—
crop production is less variable across precipitation
anomalies for all access categories after 1950. Still,
absent access to expanded stored irrigation water,
counties experiencing significant drought saw crop
value fall 13%. In contrast, counties with access are
able to maintain production value in dry years. This
change, from losing 24% of crop value to experi-
encing no losses, indicates that water storage, not
simply ‘irrigation’, provides resilience during severe
droughts. Access to groundwater provides the most
resilience post-1950, as indicated by severe drought
coefficient estimates near zero. While small stream
counties see the largest drought losses post-1950,
counties with surface water storage access, unless
combined with groundwater, also experience losses
of around 8% relative to normal years. In other
words, groundwater has emerged as the more resi-
lient storage type for maintaining crop value during
droughts.

The estimated cost of drought absent stored water
appears larger than the relatively minor decreases
in farm income found by Fisher et al (2012) and
Kuwayama et al (2019). The contrast appears because
these studies aggregate income results across all irrig-
ated counties, pooling the estimates across high access
and low access counties, and did not measure the
drought effect in a nonlinearmanner. Although look-
ing at mean water availability rather than precipit-
ation shocks, Hagerty (2021) reports that in irrig-
ated areas of California, a 10% decrease in water
leads to a 3%–4% decrease in revenue, suggest-
ing a much larger direct response to reduced water
availability. For comparison, our cutoff for a severe

5
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Figure 4. Effect of irrigation water storage on irrigated acreage by precipitation conditions, in the West.
Notes: Coefficient estimates of equation (2) for share of county irrigated by time period. The estimates represent deviations from a

county’s average relative to normal levels of precipitation.
Sources: Authors’ estimation; see text.

drought year corresponds to a 32% reduction in
precipitation.

5. Farmer margins of adjustment

Access to stored water can increase resiliency through
two margins of irrigation: intensive, more water on
a normally irrigated acre; and extensive, more acres
brought into irrigation. Regression results of equation
(2) with fraction irrigated as the outcome, presented
in figure 4, confirm an extensivemargin effect. Shown
in panel A, share irrigated was not systematically
responsive to precipitation deviations, regardless of
storage type prior to 1950. After 1950 (panel B), irrig-
ated land is more variable across precipitation con-
ditions and counties respond generally in an inverse
fashion: more precipitation leads to less irrigated
land. The exception is that in significantly dry years,
countieswithout access to storage are constrained and
reduce irrigated share while those with storage are
able to further expand irrigated share.

The ability to expand irrigated share is largest for
counties with groundwater, particularly with access
to both ground and surface water5. Aquifer counties
exhibit considerable variation in the amount they
irrigate across drought types, swinging up and down
by 20% (see figure A7 of the SI). These results indicate
that extensive margin adjustments are conditional on
the source of storage: adaptation patterns are shaped
by the distinct water governance institutions associ-
ated with each source—a subject we return to follow-
ing some additional results.

5 The observed increase is influenced by 2012 observations, the
most severe drought in the post-1950measure by ourmetrics: 23%
of our sample is in a drought in 2012 and this accounts for 20% of
all the ‘drought’ observations after 1950. Still, omitting 2012 from
the analysis does not alter the results substantially, see SI material,
figure A8.

Groundwater also provides the most resilience on
the intensive margin. Intensive margin adjustments
are harder to distinguish and can vary in form based
on crops and region. In figure 5, we provide estimated
coefficients for equation (2) again, this time using the
yield per (harvested) acre for soybeans (panel A) and
corn (panel B), the twomost widely irrigated crops in
the U.S. during the post-1950 period. Yields decline
during significant drought across both crops in areas
with low storage access, and fare only slightly better
in areas with stored surface water access exclusively.
Groundwater access provides a better buffer in signi-
ficantly dry years, and counties with access to both
ground and stored surface water see the most yield
resilience.

The small stream results post-1950 can be com-
pared to the findings in Li et al (2019), who develop
a statistical model of corn yields on non-irrigated
land and compare the results to 12 process-based crop
models for the time period 1981–2006. At a precipit-
ation anomaly equal to our significantly dry cutoff,
Li et al’s crop models estimate corn yield declines in
the range of 10%–30%. Our estimates of corn yield
declines of 10% at this same significantly dry cutoff
is near the lower bound of those crop model results.
Our small stream results do include some irrigation,
which would explain why they tend to be on the smal-
ler end of the crop model estimates.

The irrigated acres and yield results show the
benefit of our approach relative to past studies in isol-
ating how the intensity of water use changes yields.
Zhang and Lin (2016) suggest a 10%–13% increase
in applied water per one unit decrease in Palmer
Drought Severity Index (negative is drier) and we
show this water application maintains yields when
water is available, but that yields decrease when avail-
ability is constrained. In total, across the arid western
U.S., groundwater resources provide more temporal
flexibility, via both intensive and extensive margin

6
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Figure 5. Effect of irrigation water storage on crop yields by precipitation conditions, in the West.
Notes: Coefficient estimates of equation (2). Panel A: Soy yields; Panel B: Corn yields. The estimates represent deviations from a

county’s average relative to normal levels of precipitation.
Sources: Authors’ estimation; see text.

adjustments. Whether the cost of this flexibility in
terms of future water availability is fully balanced
under the predominantly open-access governance of
groundwater remains an outstanding question.

6. Humid region irrigation

Although irrigation adoption began decades later in
the eastern U.S., we can examine its effectiveness in
the more humid climate for the post-1950 period
exclusively. Our statistical identification strategy is
somewhat weaker in this setting as it is less predict-
ive of where and when storage of irrigation water was
developed.While groundwater access is still limited to
areas overlying an aquifer, uptake remains relatively
small and not as closely tied to the innovations in the
1950s. More notable is that in the East, surface reser-
voirs did not proliferate along large streams as they
did in theWest. Still, the results, shown in figure 6, are
informative as a descriptive exercise6. Counties with
only small streams, as in theWest, appear constrained
in their ability to expand irrigated acreage in a signi-
ficantly dry year (Panel A). Although more modest in
extent than in the West, areas with access to aquifers
and large streams do exhibit a penchant to expand
irrigation during significantly dry years. Notably, this
is true for all access types, including large streams.
This differs from the West where water property
right institutions, not used in the East, limit increases
in irrigated share for counties with large stream
access.

Despite the fact that the East expands irrigation
in the drier years, the scale of the change remains low
and the resilience garnered is not yet robust. Panel
B of figure 6 shows crop values decline across all
counties in the East independent of storage access.

6 See figure A9 of the SI for pre-1950 results and table A8 for point
estimates for all of the eastern U.S. regressions.

This result is underscored by the impact on soy and
corn yields (Panels C and D, respectively). Yields see
a statistically significant decrease from normal across
all counties during the significantly dry years. Stored
water access is a measure of the potential for irriga-
tion, indicating that although resiliency still lags in
the East, additional adaptive irrigation investment is
possible.

7. Policy implications under climate
change

Our results, in light of the various allocation rules
across water sources and geography, uncover import-
ant lessons for institutional and policy design to
address a changing climate. A summary of our find-
ings is shown in table 1. Areas with groundwater
access were more resilient to severe drought in the
western U.S. because users had flexibility in pump-
ing when needed and could apply water to the cro-
pland of their choice. While increasing resiliency
in the short-run, unfettered groundwater access can
exacerbate over-extraction, lead to costly externalit-
ies, and potentially reduce future resilience (Tsur and
Graham-Tomasi 1991, Edwards and Guilfoos 2021).
Accordingly, as local groundwater governance insti-
tutions emerge, our results suggest the need for a bal-
ance between limiting depletion overall and main-
taining flexibility in the use of additional water dur-
ing drought. Price-based instruments (e.g. pump-
ing taxes) would build in this flexibility, whereas
a quantity-based system (e.g. cap-and-trade) would
need to adjust caps inversely to precipitation condi-
tions or allow for inter-annual water banking (Guil-
foos et al 2016, Smith et al 2017).

Surface water storage in the western U.S. saw
limited resiliency response as a result of the nature
of the underlying appropriative water rights. The
‘first-in-time, first-in-right’ allocation of water each
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Figure 6. Effect of irrigation water storage on agriculture economics by precipitation conditions, in the East.
Notes: Coefficient estimates of equation (2). Panel A: Share of county irrigated; Panel B: natural log of crop value sold per county
acre; Panel C: Soy yields; Panel D: Corn yields. The estimates represent deviations from a county’s average relative to normal levels

of precipitation.
Sources: Authors’ estimation; see text.

Table 1. Irrigation resiliency and potential policy response matrix.

Western U.S. Eastern U.S.

Groundwater Correlative rights/ local management
• Strong resiliency response
• Institutional adaptation needed to
flexibly limit over-extraction

American doctrine
• Largely untapped potential
• Lack of experience and governance
institutions

Surface Water Prior appropriation doctrine
• Appropriation limits resiliency
• Need for flexibility in water right
storage and use

Riparian rights
• Extensive margin response to drought
• Need for security in water rights

year limits the ability of users to smooth consump-
tion between wet and dry years (Malek et al 2020).
Whereas groundwater counties see wide swings in
irrigated acreage (±20%), surface water adaptation is
limited to the intensive margin (see figure A7). This
arises because appropriative water rights are ‘use-it
or lose-it’ and appurtenant to specific land. Farmers
are limited in ‘saving’ water for dry years and bring-
ing land in and out of irrigation. Finding ways to ease

this institutional inflexibility could increase resiliency
under projected climate scenarios.

In the East, adaptation via irrigation occurs on
the extensive margin but investment remains limited.
In contrast to the West, adjustments on the extensive
margin are similar across all storage types, including
large streams, underscoring that the limitations of the
appropriative rights doctrine are not binding in the
East. Although appropriative rights do limit resiliency
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in the West, their absence may be limiting invest-
ment in irrigation in the East. The easternU.S. applies
the vague common law riparian doctrine as a res-
ult of high historic water availability. While allowing
landowners abutting a streamor river to expand irrig-
ated acreage, this doctrine disallows diversion of irrig-
ation water to non-abutting landowners. Further,
without the secure property rights to water as exist in
the West, investment in expensive irrigation becomes
riskier, as there is no guarantee of water access during
drought (Leonard and Libecap 2019). Priority based
rights are not the only option to quantify flows and
alternatives, such as proportional shares, have been
found to provide greater productivity efficiency, but
may fail to fully address the development incentives
on their own (Smith 2021). To address these trade-
offs, eastern states have an opportunity to adopt water
rights that provide investment security and timing
flexibility, which would enhance resiliency relative to
the priority system.

Finally, the East’s abundant groundwater
resources have not been heavily utilized to date but
have the potential to increase future agricultural resi-
lience to drought. Widespread use of groundwater
irrigation will be dependent on the experience
of early-adopters because of the importance of
peer-effects and social learning (Genius et al 2014,
Sampson and Perry 2019). The collective organ-
izations that have emerged to limit groundwater
extraction in the West are also not yet present in
the East, where governance currently relies on com-
mon law precedent, the so-called American Doctrine,
that establishes few limits on agricultural pumping
(Weston 2008). Establishing clear and secure caps on
aggregate extraction early canmaximize the resilience
benefits of groundwater sources while minimizing
over-extraction issues, particularly if use is limited
to supplemental water, rather than being used as
the dominant source as it is in many parts of the
West.

8. Discussion

Our analysis offers key insight into the ability of
additional irrigation water to increase resiliency to
drought. Focusing on the development of large irrig-
ation projects and groundwater wells in the U.S., this
work offers insight into the resiliency gains achieved
in adopting irrigation. The evidence suggests that
stored irrigation water avoided the 13% losses of crop
value experienced in counties with little access to stor-
age during significantly dry years. In addition, the
benefits of irrigation as a resiliency tool are also prom-
ising for humid areas, as theymay be exposed tomore
intense and rapidly occurring drought under climate
change (Trenberth et al 2014). Although some regions
have additional scope to develop water stores, like in
the eastern U.S., other regions are limited by historic
development and further increases in water scarcity,

suggesting increased stress on water systems (Joyce
et al 2011). Accordingly, our analysis points not just
to the value of the stored water, but the importance of
the institutions shaping its use. Achieving the policy
goals of increasing resiliency and limiting the costs of
climate changewill require accounting for hydrologic,
climatic, and institutional differences.

There are some limitations to our findings. First,
our measure of storage access is based on physical
characteristics not actual access. While this approach
allows us to interpret our statistical results as causal,
it limits the precision with which we can estimate the
effects. Second, we use a coarse measure of precip-
itation, yearly total, as a proxy for drought because
it is available for the entire timeframe of our study.
Irrigation may also provide resiliency to shorter,
within-season droughts and additional work in this
area would be beneficial. Conversely, prolonged and
repeated drought may stress the food system beyond
a single year anomaly. Third, although we account
for the distinct overarching legal doctrines govern-
ing ground and surface water rights by region, micro-
analysis of institutional effects on water use ought
to continue. Fourth, beyond the water storage type,
resiliency has been shown to depend on the techno-
logy used to apply irrigation water in certain regions
(e.g. center pivots across the Ogallala aquifer (Cooley
et al 2021)), which we cannot accurately account for
at our national and historic temporal scale. Finally,
further work is also needed to understand the role
of irrigation in addressing increasing temperatures.
Even given these limitations, our results show that
irrigation offers significant capacity to provide resi-
lience to drought, but that the institutions governing
the underlying water resource are important determ-
inants of its effectiveness.
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