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Abstract
Emission inventory development for air pollutants, by compiling records from individual emission
sources, takes many years and involves extensive multi-national effort. A complementary method
to estimate air pollution emissions is in the use of satellite remote sensing. In this study, NO2

observations from the Ozone Monitoring Instrument are combined with re-analysis meteorology
to estimate urban nitrogen oxide (NOX) emissions for 80 global cities between 2005 and 2019. The
global average downward trend in satellite-derived urban NOX emissions was 3.1%–4.0% yr−1

between 2009 and 2018 while inventories show a 0%–2.2% yr−1 drop over the same timeframe.
This difference is primarily driven by discrepancies between satellite-derived urban NOX emissions
and inventories in Africa, China, India, Latin America, and the Middle East. In North America,
Europe, Korea, Japan, and Australasia, NOX emissions dropped similarly as reported in the
inventories. In Europe, Korea, and Japan only, the temporal trends match the inventories well, but
the satellite estimate is consistently larger over time. While many of the discrepancies between
satellite-based and inventory emissions estimates represent real differences, some of the
discrepancies might be related to the assumptions made to compare the satellite-based estimates
with inventory estimates, such as the spatial disaggregation of emissions inventories. Our work
identifies that the three largest uncertainties in the satellite estimate are the tropospheric column
measurements, wind speed and direction, and spatial definition of each city.

1. Introduction

Urban areas account for 55% of the global popula-
tion and this number is expected to increase to 68%by
2050 (Ritchie and Roser 2018). In the future, city gov-
ernments will have a larger fraction of air pollutant
and greenhouse gas emissions under their purview,
including nitrogen oxides (NOx = NO + NO2) and
carbon dioxide (CO2). Evaluating the history of air
pollutant emission trends in urban areas gives insight
on the effectiveness of past and current urban policies

to control these emissions, and gives a potential play-
book for future policies.

Nitrogen dioxide (NO2) is a deleterious air pol-
lutant primarily resulting from the high-temperature
combustion of fossil fuels (Jacob 1999). It is linked to
increased incidence of pediatric asthma (Gauderman
et al 2005, Khreis et al 2017, Achakulwisut et al 2019),
and respiratory-related mortality (Samoli 2006, He
et al 2020). NO2, itself a noxious compound, also
photochemically reacts in the atmosphere in the pres-
ence of volatile organic compounds to create ozone
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(O3) and fine particulate matter (PM2.5), additional
harmful pollutants (Jacob 2000).

NO2 observations from satellite instruments have
been informing the scientific community since the
late 1990s (Burrows et al 1999, Leue et al 2001, Richter
and Burrows 2002, Martin 2003). Utilizing observa-
tions from polar-orbiting satellite instruments can
be especially powerful since a single instrument
makes global measurements, as opposed to bottom
up inventories that are built from a variety of repor-
ted datasets and vary in their rigor spatially. Satel-
lite data are perhaps most often used in the quanti-
fication of long-term trends of NO2 concentrations
(Duncan et al 2016, Krotkov et al 2016, Georgoulias
et al 2019). Because of the short NO2 lifetime during
the daytime (2–8 h), NOX emissions are highly cor-
related with NO2 column amounts (Stavrakou et al
2008, Kim et al 2009, Lamsal et al 2011, Duncan et al
2013). For this reason, satellite data have often been
used to evaluate NOX emissions inventories.

Decreases throughoutNorth America and Europe
and recent emission reductions in China have been
reported in widely used bottom-up inventories. In
North America and Europe, satellite-based stud-
ies have shown that regional NOX emissions have
dropped at a rate of approximately 3%–7% yr−1 since
2005 (Castellanos and Boersma 2012, Lu et al 2015,
Zhang et al 2018, Silvern et al 2019, Goldberg et al
2019a, Macdonald et al 2021, Zara et al 2021) lead-
ing to 30%–70% reductions over a 15 year period. In
China, there was a rapid NOX emissions increase in
the 2000s (Richter et al 2005), peaking in 2012, and
a subsequent decrease thereafter (Reuter et al 2014,
De Foy et al 2016, Li et al 2018, Zheng et al 2018,Wang
et al 2019). ElsewhereNOX emission trends have been
mixed but generally have increased since 2005 (Lu and
Streets 2012, Mahajan et al 2015, Duncan et al 2016,
Geddes et al 2016, Barkley et al 2017, Georgoulias
et al 2019, Itahashi et al 2019, Huneeus et al 2020,
Hickman et al 2021, Vohra et al 2021). Going forward,
Elguindi et al (2020) summarize that past scenarios
that assumed strong pollution controls best represent
the documented trends in the United States, Europe,
and China, while low pollution control scenarios lie
closest to actual trends in developing regions such as
India and West Africa.

Top-down statistical methods to infer urban NOX

emissions from satellite observations were origin-
ally developed using Ozone Monitoring Instrument
(OMI) NO2 data in the 2005–2009 timeframe (Beirle
et al 2011). Beirle et al (2011) quantified NOX emis-
sion rates from eight megacities.While satellite-based
urban NOX emissions showed general agreement
with city-reported inventories, Riyadh had a factor of
three larger emissions rate than the reported invent-
ory. The method utilized by Beirle et al (2011) has
subsequently been validated and refined on known
NOX emissions from power plants (De Foy et al 2015,
Goldberg et al 2019b, Liu et al 2020). These studies

find that the Beirle et al (2011) method performs
best on the largest sources (uncertainties <30% for
sources >10 Gg yr−1 NOX), which have a consistent
daily signal that is larger than the values ∼100 km
upwind. Although the uncertainties can be fairly large
for power plants, it is reasonable to think that the
uncertainties for urban areas could actually be smal-
ler because urban plumes are larger and more dis-
tinct from the upwind concentrations. An advant-
age of this technique over others (Canty et al 2015,
Harkey et al 2015, Cooper et al 2017, Itahashi et al
2019, Visser et al 2019, Qu et al 2020) is that it does
not rely on a chemical transport model, which are
valuable tools, but involve an added layer of expertise
and can be affected by model accuracy. Many prior
studies quantifying NOX emissions using this top-
down method apply it on a subset of megacities or
power plants (generally fewer than ten) (De Foy et al
2015, Lu et al 2015, Lorente et al 2019, Goldberg et al
2019b, Liu et al 2020) due to computational expense,
but here we exploit recent computational capabilit-
ies to apply the Beirle et al (2011) method to a larger
set of urban areas (189 cities) during a longer time-
frame (15 years). We also provide an evaluation in
these regions against NOx emission estimates from
multiple global bottom-up emission inventories.

2. Data andmethods

2.1. OMI NO2
OMI is a passive spectrometer launched on the NASA
Aura satellite in July 2004 and has been provid-
ing global observations of NO2 atmospheric column
densities since 1 October 2004 (Levelt et al 2018).
Aura is situated in a polar-orbiting flight path approx-
imately 700 km above the Earth’s surface with a
Equatorial crossing time of 13:45 local time (Levelt
et al 2006). Each day Aura has 14–15 orbits and
was designed to have global coverage every day.
Since the development of the ‘row anomaly’ in 2007
(Dobber et al 2008), which obstructs ∼30% of the
field of view, it now has global coverage once every 2–
3 days. OMI NO2 slant column densities are derived
from backscattered radiance measurements in the
402–465 nm spectral window of the UV–Vis spec-
trometer (Marchenko et al 2015, Lamsal et al 2021).
OMI measures backscatter radiances in a 2600 km
swath with a nadir (center of the swath) pixel size of
13× 24 km2. The consistency of the data record over a
16+ year period has allowed for numerous long-term
evaluations of trace gas species (McLinden et al 2016,
Levelt et al 2018, Liu et al 2018, Abad et al 2019, Shen
et al 2019, Silvern et al 2019, Goldberg et al 2019a).

OMI NO2 data version 4.0 are operationally
released by NASA (Lamsal et al 2021) (https://
disc.gsfc.nasa.gov/datasets/OMNO2_003/summary).
The version 4.0 update includes a high-resolution
surface reflectivity product in the calculation of the
air mass factor and a recently updated cloud scheme,
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but still has a low bias of approximately 50% in urban
areas when compared to column observations from
in situ measurements. We filter the Level 2 OMI tro-
pospheric column NO2 data to ensure only valid
pixels are used. Daily pixels with solar zenith angles
⩾80◦, cloud radiance fractions ⩾0.5, and surface
albedo ⩾0.3 are removed as well as the five largest
pixels at the swath edges (i.e. pixel numbers 1–5
and 56–60). We also remove any pixel flagged by
NASA including pixels with missing values and those
affected by the row anomaly. The daily data are then
re-gridded to a global 0.1◦ × 0.1◦ grid.

The uncertainty in any daily measurement in the
operational data has been assigned to be approx-
imately 1.0 × 1015 molecules cm−2 (Krotkov et al
2017). This equates to roughly a 5%–20%uncertainty
over polluted areas. However, because we are over-
sampling overmany days (>100 days), we assume that
random errors will cancel due to the large number of
observations used (Russell et al 2010). This leaves only
the systematic errors, such as the air mass factor bias
in urban areas, which we discuss in section 2.4.

2.2. OMI NOX emissions calculation
We use a top-down inverse statistical modeling tech-
nique to derive NOX emissions from a combination
of satellite data and re-analysis meteorology. In this
method, all OMI NO2 data over individual city cen-
ters or ‘hotspots’ are compiled and rotated based on
the daily-observed wind direction, so that the over-
sampled plume is decaying in a single direction. We
utilize the 100 m wind speed and direction from the
ERA5 re-analysis dataset (Hersbach et al 2020) gener-
ated at 0.25◦ × 0.25◦. For each city we use the closest
gridded value without interpolation.

This top-down method can only be applied when
NO2 is photochemically active and the NO2 lifetime
is short. Wintertime has more erroneous data due
to snow cover and the longer NO2 lifetime during
wintertime yields urban plumes that are much more
likely to overlap; both factors cause issues with the
statistical fit. Therefore, we only use OMI NO2 data
fromMay to September in the Northern Hemisphere
north of 25◦ N, November–March in the Southern
Hemisphere south of 25◦ S, and all monthly data in
Equatorial regions between 25◦ N and 25◦ S. We do
not expect any significant systematic biases due to
this temporal filtering. We aggregate all daily satellite
data into 3 year averages; 36 months of data for trop-
ical regions and 15 months of data for extratropical
regions. We choose 3 year averages in lieu of 1 year
or a shorter timeframe in order to average out the
noise in daily measurements and to account for the
row anomaly which causes fewer available measure-
ments in the later time record.

Once all daily plumes have been rotated to be
aligned as an effective horizontal plume and averaged
together during a three year period (usually 100–600
snapshots), we integrate±0.5◦ along the y-axis about

the x-axis to compute a one-dimensional line dens-
ity in units of mass per distance. The line densities,
which are parallel to the wind direction, peak near the
primary NOX emissions source and gradually decay
downwind as the NOX is transformed into different
chemical species or deposited to the surface.

The line densities are fit to a statistical exponen-
tially modified Gaussian (EMG) model (Beirle et al
2011, Valin et al 2013). This particular method was
chosen due its ability to convert NO2 column inform-
ation into NOX emission rates while accounting for
meteorological influences and due to themultitude of
studies verifying the methodology (De Foy et al 2014,
Verstraeten et al 2018, Goldberg et al 2019c). A full
description of the method can be found in the sup-
plementary. An illustrative example of the method
applied to Paris is shown in figure S1 (available online
at stacks.iop.org/ERL/16/115004/mmedia). The five
output parameters of the statistical fit are the: NO2

burden, NO2 background, decay distance, horizontal
location of apparent source (ideally at the origin),
and sigma of the Gaussian plume. The NOX emis-
sions rate from the source can be calculated from
the NO2 burden, decay distance, andNOX/NO2 ratio,
which is assumed to be 1.33 (Beirle et al 2011, Valin
et al 2011). In two final adjustments, the derived NOX

emissions aremultiplied by a factor of 1.37 (Goldberg
et al 2019c) due to a known low bias in urban areas
caused by coarse resolution a priori vertical profile
information incorporated in the air mass factor, and
then by a factor 0.77 to account for an early afternoon
high bias in the emissions rate compared to the 24 h
average emissions rate reported by annual inventor-
ies, using diurnal allocation factors described in Den-
ier Van Der Gon et al (2011); sensitivity analyses of
the early afternoon adjustment factor can be found in
the supplementary. A discussion of the uncertainties
associated with all multiplicative factors are noted in
section 2.4 and the supplementary.

2.3. Bottom-up emissions estimates
We acquired gridded anthropogenic total NOX emis-
sions data from five widely used inventories and pro-
jections (table 1): the Community Emissions Data
System (CEDS) (McDuffie et al 2020), the Emissions
Database for Global Atmospheric Research (EDGAR)
version 5.0 (Crippa et al 2020), the Evaluating the Cli-
mate and Air Quality Impacts of Short-Lived Pollut-
ants (ECLIPSE) version 5a (Klimont et al 2017), the
Monitoring Atmospheric Composition and Climate
CityZen (MACCity) project (Lamarque et al 2010),
and the Shared Socioeconomic Pathways (SSP) pro-
jections (Riahi et al 2017). The two SSP scenarios
displayed herein represent sustainability (SSP 1–1.9)
and continued fossil fuel development (SSP 5–8.5)
pathways.

The five inventories and their trends by region are
shown in the supplementary (figures S2 and S3). In
some cases, sectoral emissions needed to be added
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Table 1. Summary of emissions inventories used for this study.

Inventory First year End year Resolution Increment Projection?

CEDSa 1970 2017 0.5◦ × 0.5◦ Annual No
EDGAR v5.0b 1970 2015 0.1◦ × 0.1◦ Annual No
MACCityc 1990 2020 0.5◦ × 0.5◦ Annual Yes, projection from 2000
ECLIPSE v5ad 1990 2050 0.5◦ × 0.5◦ 5 year 2020 only
SSPe 2005 2100 0.5◦ × 0.5◦ 5 year Yes, projection from 2005
a https://zenodo.org/record/3754964
b https://edgar.jrc.ec.europa.eu/gallery?release=v50_AP&substance=NOx&sector=TOTALS
c https://eccad3.sedoo.fr/
d https://iiasa.acat/web/home/research/researchPrograms/air/ECLIPSEv5a.html
e https://esgf-node.llnl.gov/search/input4mips/

together to create total anthropogenic NOX emis-
sion files. The inventories report NOX emissions as
‘equivalent’ NO2, but the NO2/NOX ratio may vary
by urban area, and can be considered a source of
uncertainty.None of the inventories projected to 2020
include the effects of the COVID-19 lockdowns on air
pollutant emissions.

All NOX inventories are re-gridded to a common
spatial resolution of 0.05◦ × 0.05◦, while retaining
all original values at the coarser spatial resolution.
A final emissions output file is created which lists
the NOx emissions within radii of 0.1◦ to 0.75◦ at
0.05◦ increments of each city. We match the satellite-
derived emissions to the emissions inventories using
the sigma of the Gaussian plume which varies spa-
tiotemporally. We assume that the satellite-derived
emissions should be matched to a Gaussian radius
of 2-sigma from the city center. The 2-sigma radius
for all cities are provided in table S3. Varying the city
radius between 1.5-sigma and 3-sigma will affect the
magnitude comparison by ±30%, but has a lesser
effect on the trend comparison (figure S4).

2.4. Methodological uncertainties
The total error associated with the magnitude of
the top-down vs. bottom-up comparison is calcu-
lated to be 53%, and is the sum of the quadrature
of seven potential sources of error: the tropospheric
vertical column measurement in urban areas (30%),
the wind speed and direction (25%), the colloca-
tion of the spatial extent between the top-down fit
and bottom-up emission inventory (30%), the early
afternoon to 24 h conversion emissions rate (10%),
the ‘clear-sky’ bias (10%) which for these purposes
is a result of emissions being different on clear-sky
days compared to cloudy days, the NOx/NO2 ratio
(10%) (Kimbrough et al 2017), and the random
error of the statistical EMG fit (10%) (De Foy et al
2014). This total uncertainty is comparable to Ver-
straeten et al (2018), who quantified an uncertainty
of 55% using this method with OMI NO2. For the
trend analysis, the total uncertainty is much reduced,
since the systematic uncertainties in the emissions

are consistent throughout the time period, thus leav-
ing only the random EMG fitting error of roughly
10% (De Foy et al 2014). For further information on
this method or the uncertainties associated with this
method, please see the discussion in the supplement-
ary or other literature (De Foy et al 2014, Lu et al 2015,
Verstraeten et al 2018, Goldberg et al 2019c).

3. Results and discussion

3.1. OMI NO2 trends
Regional NO2 temporal trends since 2005 have been
well-documented (Duncan et al 2016, Krotkov et al
2016, Georgoulias et al 2019). We update the findings
here to include the most recent years of annual data,
and to narrow the focus on urban NOX emissions—
instead of NO2 concentrations. We purposefully
exclude 2020 data due to the emission anomalies asso-
ciated with the COVID-19 lockdowns. In 2005, the
global regions with the largest anthropogenic emis-
sions were: eastern United States, western Europe,
and east Asia. This is documented by both the ‘top-
down’ OMI NO2 annual average of tropospheric
vertical column NO2 and the ‘bottom-up’ CEDS
inventory (figure 1; note the non-linear colorbars in
each panel).

Between 2005 and 2012, NO2 concentrations
dropped dramatically (25%–40%) in North Amer-
ica, western Europe, and Japan in response to strin-
gent policies enacted to reduce NOX emissions. Con-
versely, in China, India, and theMiddle East, a lack of
regional policies controlling NOX emissions yielded a
further increase (+10%–50%) in the NO2 concentra-
tions as compared to 2005 concentrations. Regional
signals in Latin America, Africa, and Southeast Asia
are mixed primarily due to the influence of biomass
burning in these regions. In other locations, such as
Central Asia, Northern Africa, and Oceania regional
differences are dominated by natural variability due
to sparse anthropogenic activities in these areas.

Between 2012 and 2019, NO2 concentrations
either dropped or held steady in most global regions.
The largest decreases during this timeframe were
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Figure 1. (a) OMI NO2 v4.0 annual 2005 tropospheric vertical column amounts. (b) Bottom-up annual 2005 NOX emissions
from the CEDS inventory; units are Gg yr−1 NO2 per 0.5◦ × 0.5◦ grid cell; total in Tg yr−1 NO2 (c) OMI NO2 ratio between the
2012 and 2005 annual averages. (d) OMI NO2 ratio between the 2019 and 2012 annual averages. Areas with OMI NO2 annual
values in either year smaller than 1015 molec cm−2 have been screened out in the bottom row panels.

in eastern China. In very few regions, were there
large obvious increases. NO2 changes between 2005
and 2019 at the regional level are displayed in
figure S5.

3.2. OMI NOX emissions estimates for global
megacities
Our top-down OMI NOX calculation converged for
80 (n = 80) global cities for the 15 year period
of interest (2005–2019); 16 of them are shown in
figure 2. We first performed the analysis on the 97
C40 cities (www.c40.org/cities), and found that the
method generally does not work for metropolitan
areas with population sizes of <2 million residents
because of OMI’s lack of sensitivity to their daily NO2

plumes. We then expanded our analysis to include
all global urban areas with metropolitan area pop-
ulations exceeding 2 million residents. In total, we
performed the statistical fit on 189 global cities. In
most cities (167 out of 189), the statistical fit con-
verged in at least one out of the five 3 year periods of
interest, but many cities did not have a full temporal
range or the statistical fit would yield an unreasonably
small effective NO2 lifetime (<0.5 h) and unusually
large sigma (>100 km); these instances were excluded
from our analysis because discontinuous estimates
are harder to screen for reliability and trend consist-
ency. Our method only works for cities isolated from
other large cities within a 200 km radius. Examples
of cities in which this method does not work due to
insufficient isolation are Beijing, Shanghai, Kinshasa,

Amsterdam, Boston, and Washington DC. The com-
parison between top-down OMI NOX emissions and
the five bottom-up emissions inventories for all 80 cit-
ies can be found in figures S6−S15. We anticipated
that C40 cities, a group of cities pursuing high ambi-
tion climate action, would have larger NOX reduc-
tions but we found no statistical difference between
the trends in C40 cities and non-C40 cities since 2009
(figure S16).

When the 80 cities are grouped by region, pat-
terns begin to emerge (figure 3). In the United States
and Canada, top-down OMI NOX estimates were
available for 14 cities (n = 14), and when combined
together, matched the bottom-up inventories in both
trend and magnitude to within ±10%; therefore, we
assert no consistent bias in the urbanNOX inventories
for these two countries. Similarly, excellent agreement
was generally found in Australia and New Zealand.

In Europe (n = 13) and South Korea/Japan
(n= 3), the temporal downward trends of NOX emis-
sions match to within ±10%, but all the inventor-
ies appear to be underestimating the magnitude of
NOX emissions.Wehave twohypotheses for thismag-
nitude disagreement. This could be indicative of an
error in the inventory caused by a large fraction of
diesel vehicles in these countries, which are known to
have been underestimated in the past (Anenberg et al
2017). Another hypothesis is that this could be indic-
ative of daily lifestyle differences which would present
itself in the mid-day to 24 h average conversion. For
example, if the activities leading to NOX emissions in

5
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Figure 2. OMI urban NOX emissions (black) for 16 global cities compared to six of the most widely used bottom-up NOX

emissions inventories: CEDS (green), ECLIPSE/GAINS (light blue), MACCity (red), EDGAR (orange), SSP 1-1.9 (dark blue), and
SSP 5-8.5 (violet). Note each city has a different y-axis. All 80 investigated cities are in figures S6–S15.

Figure 3. OMI urban NOX emissions for the 80 cities aggregated by global region.

these countries are concentrated in the late morning
or early afternoon, and less in the morning or even-
ing due to a heavier reliance on public transit, then
themid-day to 24 h average multiplicative conversion
factor should be lower. An additional hypothesis for
Europe is that a longer NO2 lifetime due to Europe’s
extratropical latitudes is not being fully captured in
our method.

In China (n = 6), we observe a broad peak
in NOX emissions in the 2009–2012 timeframe,
and subsequent reduction since 2012. Between 2012
and 2018, we calculate that urban NOX emissions
decreased 35%,whichwas similar inmagnitude to the
urban NOX reduction between 2006 and 2012 in the
United States and Canada (37%). When comparing
to the satellite-based estimates, all bottom-up invent-
ories appear to underestimate the rapid decrease in

Chinese NOX emissions. The CEDS inventory, which
uses the regionally-compiledMEIC inventory (Zheng
et al 2018) with different spatial downscaling prox-
ies, does capture the urban decreases, but not the
extent—between 2012 and 2015, the gridded invent-
ory reports a 7% decrease for the cities considered
while the satellite data show a 22% decrease over
the same 3 year period. On a national scale, repor-
ted Chinese NOX emissions decreased by 17% in the
inventory between 2012 and 2015, but this larger
decrease was driven by power plants located in rural
locations. These findings are consistent with Zheng
et al (2018) who also report that OMINO2 downward
trends are larger than the regional bottom-up invent-
ory. They documented that downward trends in sur-
face NO2 concentrations between 2012 and 2017 are
smaller than the downward trends in the emissions
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Figure 4. OMI urban NOX emissions for the 80 cities aggregated globally. The % change per year at four time intervals (2009,
2012, 2015, 2018) where applicable are also shown for the satellite-based estimates and six inventories.

inventory and satellite data; the ultimate reason for
the disagreement is still unknown. However, the dif-
ference in this study is that we now account for the
NO2 chemical lifetime, which has been documented
to change over time and is responsible for some frac-
tion of urban NO2 changes (Laughner and Cohen
2019).

In theMiddle East (n= 11), all bottom-up invent-
ories suggest a consistent increase in urban NOX

emissions between 2006 and 2018, but the top-down
OMI NOX estimates do not support this. Instead, the
satellite measurements indicate that NOX emissions
peaked in 2009, with a slow decrease in the following
years. While urban NOX emissions still appear to be
larger in 2018 than in 2006, the top-down estimate
suggests only 10% larger as compared to 40%–60%
larger as reported by the inventories. This discrepancy
appears to bemostly driven by four cities (Dubai, Riy-
adh, Jeddah, and Karachi), which have shown relat-
ively flat NOX emission changes between 2005 and
2018. In Latin America (n = 11) and Africa (n = 6),
the narrative is similar to the Middle East in that pro-
jected upwards NOX emission trends in the later part
of the time record (2012–2018) were in fact steady or
downward trends. Scant country-level data exists on
emissions or their trends for these regions to inform
or validate the global inventories.

Top-down urban NOX emissions are most uncer-
tain in India (n= 8). There are many reasons for this.
First, the satellite measurements in India, especially
Delhi, are most affected by aerosol interference as

compared to other urban areas around the globe
(Vohra et al 2021). Because of this bias, top-down
urban NOX emissions are likely biased low in this
region. Satellite measurements in India are also
biased by the wet monsoon (limited measurements)
and dry monsoon (long-range transport from bio-
mass burning may influence the urban calculation).
Further, Indian bottom-up inventories sometimes
show unrealistic changes, such as the 31% drop in
the EDGAR-reported Delhi NOX emissions between
2011 and 2012. Sharp changes in the inventory at
the urban scale are likely due to the downscaling/dis-
aggregation of national emissions because national
trends do not have similar sharp changes (figure S3).
With that said, urban area NO2 trends are noticeably
different when compared to the relatively rural, but
highly industrial areas of east central India (Chhattis-
garh and Jharkhand). In the largest Indian cities (e.g.
Delhi, Mumbai, and Kolkata), NO2 trends are relat-
ively flat between 2005 and 2019, while there have
been large increases in east central India (figure S5).
Thismay suggest an issue in the spatial disaggregation
of emissions as opposed to an error in the national
inventory.

When summing all urban areas in our study,
(n = 80), we find that satellite-based measurements
show a larger decrease in global urbanNOX emissions
than currently reported in the inventories or projec-
tions (figure 4). Between 2009 and 2018, the satel-
litemeasurements indicate that urbanNOX emissions
dropped by 3%–4% yr−1, while the inventories and
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projections suggest drops generally less than 2% yr−1.
The OMI observed NOX reductions in the 2015–
2018 timeframe are most similar to the CEDS invent-
ory (2.2% yr−1) and the SSP 1–1.9 projection (2.0%
yr−1) as seen in figure 4. The CEDS inventory cap-
tures the recent global decreases best, presumably
because it relies more heavily on country-inventory
data. ECLIPSE (a projection between 2015 and 2020)
and MACCity (a projection throughout the entire
timeframe) both show a steady decrease over time
(∼1% yr−1), but fail to capture the dramatic drops
starting 2012. The EDGAR inventory likewise does
not capture the drop starting in 2012. We attribute
this to an underestimation of Chinese decreases as
well as slower increases in developing nations such as
Latin America and Africa (Hickman et al 2021) in the
2012–2018 timeframe.

4. Conclusions

In this study, we calculate anthropogenic urban NOX

emissions and their trends in 80 global megacities
during 2005–2019. Generally, top-down and bottom-
up urban NOX emission trends show good agree-
ment in North America, Europe, Korea/Japan, and
Australasia. In China, bottom-up inventories fail to
capture the timing of urban emission reductions,
which appear to have occurred faster in the 2012–
2015 timeframe than currently reported. In develop-
ing nations (Latin America, Africa, India) it appears
that large projected increases in NOX emissions have
not materialized to date. As a result, satellite-based
measurements, when aggregated globally, show a lar-
ger decrease in urban NOX emissions than currently
reported in the inventories in the 2009–2018 time-
frame.

It should be noted that global inventories have
to make assumptions about the spatial distribution
of sources, such as power plants and vehicles. For
example, power plants near urban areas may be more
likely to be subject to greater emission controls than
those located elsewhere in a country. In addition,
passenger and freight vehicles likely have different
spatial and temporal distributions. These types of
distinctions are less likely to be captured in global
gridded datasets, compared to region-specific invent-
ories such as the U.S. National Emissions Invent-
ory. Therefore, a portion of the disagreement may
not be due to errors in the national-level invent-
ory, but instead a misallocation of the spatial (and
implied temporal) distribution (e.g. Huneeus et al
2020). Therefore, the NOx emission trends reported
here are specific to the cities studied and are not
necessarily reflective of national trends.

The distinct advantage of our methodology is
the ability to isolate urban emissions at the global
scale, while accounting for lifetime differences driven
by meteorology and chemical nonlinearities. Fur-
ther our method directly accounts for meteorological

(Goldberg et al 2020) and chemical lifetime (Laugh-
ner and Cohen 2019) differences between regions
which are important and can be difficult to disen-
tangle. For example a city in an Equatorial region (e.g.
Singapore) will have smaller NO2 concentrations due
to the smaller solar zenith angle and faster photolysis
than an extratropical city (e.g. Paris) with equivalent
NOX emissions. Similarly, NO2 columns can be up to
three times smaller on days with winds >8 m s−1 as
compared to days with winds <2 m s−1 given equi-
valent NOX emissions (Goldberg et al 2020).

However, it should be noted that there is a
cross-dependence of fitted effective NO2 lifetime and
satellite-derived NOX emissions. The derived NOX

emissions reported herein will increase with a shorter
effective NO2 lifetime and decrease with a longer
effective NO2 lifetime, under a scenario of constant
NO2. The parameters that are used to calculate the
NO2 lifetime are the wind speed and exponential
decay length scale, which means that this method is
particularly sensitive to wind speed, wind direction,
and the sources downwind of an urban area; the lat-
ter two variables affect the fitted exponential decay
length scale. A consistent low bias in wind speed, for
example, would decrease the effective NO2 lifetime,
and increase the derived NOX emissions. A consistent
source downwind of an urban area, such as a smaller
city, would increase the effective NO2 lifetime, and
decrease the derived NOX emissions. Effective NO2

lifetimes for all cities are provided in table S4.
Future work to reduce the methodological uncer-

tainties should focus on comprehensively testing this
method using a global chemical transport model at
high spatial resolution. While this has been done pre-
viously using a regional model for Atlanta (De Foy
et al 2014), differences in local conditions can be sub-
stantial sources of error and are hard to account for.
For example, the air mass factor and local meteoro-
logy can vary substantially between cities, and while
some effort was made to account for these differ-
ences, our assumptions were broad and sometimes
used coarse spatial resolution datasets. Better quan-
tifying errors in the winds/plume speed and vertical
distribution of NO2 through in situ observations or
even satellite data itself (Liu et al 2021) at various
times of the days will also be crucial to reducing the
uncertainty. Long-term records from remote sensing
instruments with higher spatial resolution and higher
signal-to-noise ratios, such as the TroposphericMon-
itoring Instrument (Veefkind et al 2012), Tropo-
spheric Emissions: Monitoring Pollution (Zoogman
et al 2017), Geostationary Environment Monitoring
Spectrometer (Choi 2018), will further reduce the
uncertainties in our top-down emissions method and
provide estimates at higher temporal (daily/monthly)
resolution (Griffin et al 2019, Lorente et al 2019,
Goldberg et al 2019b, 2021). Future applications of
this technique may be valuable for urban policy-
makers who want to better quantify changes in their
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air quality footprint over decadal timeframes, and
track progress towards policy goals. Satellite data-
sets, as a stand-alone product, should not be used to
determine compliance, but instead could be used as
one of many metrics to assess progress.
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