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Abstract
Adoption of liquefied petroleum gas (LPG) is the primary policy approach in India to transition
rural poor communities toward clean cooking behavior. Prior clean cooking studies show that
affordability, accessibility, and awareness impact LPG adoption in India. There is scarce research
that explores the association of personal networks of community members in their LPG adoption.
In this cross-sectional study, we use standard egocentric personal network analyses and
multivariate logistic regression models to examine the association of structure and composition of
personal networks with LPG adoption in poor communities. Our results show that higher
proportions of peers owning LPG are associated with higher likelihood of LPG ownership in the
respondents (OR= 41.30, 95% confidence interval: 16.86–101.20, p= 0.00). This study on
personal network characteristics in clean cooking research offers a germane foundation for further
large scale personal network studies on clean cooking adoption in poor communities.

1. Introduction

Traditional cooking systems relying on solid fuels
such as firewood, charcoal, animal dung, and crop
residue are widespread in rural India, particularly
among those living in poverty [1, 2]. These tradi-
tional stoves and fuels have been documented to cause
adverse health outcomes, and impinge on the quality
of life for both those using them in their households
as well as those who live in an area where these stoves
are extensively used. Recent estimates show house-
hold air pollution (HAP) accounted for approxim-
ately 600 000 people premature deaths in 2019 [3],
making it one of the leading causes of preventable
mortality in India. Conditions including lung cancer,
chronic obstructive pulmonary disease, high blood
pressure, reduced cognitive abilities, and tubercu-
losis have been conclusively linked to HAP exposure

[2, 4–9]. Women and children are the most likely to
spend significant amounts of time with and near tra-
ditional stoves, and are therefore more impacted by
harmful emissions [1, 10]. HAP is a pressing pub-
lic health crisis that warrants unceasing attention.
Cleaner cooking systems such as liquefied petroleum
gas (LPG) need to supplant traditional cookstoves
[11–13]. Prior research has shown that factors per-
taining to affordability, accessibility, and awareness
impact LPG adoption in rural poor communities of
India [12, 14, 15]. Multiple studies have also docu-
mented that behavior change strategies have signific-
antly contributed to LPG uptake [12, 15, 16].

Personal networks contribute in shaping our
behaviors and decisions [17]. Individuals construct
a personal community around themselves [18].
Structure and composition of personal relationships
with peers offer access or create barriers to new
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opportunities or ideas for individuals. Personal net-
works are conduits of social influence [19]. Stud-
ies have shown that personal networks of an indi-
vidual impact adoption of evidence-based interven-
tions [20, 21]. Instances include: (a) adoption of con-
traceptives [22]; (b) knowledge transfer [23, 24]; (c)
stroke recovery [25]; (d) diffusion of technological
innovation [23, 26, 27]; and (e) social support [28].
A 2018 study in an economically disadvantaged com-
munity in Zimbabwe found that if someone in a
person’s social network adopted a new technology,
that person was also more likely to adopt the tech-
nology [29]. Thus, a fundamental tenet is that per-
sonal networks are instrumental in impacting beha-
vior. However, there is no systematic study explor-
ing the association of personal networks with adop-
tion and/or use of clean cooking systems such as
LPG in poor communities. The association of per-
sonal networks with LPG adoption behaviors ought
to be tested more widely. Women tend to be the
primary cook in most cultures. They play a critical
role in adoption of cleaner cooking interventions like
LPG. It is important to explore the association of per-
sonal networks of women and LPG adoption in their
respective households.

The purpose of this study is to explore the
association of personal network characteristics with
adoption of LPG in rural households of India.
We adapted PERSNET, a standard personal net-
work survey instrument [18, 20] to collect net-
work data from women (primary cook) of 195 rural
households from 35 habitations (available online at
stacks.iop.org/ERL/16/064087/mmedia). We adjus-
ted for perception based factors and demographic
characteristics of the respondents in our model. We
leveraged data collected using a household LPG adop-
tion questionnaire administered for the same study
[30]. The operationalization of the key variables in the
study is described in detail in section 2.

2. Methods

2.1. Study design and participants
This study is part of a larger (parent) National
Institutes of Health funded case-control study [30].
The parent case-control research project has a study
sample of 510 households below the poverty line,
from 35 rural habitations of Thambalapalle and Ped-
damandyam mandals (block) in Chittoor district of
Andhra Pradesh state in southern India. The par-
ent study employs a cross-sectional design. The study
respondents for the research project were the women
from each of the 510 households. Inclusion criteria
for the parent study were: rural household with
an adult female member (>18 years’ age), woman
respondent who was able to provide consent for the
study, the woman respondent who was the primary
cook of the house, women respondent resided in the

household for the last 12 months, women respondent
planned to reside in the household for at least
12 months from the date of enrollment for the study.
A sample size of 255 households was selected corres-
pondingly for the case group (LPG adopter house-
holds) and control group (non-LPG households). An
additional inclusion criterion for the case group (LPG
adopter households) was that the household must
have received the first LPG cooking tank in the last
12monthswithin the date of enrollment for the study.

For the study on personal network analysis, we
randomly selected a subset of 100 households each
from the case and the control group of the par-
ent study. Data collection for network analysis was
undertaken from June 2016 through January 2018.
The primary outcome for this study was LPG adop-
tion, a dichotomous variable with categories yes or
no. A hundred households from case group had adop-
ted LPG (category: LPG adopters) while 100 house-
holds from control group had not adopted LPG (cat-
egory: non-LPG adopters) and were still cooking
on traditional stoves. We deleted entries from five
respondents (two from LPG adopters and three from
non-LPG adopters) during data cleaning owing to
missing demographic data. The total analysis sample
comprised 195 respondents. All participants provided
verbal consent to participate in the network study.
The study was also approved by the Boston Col-
lege Institutional Review Board (IRB #18.271.01).
We collected the personal network data by adapt-
ing PERSNET, a standard network survey instrument
[18, 20]. We collected the demographic data using
a standard field-tested LPG adoption questionnaire
[30].

2.2. Network measurements
Personal network analyses or egocentric social net-
work analyses focus on the structure and composition
of the networks surrounding a target individual [31]
referred to as ego or respondent. The set of individu-
als reported by the egos (or respondents) to whom
they are directly connected are called alters or peers.
The key components of personal networks include:
(a) a focal node (called ego or respondent); (b) nodes
to whom ego is directly connected to (called alters or
peers); and (c) the ties among these nodes. In personal
network analysis, the structure and composition of
these ego networks in the sample are examined.

In this study, a trained enumerator led the per-
sonal network data collection in the field. The main
sections of our personal network instrumentwere: (a)
name generator; (b) name inter-relator; and (c) name
interpreter.

(a) Name generator: the survey began with two
name generator questions to prompt identific-
ation of individuals (peers) who give advice,
socialize with, and support the respondents.
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(b) Name inter-relator: after eliciting the network
members, a second set of questions was admin-
istered to explore the structure of the personal
networks. For this study, the questions explored
the existence of connections (ties) among the
respondents and their corresponding peers.

(c) Name interpreter: finally, the composition of
these networks was probed with name inter-
preter questions. Corresponding with the aim of
the study, the question explored if peers of the
respondents had adopted LPG stoves or not.

Personal network analysis involves examination
of patterns of association between them [20].We ana-
lyzed three measures of network structure and one
measure of network composition in this study [20].
These are described below.

(a) Network size: This is typically measured by
the total number of nodes in the network
after excluding the node of the respondent. For
instance, if a respondent reports having seven
connections, the network size is 7.

(b) Mean degree: It is the average number of ties of
a network member, excluding the respondent.
Mean degree describes the distribution of ties in
a personal network.

(c) Network density: This is a measure of network
cohesiveness and is the ratio of actual ties to
the maximum possible ties. Network density is
measured as: [2 × L]/[N × (N − 1)]; where L
is the number of actual ties, and N is the num-
ber of nodes in the personal network. A personal
network with a relatively higher network dens-
ity is more clustered and close-knitted. Network
density is a continuous variable varying from 0
through 1.

(d) We analyzed one measure of network compos-
ition: LPG homogeneity. This measure exam-
ines the proportion of network members (or
peers) who own an LPG stove. For instance, if
a respondent reports having five connections as
peers, and all these five connections have LPG,
then the LPG homogeneity is 1. If a respondent
reports that three out five connections have LPG,
then the LPG homogeneity is 0.6. LPG homo-
geneity is a continuous variable varying from 0
through 1. The value 0 indicates none of the
peers have LPG, while the value 1 indicates all
peers having LPG.

To summarize, we statistically examined four net-
work measures namely network size, mean degree,
network density, and LPG homogeneity.

2.3. Statistical analysis
We analyzed the association of personal network
measures with LPG adoption with three sequential

steps routinely followed in studies on personal net-
work analyses for evidence-based public health inter-
ventions [20, 25]. These three steps are discussed
below.

2.3.1. Step 1
Using bivariate analysis, we compared the demo-
graphic and network variables between LPG adop-
ters (case group) and non-LPG adopters (control
group) or traditional stove users. We used unpaired
two-tailed t-test or Mann–Whitney U-test (for non-
parametric distribution) for continuous variables.We
used chi-square test for categorical variables.

2.3.2. Step 2
We then used multivariate logistic regression model
analysis to explore the association of LPG adop-
tion with the network measures. We built two sep-
arate models. Model 1 is an unadjusted regression
model. This model includes the four network meas-
ures (network size, mean degree, network density,
LPG homogeneity). We tested these measures and
ensured that there is no multi-collinearity. Model 2
explores the association of these four network meas-
ures after adjusting for demographic and perception
based predictors. This was undertaken to ensure that
network measures maintain their association with
LPG adoption even when adjusted for demographic
and perception based predictors. The demographic
predictors used are: (a) age of the respondent in years;
(b) average monthly income of the household; (c)
marital status of the respondent; (d) highest edu-
cation received by the respondent (women) and by
the male head of household; and (e) caste of the
respondent.

Evidence suggests that our personal networks
influence our mental models, which consequently
shape our decision toward adoption of evidence-
based interventions [20, 27, 32–37]. Perceptions
toward clean cooking also shape mental models,
which in turn influence adoption of clean cook-
ing technologies [38, 39]. Perceptions toward clean
cooking could be shaped from personal observations
over time or through participation in awareness cam-
paigns. Thus, to examine the true association of per-
sonal network attributes with LPG adoption, it was
crucial to control for the perception based predictors.
Thus in model 2, in addition to the demographic pre-
dictors, we adjusted for three perception based pre-
dictors that have routinely found traction in clean
cooking literature [12, 15, 16]. They are:

(a) Availability of biomass: this dichotomous vari-
able (option: yes/no) examined if respondents
perceive that the biomass is easily available to
them for traditional stove use. Evidence shows
that if respondents feel that biomass is easily
available, then the likelihood to adopt LPG is
low.
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(b) LPG safety: this dichotomous variable (option:
yes/no) examined if respondents perceive
LPG stove as an unsafe technology for their
households.

(c) Awareness campaigns attended: this dichotom-
ous variable (yes/no) explored whether the
respondents have attended awareness campaigns
on clean cooking. Participation in clean cooking
awareness campaigns increase the likelihood of
LPG adoption [12, 16, 40].

Both the models used 95% confidence interval
and a p-value of 0.05 for significance. We compared
the relative fit of the models using the AIC estimates.

2.3.3. Step 3
To further corroborate the association of signific-
ant personal network characteristic with LPG adop-
tion, we undertook the following analysis: (a) we
developed separate personal network montage for
the LPG adopters and non-adopters; and (b) we
developed separate density plots for LPG adopters
and non-adopters to explore the pattern of associ-
ation of the significant personal network character-
istic with LPG adoption. We used Stata version 15 for
univariate and multivariate regression analyses, and
RStudio 4.0.3 for network montage and graphs.

3. Results

3.1. Bivariate analyses
Table 1 summarizes the results of bivariate analysis.
Out of 195 study participants in the sample, 98 of
them (50.26%) adopted LPG (referred to as LPG
adopters), and the average age was approximately
38 years (SD= 11.02). 97 respondents had not adop-
ted LPG (referred to as non-LPG adopters), and the
average age of these respondents was approximately
41 years (SD = 15.79). There were no significant
demographic differences between those who adopted
and did not adopt LPG.Most of the participants were
married (89.80% vs 83.51%, p = 0.21). Most of the
sample belonged to the other backward castes (OBC)
(57.44%) followed by scheduled caste/scheduled tribe
(SC/ST) (27.18%). Those who adopted LPG were
relatively more likely to belong to the general caste
(20.41% vs 10.31%, p < 0.001), more likely to belong
to OBC (70.41% vs 44.33%, p < 0.001), and less likely
to belong to SC/ST (9.18% vs 45.36%, p < 0.001).
There were no significant differences between LPG
adopters and non-LPG adopters with reference edu-
cation levels of the respondent (p = 0.11) or the
education levels of the primary male decision maker
(p = 0.44). However, LPG adopters had higher aver-
age household monthly income (in Indian National
Rupees (INR)) (3326 vs. 2662 INR, p< 0.01). Regard-
ing perception based predictors, LPG adopters were
relatively less likely to state that biomass was eas-
ily available (1.02% vs 29.90%, p < 0.001), were

less likely to report that LPG was unsafe (3.06% vs
21.65%, p < 0.001). There was no significant differ-
ence between the two groups on clean cooking aware-
ness campaigns attended (p = 0.38). In terms of net-
work structure, LPG adopters had a smaller network
size (7.00 vs 7.31, p < 0.01), and the average peer in
network had fewer connections (mean degree 4.90 vs
5.12, p = 0.01). There was no significant difference
in the density of personal networks between the two
groups (0.98 vs 0.96, p = 0.33). In terms of network
composition, respondents who adopted LPG presen-
ted higher scores for LPG homogeneity (0.79 vs 0.50,
p < 0.001).

3.2. Multivariate model analyses
3.2.1. Network analyses
We developed two regression models clustered by
habitation (Table 2). The models were built follow-
ing a block approach—including variables in blocks
to isolate the effects. The first model (unadjusted
model) included the four network predictors. The
structural attributes of the networks: network size,
network density, and the mean degree were not
significant. The compositional attribute of the net-
works: LPG homogeneity was strongly significant.
In model 1, a 1 unit increase in the proportion of
peers adopting LPG was associated with an increase
of approximately 68 times in the odds of adopting
LPG by the respondents (OR = 68.26, 95% confid-
ence interval: 16.15–288.48, p < 0.01). For instance:
if the proportion of peers adopting LPG increases
from 0 to 0.2 (an increase of 0.2 units), it leads to
a corresponding increase in the likelihood of LPG
adoption by the respondents by approximately 13.65
times (0.2 × 68.26). LPG homogeneity varied from
0 through 1. The value 0 indicates none of the peers
have LPGwhile the value 1 indicates all the peers have
LPG. Thus, the results frommodel 1 also show that if
all the peers of a personal network of a respondent
own LPG, it increases the likelihood of the respond-
ent to also have LPG by approximately 68 times.

In model 2 we adjusted for demographic and per-
ception based predictors to test the association of the
network predictors with LPG adoption. Similar to
model 1, LPG homogeneity was statistically signific-
ant, albeit there was a reduction in the strength of
the association. A 1 unit increase in the proportion
of peers owning LPGwas significantly associated with
increased odds of LPG adoption among respondents
(OR= 41.30, 95% confidence interval: 16.86–101.20,
p = 0.00). For instance: if the proportion of peers
adopting LPG increases from 0 to 0.2 (an increase
of 0.2 units), it leads to a corresponding increase in
the likelihood of LPG adoption by the respondents
by approximately 8.26 times (0.2 × 41.30). As men-
tioned, LPG homogeneity varies from 0 through 1.
Thus, model 2 shows that if all the peers of a per-
sonal network of a respondent have LPG, it increases
the likelihood of the respondent to also adopt LPG
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Table 1. Bivariate description—percentage (frequency) or mean (SD), of outcome and predictor variables (N = 195).

Measure Adopted LPG (n= 98)
Did not adopt LPG
(n= 97) p-valuea

Network predictors
Network size 7.00 (2.26) 7.31 (1.18) <0.01
Network density 0.98 (0.06) 0.96 (0.18) 0.33
LPG homogeneity 0.79 (0.23) 0.50 (0.27) <0.001
Mean degree 4.90 (2.52) 5.12 (1.52) 0.01
Perception based predictors
Availability of biomass (yes) 1.02% (1) 29.90% (29) <0.001
LPG tank unsafe (yes) 3.06% (3) 21.65% (21) <0.001
Awareness campaigns attended
(yes)

5.10% (5) 7.00% (7) 0.38

Demographics
Age (years) 38.21 (11.02) 41.54 (15.79) 0.37
Average monthly income (INR) 3,326.02 (3,102.04) 2,661.86 (1,287.34) <0.01
Marital status (1=married) 89.80% (88) 83.51% (81) 0.21
Highest level of education of the
respondent (female)
None 58.16% (57) 74.23% (72) 0.11
Below or up to class 4 7.14% (7) 4.12% (4)
Class 5 to class 8 21.43% (21) 10.31% (10)
Class 9 to class 10 8.16% (8) 9.28% (9)
Class 11 to class 12 4.08% (4) 1.03% (1)
College 1.02% (1) 1.03% (1)

Highest level of education of the
head of the household (male)
None 42.86% (42) 42.27% (41) 0.44
Below or up to class 4 1.02% (1) 4.12% (4)
Class 5 to class 8 28.57% (28) 26.80% (26)
Class 9 to class 10 15.31% (15) 13.40% (13)
Class 11 to class 12 5.10% (5) 4.12% (4)
College 4.08% (4) 1.03% (1)
Not applicable 3.06% (3) 8.25% (8)

Caste of the respondentb

General 20.41% (20) 10.31% (10) <0.001
OBC 70.41% (69) 44.33% (43)
SC/ST 9.18% (9) 45.36% (44)

a p-value calculated from unpaired two-tailed t-test or Mann–Whitney U-test for continuous variables and χ2 test and Fisher’s

exact test for categorical variables, p values were reported.
b General caste groups are considered as relatively the least disadvantaged communities. Scheduled tribes (STs) are traditionally

marginalized. Scheduled castes (SCs) are economically and socially disadvantaged communities. They have also been traditionally

marginalized. Other backward castes (OBCs) form a large group that is heterogeneous and is also considered by the constitution of

India as being ‘economically and socially backward’.

by approximately 41 times, after adjusting for other
predictors in the model. From both the models, it
can be concluded that that higher the proportion of
peers adopting LPG, higher was the likelihood for
respondents to also adopt LPG, even after adjust-
ing for demographic and perception based predict-
ors in the model. The association of LPG homo-
geneity with LPG adoption from model 2 is also
demonstrated by the predicted probability curve in
figure 1.

3.2.2. Covariate analyses
Respondents who perceived that biomass is easily
available to them had a lower likelihood to adopt
LPG (OR = 0.01, 95% confidence interval: 0.00–
0.11, p = 0.00). Respondents who perceived LPG
as unsafe also had a lower likelihood to adopt LPG

(OR = 0.05, 95% confidence interval: 0.02–0.13,
p = 0.00). Attending awareness campaigns on clean
cooking was not significant (OR = 1.41, 95% con-
fidence interval: 0.09–23.03, p = 0.81). In terms
of the demographic predictors, a unit increase in
monthly income was associated with a 4% increase
in the probability of adopting LPG (OR = 1.04,
95% confidence interval: 1.01–1.06, p = 0.01). Mar-
ried respondents were about four times more likely
to adopt LPG than their non-married counterparts
(OR = 4.73, 95% confidence interval: 1.12–19.97,
p = 0.03). Respondent’s educational status was not
a consistently significant predictor. OBC communit-
ies or other minorities, compared to the general
castes were not significantly associated with adopting
LPG. Belonging to the SC/ST groups was significantly
associated with a 95% decrease in the odds of
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Table 2. Binomial logistic regression analysis of LPG adoption based on network predictors, perception based predictors and
demographics, with clustering at the habitation level (N = 195).

Measure
Model 1 Model 2
OR (95% CI) p-value OR (95% CI) p-value

Network predictors
Network size 1.80 (0.12–27.40) 0.67 1.27 (0.05–30.43) 0.88
Density 65.42 (0.00–3.43e+ 07) 0.53 34.47 (4.0e-06–2.9e+ 08) 0.66
LPG homogeneity 68.26 (16.15–288.48) <0.01 41.30 (16.86–101.20) <0.01
Mean degree 0.51 (0.03–8.68) 0.64 0.72 (0.03–19.29) 0.85
Perception predictors
Availability of biomass
(Ref: no)
Yes

0.01 (0.00–0.11) 0.00

Unsafe LPG (Ref: no)
Yes

0.05 (0.02–0.13) 0.00

Attending campaigns
(Ref: no)
Yes

1.41 (0.09–23.03) 0.81

Demographics
Age (years) 1.76 (0.29–10.54) 0.54
Average monthly
income (INR-Sqrt)

1.04 (1.01–1.06) 0.01

Marital status (Ref:
other)
Married 4.73 (1.12–19.97) 0.03

Highest level of educa-
tion of the respondent
(female) (Ref: none)
Below or up to class 4 2.65 (0.55–12.80) 0.22
Class 5 to class 8 2.04 (0.64–6.56) 0.23
Class 9 to class 10 0.22 (0.08–0.62) 0.00
Class 11 to class 12 11.70 (1.44–95.12) 0.02
College 0.12 (0.01–1.17) 0.07

Highest level of educa-
tion of the male head
of the household (Ref:
none)
Below or up to class 4 0.02 (0.00–1.22) 0.06
Class 5 to class 8 0.42 (0.13–1.32) 0.14
Class 9 to class 10 0.71 (0.24–2.07) 0.53
Class 11 to class 12 0.62 (0.11–3.58) 0.59
College 0.25 (0.07–0.84) 0.03
Not applicablea 6.55 (0.95–44.99) 0.06

Caste of the respondent
(Ref: general)
OBC 0.54 (0.18–1.63) 0.27
SC/ST 0.05 (0.01–0.41) 0.01
Goodness-of-fit
statistics
AIC 1.16 0.87
BIC −786.11 −794.08
a Not applicable is used when there is no male decision maker in the household; Ref. stands for reference category; OR stands for odds

ratios, and 95% CI stands for 95% confidence intervals.

adopting LPG compared to those belonging to the
general castes (OR = 0.05, 95% confidence interval:
0.01–0.41, p= 0.01).

3.3. LPG homogeneity: personal network montage
and density plots
Figures 2(a) and (b) corroborate results of the mul-
tivariate regression models. The network montage in

figures 2(a) and (b) shows the network size of the
respondents and type of stove (LPG or traditional
stoves) owned by the respondent’s peers. Figure 2(a)
shows the personal network arrays of case group
(LPG adopters) respondents in the sample organ-
ized by the stove ownership of their peers. Within
the first few rows we see a scattered mix of LPG
and non-LPG peers. The overwhelming uniformity
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Figure 1. Predicted probability of LPG adoption. The marginal effects curve for model 2 showing the association of predicted
probability of LPG adoption with LPG homogeneity, after adjusting for all other predictors. The probability of adopting LPG
increases among respondents with an increase in the proportion of their personal networks also owning LPG.

of color in the latter half of the montage shows that
respondents that were LPG owners had a homogen-
ous network where their network peers were also pre-
dominantly LPG owners. This is visually juxtaposed
against figure 2(b), that shows the control group
respondents (non-LPG adopters) and their corres-
ponding peers. In figure 2(b), a majority of non-LPG
owners had peers who were also non-LPG owners.
The pattern changes only toward the last few rows
in figure 2(b) where only five non-LPG owners had
peers who were all LPG owners.

Figure 3 further demonstrates our results with
two density plots of LPG homogeneity. The peak of
a density curve shows highest concentration of data
points. In figure 3, the plot on the left is the dens-
ity curve for non-LPG respondents. The peak of the
curve is at LPG homogeneity value of slightly more
than 0.5. This indicates that the highest concentra-
tion of respondents have peer groups in which only
50% of their peers have LPG. The plot on the right
is the density curve for LPG respondents, which is
in contrast. The peak of the curve is at LPG homo-
geneity value of approximately 1. This indicates that
the highest concentration of respondents have peer
groups in which almost all the peers also have LPG.
Visuals from the personal network montage and the
density plots provide further validation to the results
from the logit models.

4. Discussion

4.1. Network measures
The results show that compositional characteristic
namely LPG homogeneity was associated with LPG
adoption. Increase in peers having LPG increases
likelihood of the respondents to also own LPG.
The data were cross-sectional, so the directionality

of the association is unknown. However, following
two key insights could be drawn from this founda-
tional study of personal networks in stove adoption
research:

(a) Despite awareness campaigns, education,
increase in income, and similar socio-economic
status, there are distinct groups of people that
define their cooking behavior in these rural
households. A shared identity in terms of cook-
ing behavior could clearly be observed in the
personal networks of respondents in these com-
munities. One group constitutes respondents
with significantly higher number of peers having
LPG than that in the other group. Diffusion of
information across distinct groups are difficult
and gradual [41]. The finding partly contributes
to our knowledge on why there is gradual trans-
ition in clean cooking adoption in poor com-
munities. Behavior change is difficult when indi-
viduals are embedded in their own homophilic
groups. Frequent conversations with people with
similar thought process in cooking behavior cre-
ate a social eco-system where transition to clean
cooking is slow.

(b) To address HAP challenges, numerous govern-
ments and international agencies have imple-
mented clean cooking welfare policies and
schemes. For instance, the Government of India
rolled out its flagship welfare program (Pra-
dhan Mantri Ujjwala Yojana) to provide the
rural poor with access to LPG at subsidized
costs. Although there is a surge in adoption,
however there are rural interiors where uptake
and use is still a challenge. Targeted awareness
campaigns and behavioral change strategies
are implemented to shift the mental models
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Figure 2. (a) Personal network montage of the LPG adopters. The array shows that respondents who own LPG have a higher
proportion of peers who have adopted LPG. (b) Personal network montage of the non-LPG adopters. The array shows that
respondents who do not own LPG have a higher proportion of peers who have not adopted LPG.

of those rural poor households. Dissemination
of awareness campaigns could be insufficient
without exploring how attributes of personal
ties could shape mental models and behavi-
ors. In gender and class segregated communit-
ies, personal networks could be instrumental
in shaping decisions toward LPG adoption. A
‘domino effect’ either due to peer pressure or

peer-led motivation could partly contribute in
transitioning to LPG. Opinion leaders could be
identified by unpacking structure and composi-
tion of personal networks in these communities.
Leveraging personal networks and opinion lead-
ers to disseminate information on clean cooking
technologies could be an effective instrument
in improving the reach and uptake of LPG in
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Figure 3. LPG density plot by stove ownership. In LPG households, unlike non-LPG, the highest concentration of respondents in
the data have peer groups where almost all the peers also have LPG.

rural poor communities where HAP remains
widespread.

4.2. Covariates
The results also offer additional points of consid-
eration for research focused on clean cooking in
rural poor communities. For instance, the results of
the logit models indicate a lower likelihood of LPG
adoption in the case where a source of biomass is
nearby. This reinforces the evidence that convenience
in accessing biomass motivates rural households to
continue using traditional stoves especially in case
of deficit in adequate awareness. Perception of LPG
as unsafe was negatively associated with adoption,
denoting continued gaps in knowledge despite per-
vasive awareness campaigns. Scholars have emphas-
ized the importance of other social and cultural
factors in fuel choice and use patterns [42]. The find-
ing that belonging to SC/ST groups was associated
with a decrease in probability of LPG adoption under-
scores the enduring caste divisions in rural India
where historically disadvantaged groups continue to
face exclusions in access to improved resources.

4.3. Limitations of the study
There are seven key limitations of this study. They are
listed below.

(a) This was a cross-sectional study. Experimental
studies and longitudinal data are needed to build
on these findings, and further explore the tem-
poral effect of personal networks on stove adop-
tion and use.

(b) The study did not account for: 1. strength
of ties of personal networks; and 2. demo-
graphic homogeneity of the respondents. Inclu-
sion of these network attributes could provide

additional evidence on the role of networks in
clean cooking adoption research.

(c) The study focused on association of networks
with adoption of LPG, but falls short in exploring
the use of LPG. Further studiesmust explore role
of personal networks in both LPG uptake and its
use.

(d) While this study witnessed a clear separation on
the two groups of LPG and traditional stoves,
there are numerous instances wherein energy
deficit households stack LPG or clean stoves with
traditional stoves. Structure and composition of
networks of such households should be explored
in future studies.

(e) The geographical location of the peers could play
a role in their adoption of LPG, and by extension
impact the likelihood of LPG adoption among
respondents. Reported peers who live in villages
proximal to urban areas could have a higher like-
lihood to take up LPG. Including network size
in the model partly captured the likelihood of
counting those peers who live closer to urban
areas.

(f) Interaction with LPG distributors is less likely, at
least, for this study. Only two LPG distributors
supplied LPG tanks and stoves to all the house-
holds in this study. We do not rule out the like-
lihood of the impact of LPG distribution on the
LPG uptake in larger multi-town studies.

(g) Typical of a survey based study, there could be
issues of recall bias. Also, the retrospective nature
of the study could have led to decreased response
validity.

5. Conclusion

To our knowledge, this is the first ever study in clean
cooking adoption research where personal network
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analyses were deployed. Through an exploration of
personal network characteristics associated with LPG
adoption, our study offers novel determinants that
could shape LPG adoption. Analyses of personal net-
works unpacked the interesting aspect that com-
munities similar in socio-economic attributes had
distinct social groups based on their cooking beha-
vior. Four factors that clearly merit further investiga-
tion and could be built on this study are: (a) extent
of LPG use among peers; (b) impact of network
attributes of women vs. men from the same house-
hold; (c) strength of network ties; and (d) threshold
of peers’ LPG adoption that lead to stove transition
among respondents. Further studies could leverage
on the current study, and build on our findings to
take a deeper dive to understand how these personal
ties impact LPG uptake and by extension clean stove
adoption and use.
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