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Abstract
The global recognition of modern agricultural practices’ impact on the environment has fuelled
policy responses to ameliorate environmental degradation in agricultural landscapes. In the US and
the EU, agri-environmental subsidies (AES) promote widespread adoption of sustainable practices
by compensating farmers who voluntarily implement them on working farmland. Previous studies,
however, have suggested limitations of their spatial targeting, with funds not allocated towards
areas of the greatest environmental need. We analysed AES in the US and EU—specifically through
the Environmental Quality Incentives Program (EQIP) and selected measures of the European
Agricultural Fund for Rural Development (EAFRD)—to identify if AES are going where they are
most needed to achieve environmental goals, using a set of environmental need indicators,
socio-economic variables moderating allocation patterns, and contextual variables describing
agricultural systems. Using linear mixed models and linear models we explored the associations
among AES allocation and these predictors at different scales. We found that higher AES spending
was associated with areas of low soil organic carbon and high greenhouse gas emissions both in the
US and EU, and nitrogen surplus in the EU. More so than successes, however, clear mismatches of
funding and environmental need emerged—AES allocation did not successfully target areas of
highest water stress, biodiversity loss, soil erosion, and nutrient runoff. Socio-economic and
agricultural context variables may explain some of these mismatches; we show that AES were
allocated to areas with higher proportions of female producers in the EU but not in the US, where
funds were directed towards areas with less tenant farmers. Moreover, we suggest that the potential
for AES to remediate environmental issues may be curtailed by limited participation in intensive
agricultural landscapes. These findings can help inform refinements to EQIP and EAFRD
allocation mechanisms and identify opportunities for improving future targeting of AES spending.
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1. Introduction

Global concerns surrounding the negative effects of
modern agricultural practices are growing, due to
associated biodiversity loss, worsening water and air
quality, and increased nutrient loading, soil erosion,
and climate change (Laurance et al 2014, Leip
et al 2015, UNESCO 2015, Beckmann et al 2019).
Maintaining agricultural productivity amidst rapid
environmental change requires integrated policy
responses, and the widespread adoption of sustain-
able agricultural practices is a pathway to increase
agricultural outputs while reducing environmental
impacts (UN 2015, Bennett 2017, OECD 2017,
Kremen and Merenlender 2018, Pe’er et al 2020,
Weber et al 2020).

In theUnited States (US) and the EuropeanUnion
(EU)—two of the largest agricultural producers and
markets globally—a number of policies seek to ameli-
orate the negative effects of agricultural production
and to support environmentally friendly manage-
ment. Among these, agri-environmental subsidies
(AES) are designed to improve the environmental
quality of agricultural landscapes through monetary
compensation to farmers. Here, we use AES as an
umbrella term covering public schemes devoted to
the voluntary uptake and implementation of envir-
onmentally sustainable agricultural practices. These
are generally known as ‘best management practices’
in the US, and ‘agri-environment schemes’ in the EU.
Specifically, in the US we refer to the Environmental
Quality Incentives Program (EQIP), designed to ‘help
agricultural producers in a manner that promotes
agricultural production and environmental quality as
compatible goals’ (NRCS 2019). In the EU, we con-
sider targeted measures of the European Agricultural
Fund for Rural Development (EAFRD) under Com-
mon Agricultural Policy (CAP) Pillar II aimed at ‘fos-
tering agricultural competitiveness and ensuring suit-
able management of natural resources and climate
action’ (European Parliament 2020).

Overall, the ecological efficacy of many AES has
been established; however, previous literature sug-
gests highly context-dependent results (Wallander
andHand 2011,Uthes andMatzdorf 2013,Moxey and
White 2014). In both the US and the EU, lack of spa-
tial targeting is thought to challenge AES effective-
ness. In the US,Wardropper et al (2015) and Qiu et al
(2017) showed spatial incongruence in the allocation
of water-related AES and areas of poor water qual-
ity. In Germany, Früh-Müller et al (2019) found that
AES showed varied effectiveness inmatching environ-
mental needs and were not targeting high risk areas of
nitrogen imbalance or peatland protection. Similarly,
Uthes et al (2010) identified amismatch between AES
targeting and environmental needs vis-à-vis erosion
control and grassland extensification. While several
studies have assessed the spatial targeting of AES,
they typically investigate specific countries or regions,

rather than the continental scale. Additionally, stud-
ies in the US have more frequently focused on farmer
uptake of AES (e.g. Reimer et al 2013, Carlisle 2016).

In this study we thus take a broader perspect-
ive, analysing AES in the US (EQIP) and the EU
(EAFRD), asking: are AES going where they are most
needed to achieve environmental goals? As previous
empirical work indicates a potentialmismatch of pay-
ments and environmental needs, we explore to what
extent this might differ in the US and the EU, and
expand on previous research by analysing the extent
to which key socio-economic factors may moderate
the spatial allocation of AES.

The spatial distribution of AES is affected by two
primary drivers—firstly, by the two-tier allocation
mechanisms which determine the amount of funds
directed towards US states and EU member states
(MS) and, subsequently, towards finer-scale areas,
such as counties in the US and NUTS2 regions in the
EU (see appendix A for more details). Secondly, it
is driven by farmers’ participation, which is motiv-
ated by social and economic drivers (Lastra-Bravo
et al 2015, Malek et al 2019, Brown et al 2020, Piñeiro
et al 2020). Thus, while the overarching goals of AES
are environmental, programs may provide additional
subsidies to underserved groups to support rural
development and social equity. For example, the 2014
US FarmBill enables farmers from historically under-
served groups to access additional resources through
EQIP (NRCS 2014b). Similarly, EAFRD promotes
social aspects through sub-program themes, provid-
ing avenues to address social disadvantage and foster
inclusion (EU 2013). Farmer’s decisions and abilit-
ies to apply for AES are also influenced by a variety
of non-environmental factors (Malek et al 2019)—
here we include age, gender, and tenancy status based
on previous literature (e.g. Barbercheck et al 2014,
Giannakis 2014, Adusumilli and Wang 2019).

We identified indicators of environmental need
that are supported by the literature (table 1) and are
at the core of EQIP and EAFRD goals (table 2). We
define ‘need’ in the context of the intended impacts of
AES to enhance environmental and socio-economic
sustainability of rural landscapes, as stated in their
programmatic goals. Then, we use linear mixedmod-
els and linear models to explore the associations
between our indicator variables and AES funding.
Our consideration of US and EU subsidies, as well
as our interdisciplinary approach spanning socio-
economic and environmental dimensions, present a
comprehensive framework to assess AES targeting
and its potential to achieve sustainability goals.

2. Comparability of AES programs

The environmental need indicators in table 2 reflect
similarities between the overarching goals of EQIP
and EAFRD, which prioritize soil health, water
quality, biodiversity, and greenhouse gases (GHG)
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emissions reduction. Aside from their program-
matic objectives, these policies exhibit comparable
efforts to balance top-down decision-making pro-
cesses with local autonomy. EQIP’s goals are out-
lined nationally by the USDA, a federal agency. States,
however, can incorporate local priorities, a system
strengthened in the 2018 Farm Bill (e.g. State Con-
servationists can designate ‘high-priority’ practices
eligible for increased payments, NRCS 2019). Simil-
arly, EAFRD priorities are set by the European Com-
mission, but parts of the EAFRD are implemented
nationally and sub-regionally based on Community-
Led Local Development models (EC 2014, Palmisano
et al 2016).

While EQIP and EAFRD have similarities, they
also differ in their targets and design. For example,
while EQIP focuses on reducing negative envir-
onmental externalities (Baylis et al 2008), the re-
distributive goals of EAFRD place more emphasis on
rural development and provision of public goods (e.g.
AES for women, young farmers, and cultural land-
scapes, table 2). Moreover, they increase contribu-
tions to poorer regions by reducing direct payments
to larger farms (Johnson et al 2010) and grant greater
autonomy to local entities than EQIP (Hanrahan and
Zinn 2005, EC 2013).

It is important to note that EQIP and EAFRD
are part of broader systems of subsidy programs that
may influence trends in AES payments by affect-
ing farmer opportunity costs. These include dir-
ect payments (Brady et al 2009, Matthews 2013),
crop insurance, and land retirement schemes, such
as the conservation reserve program (CRP) in the
US (McLean-Meyinsse et al 1994, Hellerstein 2017,
appendix B). This study focuses on working farmland
AES to enhance comparability between programs.

3. Methods

3.1. Agri-environmental subsidy data
Weanalyzed averageUSEQIP spending between 2012
and 2014, as these are the most recent years with
complete data available (EWG 2020). For the EU
(including the UK), we used European Commission
data on EAFRD spending for the years 2014 and
2015 reported at NUTS2 level (EC 2018). These years
were chosen to reflect the new funding mechanisms
in effect since the 2013 CAP reform, but are close
enough to the EQIP spending years to warrant a com-
parison with the US.

EQIP focuses on a set of over 170 practices, ran-
ging from nutrient and crop residue management to
irrigation and grazing. To approximate the EAFRD
spending allocated for comparable measures, we cor-
rected total EAFRD spending by the proportion of
spending for measures M4 (‘Investments in phys-
ical assets’) and M10 (‘Agri-environment-climate’)
using an additional dataset (EC 2020a). These meas-
ures were deemed analogous to those of EQIP as

they promote sustainable working land and livestock
agricultural practices while largely excluding forestry
investments. If spending was reported at lower res-
olution (often NUTS1 level), we used the same pro-
portion for all underlying NUTS2 regions. Since our
analysis focuses on spatial targeting rather than tem-
poral analysis of AES impacts, we calculated AES
as the average spending per hectare of agricultural
land (table 1) by county in the US ($ ha−1) and by
NUTS2 region in the EU (e ha−1), modelling 2835US
counties and 211 EU NUTS2 regions.

3.2. Indicators of environmental need and
contextual variables
We selected 14 indicators based on their envir-
onmental, socio-economic and policy relevance
(table 1). These included: (1) six environmental
indicators targeted by AES and capturing envir-
onmental need; (2) three socio-economic variables
related to how subsidies are allocated and applied for
in practice; and (3) four contextual variables describ-
ing regional agricultural systems. Table 2 describes
their policy relevance within AES frameworks. See
appendix D for indicators’ maps.

Spatial data were masked to agricultural areas
and averaged per region (US county or EU NUTS2).
High indicator scores reflect high environmental need
across all variables. The direction of soil organic car-
bon (SOC) and local biodiversity intactness were
inverted to achieve this. Socio-economic and contex-
tual indicators were included as drivers of allocation
and farmer participation that shape environmental
outcomes. Predictors were scaled to zero mean and
unit standard deviation.

3.3. Statistical analysis
We conducted two sets of analyses for the continental
US (48 states) and most regions of the EU (23 MS)
to reflect the two-tier allocation system of the sub-
sidy programs. First, we evaluated AES spending pat-
terns among states (‘multi-State models’). Then, we
assessed spending patterns within states (‘individual-
State models’) to examine how local spending related
to the general patterns observed in the multi-State
models. All analyses were conducted in R (R Core
Team 2020).

This study covers a limited timespan and his-
torical AES allocation may have influenced the pre-
dictors due to changes in agricultural manage-
ment (Taylor and Morecroft 2009, Meals et al 2010,
MacDonald et al 2012). Thus, our findings regard-
ing AES spending are relevant primarily for the years
analysed.

3.3.1. Multi-state analysis
We analysed the relationship between AES spend-
ing and the 14 predictors with a generalized linear
mixedmodel (GLMM) that included state factors (US
state, or EU MS) as a random effect using the nlme

3
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oğ
lu

et
al
20
14
).

G
ro
ss
do

m
es
ti
c
pr
od

u
ct
(G

D
P
)

G
D
P
p
er
ca
pi
ta
by

co
u
n
ty
an
d

N
U
T
S2

re
gi
on

.
E
u
ro
st
at
(E
C
20
19
)
G
D
P
p
er

ca
pi
ta
ex
pr
es
se
d
in

P
u
rc
h
as
in
g

Po
w
er
St
an
da
rd

(P
P
S)
.

D
er
iv
ed

fr
om

th
e
St
at
e
Sc
ie
n
ce

&
Te
ch
n
ol
og
y
In
st
it
u
te
(S
ST

I
20
20
)

R
ea
lG

D
P
in

U
SD

in
20
14

an
d

po
pu

la
ti
on

p
er
co
u
n
ty
in

20
14

fr
om

th
e
U
.S
.C

en
su
s
B
u
re
au
.

R
ef
le
ct
s
pa
tt
er
n
s
of

ec
on

om
ic
ac
ti
vi
ty
an
d

u
rb
an
is
at
io
n
,w

it
h
h
ig
h
G
D
P
va
lu
es
as
so
ci
at
ed

to
h
ig
h
in
du

st
ri
al
iz
at
io
n
an
d
lo
w
on

es
as
so
ci
at
ed

to
ru
ra
la
re
as
.

6



Environ. Res. Lett. 16 (2021) 054067 S Biffi et al

Ta
bl
e
2.
R
el
ev
an
ce

of
th
e
en
vi
ro
n
m
en
ta
la
n
d
so
ci
o-
ec
on

om
ic
in
di
ca
to
rs
se
le
ct
ed

fo
r
th
e
an
al
ys
is
w
it
h
in

th
e
po

lic
y
fr
am

ew
or
ks

of
th
e
U
S
E
nv
ir
on

m
en
ta
lQ

u
al
it
y
In
ce
n
ti
ve
s
P
ro
gr
am

(E
Q
IP
,N

R
C
S
20
19
)
an
d
th
e
E
U
E
u
ro
p
ea
n

A
gr
ic
u
lt
u
ra
lF
u
n
d
fo
r
R
u
ra
lD

ev
el
op

m
en
t
(E
A
FR

D
,E

C
20
13
).
T
h
e
re
le
va
n
ce

of
ea
ch

in
di
ca
to
r
is
ca
te
go
ri
ze
d
as
D
=

di
re
ct
;I

=
in
di
re
ct
;N

=
n
ot

sp
ec
if
ie
d.

R
el
ev
an
ce

Po
lic
y
de
ta
ils

E
Q
IP

E
A
FR

D
E
Q
IP

E
A
FR

D

E
nv
ir
on

m
en
ta
li
n
di
ca
to
rs

N
it
ro
ge
n
(N

)
an
d
ph

os
ph

or
u
s
(P
)
ba
la
n
ce

I
I

Im
pl
ie
d
w
it
h
in

th
e
pr
io
ri
ty
fo
r
im

pr
ov
in
g
so
il

co
n
st
it
u
en
ts
,s
u
ch

as
or
ga
n
ic
m
at
te
r,
co
n
ta
m
in
an
ts
,

an
d
n
u
tr
ie
n
ts
.

Im
pl
ie
d
w
it
h
in

th
e
pr
io
ri
ty
fo
r
im

pr
ov
in
g
so
il
m
an
ag
e-

m
en
t,
A
rt
ic
le
5.
4(
c)
an
d
A
rt
ic
le
4(
b)
.

Lo
ca
lb
io
di
ve
rs
it
y
in
ta
ct
n
es
s

D
D

Su
pp

or
t
fo
r
at
-r
is
k
sp
ec
ie
s
h
ab
it
at
co
n
se
rv
at
io
n

in
cl
u
di
n
g
de
ve
lo
pm

en
t
an
d
im

pr
ov
em

en
t
of

w
ild

lif
e

h
ab
it
at
.1
0%

of
fu
n
di
n
g
is
de
di
ca
te
d
to

w
ild

lif
e.

R
es
to
ri
n
g,
pr
es
er
vi
n
g,
an
d
en
h
an
ci
n
g
bi
od

iv
er
si
ty
is

on
e
of

th
e
U
n
io
n
se
t
pr
io
ri
ti
es
,A

rt
ic
le
5.
4(
a)
.

So
il
er
os
io
n

D
D

R
ed
u
ct
io
n
in

so
il
er
os
io
n
an
d
se
di
m
en
ta
ti
on

fr
om

u
n
ac
ce
pt
ab
le
le
ve
ls
ar
e
pr
io
ri
ti
ze
d
on

el
ig
ib
le
la
n
d.

A
rt
ic
le
5.
4(
c)
em

ph
as
iz
es
th
e
im

po
rt
an
ce

of
so
il

er
os
io
n
pr
ev
en
ti
on

.
So
il
or
ga
n
ic
ca
rb
on

(S
O
C
)

D
I

Su
pp

or
t
fo
r
pr
od

u
ce
rs
im

pl
em

en
ti
n
g
co
n
se
rv
at
io
n

pr
ac
ti
ce
s
to

im
pr
ov
e
so
il
h
ea
lt
h
an
d
in
cr
ea
se
ca
rb
on

le
ve
ls
in

th
e
so
il.

Im
pl
ie
d
as
pa
rt
of

th
e
ob

je
ct
iv
e
re
la
te
d
to

cl
im

at
e

ac
ti
on

(A
rt
ic
le
4(
b)
)
an
d
th
e
pr
io
ri
ty
fo
r
pr
om

ot
in
g

a
‘lo
w
ca
rb
on

an
d
cl
im

at
e
re
si
lie
n
t
ec
on

om
y’
.

G
H
G
em

is
si
on

s
fr
om

ag
ri
cu
lt
u
re

D
D

E
m
is
si
on

s
re
du

ct
io
n
is
pr
io
ri
ti
ze
d,
as
w
el
la
s
en
er
gy

co
n
se
rv
at
io
n
to

sa
ve

fu
el
an
d
im

pr
ov
e
ef
fi
ci
en
cy
.G

H
G

ca
pt
u
re
an
d
st
or
ag
e
ar
e
re
fe
re
n
ce
d
in

th
e
B
ac
kg
ro
u
n
d

se
ct
io
n
.

C
lim

at
e
ac
ti
on

is
a
U
n
io
n
pr
io
ri
ty
an
d
M
S
‘s
h
ou

ld
be

re
qu

ir
ed

to
sp
en
d
a
m
in
im

u
m

of
30
%

of
th
e
to
ta
l

co
n
tr
ib
u
ti
on

[.
..]

on
cl
im

at
e
ch
an
ge

m
it
ig
at
io
n
an
d

ad
ap
ta
ti
on

as
w
el
la
s
en
vi
ro
n
m
en
ta
li
ss
u
es
’.

A
gr
ic
u
lt
u
ra
lw

at
er
st
re
ss

D
D

R
ed
u
ct
io
n
s
of

n
on

po
in
t
so
u
rc
e
po

llu
ti
on

,s
u
ch

as
n
u
tr
ie
n
ts
,s
ed
im

en
t,
p
es
ti
ci
de
s,
or

ex
ce
ss
sa
lin

it
y
is
a

pr
io
ri
ty
,a
s
w
el
la
s
re
du

ct
io
n
of

su
rf
ac
e
an
d
gr
ou

n
d

w
at
er
co
n
ta
m
in
at
io
n
.

R
ef
er
re
d
to

w
it
h
re
fe
re
n
ce

to
th
e
W
at
er
Fr
am

ew
or
k

D
ir
ec
ti
ve
.T
o
re
du

ce
w
at
er
st
re
ss
,‘
h
al
fo

ft
h
e
ga
in

in
te
rm

s
of

w
at
er
ef
fi
ci
en
cy

sh
ou

ld
be

tr
an
sl
at
ed

in
to

a
re
al
re
du

ct
io
n
in

w
at
er
u
se
’.

M
an
u
re
n
u
tr
ie
n
ts
ru
n
of
f

D
I

50
%

of
fu
n
ds

ar
e
m
an
da
te
d
to
w
ar
ds

liv
es
to
ck

pr
od

u
-

ce
rs
to

ta
rg
et
n
on

po
in
t
po

llu
ti
on

so
u
rc
es
.D

u
ri
n
g
th
e

ye
ar
s
an
al
ys
ed

in
th
is
st
u
dy
,t
h
is
ta
rg
et
w
as
se
t
to

60
%
.

M
an
u
re
m
an
ag
em

en
t
is
ad
dr
es
se
d
fo
r
G
H
G
s
re
du

ct
io
n

an
d
in

th
e
N
it
ra
te
s
D
ir
ec
ti
ve
,w

it
h
an

em
ph

as
is
on

ex
te
n
si
fi
ca
ti
on

.
So
ci
o-
ec
on

om
ic
in
di
ca
to
rs

P
ro
po

rt
io
n
of

fe
m
al
e
fa
rm

er
s

I
D

5%
of

fu
n
ds

ar
e
de
di
ca
te
d
to

so
ci
al
ly
di
sa
dv
an
ta
ge
d

pr
od

u
ce
rs
,h
ow

ev
er
,w

om
en

ar
e
n
ot

co
n
si
de
re
d
so
ci
al
ly

di
sa
dv
an
ta
ge
d
al
be
it
be
in
g
pr
io
ri
ti
ze
d
by

ot
h
er
U
SD

A
su
bs
id
y
pr
og
ra
m
s.

G
en
de
r
is
n
ot

in
cl
u
de
d
in

th
e
U
n
io
n
pr
io
ri
ti
es
,b
u
t
ca
n

be
pr
io
ri
ti
ze
d
at
th
e
M
S
le
ve
l.
Su
pp

or
t
fo
r
w
om

en
is

lis
te
d
u
n
de
r
‘T
h
em

at
ic
su
b-
pr
og
ra
m
s’.

P
ro
po

rt
io
n
of

yo
u
n
g
fa
rm

er
s

I
D

5%
of

fu
n
ds

ar
e
de
di
ca
te
d
to

be
gi
n
n
in
g
pr
od

u
ce
rs
an
d

ra
n
ch
er
s,
h
ow

ev
er
,y
ou

n
g
fa
rm

er
s
ar
e
n
ot

ta
rg
et
ed

ex
pl
ic
it
ly
.

Su
pp

or
t
fo
r
th
e
en
tr
an
ce

of
‘y
ou

n
g
fa
rm

er
s’
(u
n
de
r-

40
s
at
ti
m
e
of

ap
pl
ic
at
io
n
an
d
n
ew

en
tr
an
ts
to

th
e

se
ct
or
).

P
ro
po

rt
io
n
of

re
n
ti
n
g
fa
rm

er
s

N
N

N
ot

m
en
ti
on

ed
N
ot

m
en
ti
on

ed

7



Environ. Res. Lett. 16 (2021) 054067 S Biffi et al

package in R (Pinheiro et al 2020). We first ran full
GLMMs including all indicators as described above.
We used backward variable selection based on AIC
to identify the most important variables using the
MASS package (Venables and Ripley 2002). We then
compared themost important indicators between the
US and EU. RGLMM were calculated as summary stat-
istics using the MuMIn package (Bartoń 2020) to
summarize the variance explained by fixed effects
(marginal R2) and fixed and random effects together
(conditional R2).

We assessed the stability of the selected variables
using 1000 bootstrap replications (Heinze et al 2018)
and tested for spatial autocorrelation in the residuals
by running a Monte-Carlo simulation of Moran’s I
statistic using the spdep package (Bivand et al 2020).

3.3.2. Individual-state analysis
We ran linear regressions for a selected group of US
states and EU MS, to exclude potential biases caused
by allocation preferences towards certain states at the
federal or EU level and compare allocation within
different agri-economic systems. Only states with at
least 15 counties (US) or NUTS2-regions (EU) were
included in this analysis. In the EU, this restricted the
analysis to the UK, France, Germany and Italy. In the
US, out of all states with more than fifteen counties,
we picked the five states with the greatest and with the
least absolute distance from the average Pearson’s cor-
relation coefficient, as summed across all variables.
Thus, we selected states with the most extreme and
most representative predictor effect across all vari-
ables. For each of these states, we ran linear models
with the same predictors as the reduced model from
the multi-State analysis.

4. Results

4.1. Spatial patterns of environmental subsidies
In the US, high EQIP spending per hectare was con-
centrated in the coastal regions, while allocation in
theGreat Plains regionwas strikingly lower (figure 1).
In the EU, most regions with the highest AES spend-
ing per hectare are found in Austria, Netherlands,
Germany, Italy, Portugal, the Czech Republic and the
UK (figure 1). Total average yearly EAFRD spending
was 3.2 times higher than EQIP spending for the years
of this study (table 3).

4.2. AES allocation patterns in the multi-state
models
For the US, N and P balance, soil erosion, manure
runoff, proportion of young farmers and farm
income did not remain in the final model (figure 2,
appendix E). The total variance explained was rel-
atively high (R2

conditional = 0.65), but only partially
related to the fixed effects (R2

marginal = 0.11). SOC
and GHG emissions were positively associated with

Table 3. Spending comparison of selected agri-environment
subsidy programs between the US and the EU: total average
spending across the years of this study and average spending by
US county and EU NUTS2 region. US spending is in USD ($), EU
spending is in EUR (e).

Spending US EU

Total 0.74 M 2.59 M
By US
county and
EU NUTS2

per capita 19.5±0.9 5.8± 0.3
per agricultural
area (ha)

5.9± 0.3 22.9± 2.1

per full-time
farm worker

501± 13.3 564± 61.6

receipt of subsidies, meaning areas with low SOC and
high GHG emissions received more subsidies. How-
ever, agricultural water stress (AWS) and local biod-
iversitywere negatively associatedwith spending, sug-
gesting a mismatch with these environmental needs.
All socio-economic variables and contextual factors
were negatively related to receipt of subsidies. Agri-
cultural land cover ratio showed the largest effect size.

In the EU, average AWS, biodiversity, manure
runoff, farm size, and proportion of rented land did
not remain in the final model (figure 2, appendix
E). Together, fixed and random effects explained half
of the variance (R2

marginal = 0.25, R2
conditional = 0.54).

Of the environmental need indicators, GHG emis-
sions, N balance and SOC were positively associated
with receipt of subsidies, indicating a match between
subsidies and these environmental needs, while soil
erosion and P balance showed a negative association,
suggesting a mismatch in allocation. Similarly to the
US, the proportion of agricultural land cover had the
largest effect size, with a negative relationship to AES
payments. Of the socio-economic variables and con-
textual factors, agricultural income, GDP, and pro-
portion of young farmers were negatively associated
with receipt of subsidies. The opposite was true for
the proportion of female farmers.

The US and EU models both had some degree of
spatial autocorrelation in the residuals, with Moran’s
I of 0.16 and 0.15, respectively. However, the indicat-
ors remained relatively constant when different spa-
tialmodellingmethodswere used (see appendixH for
results).

See appendix F for the distribution of correlation
coefficients between spending and predictors.

4.3. AES allocation patterns in individual-State
models
Average model fit in the US was higher for states with
highest (meanR2 = 0.57± 0.27, see appendixG) than
for states with lowest distance frommulti-state correl-
ation (mean R2 = 0.19± 0.07). GHG emissions were
significant and positively associated with subsidies

8



Environ. Res. Lett. 16 (2021) 054067 S Biffi et al

Fi
gu
re
1.
A
ve
ra
ge

sp
en
di
n
g
of

se
le
ct
ed

ag
ri
-e
nv
ir
on

m
en
t
su
bs
id
ie
s
in

(a
)
co
u
n
ti
es
in

th
e
U
S
an
d
(b
)
N
U
T
S2

re
gi
on

s
in

th
e
E
U
am

on
g
th
e
ye
ar
s
20
12
–2
01
4
an
d
20
14
–2
01
5,
re
sp
ec
ti
ve
ly
.U

n
co
lo
u
re
d
co
u
n
ti
es
an
d
N
U
T
S2

re
gi
on

s
w
er
e
ex
cl
u
de
d
du

e
to

m
is
si
n
g
da
ta
.

9



Environ. Res. Lett. 16 (2021) 054067 S Biffi et al

Fi
gu
re
2.
D
ir
ec
ti
on

of
es
ti
m
at
es
an
d
ef
fe
ct
si
ze

of
th
e
se
le
ct
ed

m
u
lt
i-
st
at
e
m
od

el
s
an
d
in
cl
u
si
on

of
ea
ch

va
ri
ab
le
in

al
l1
00
0
bo

ot
st
ra
p
re
pl
ic
at
io
n
s.
C
ro
ss
ed

va
ri
ab
le
s
w
er
e
n
ot

in
cl
u
de
d
in

th
e
fi
n
al
m
od

el
s.
Fo
r
fu
ll
re
su
lt
s
se
e

ap
p
en
di
x
E
.∗

P
<

0.
05
;∗
∗
P
<

0.
01
;∗

∗∗
P
<

0.
00
1.

10



Environ. Res. Lett. 16 (2021) 054067 S Biffi et al

allocation in Arkansas and North Carolina, but neg-
atively associated in Montana. Water stress and biod-
iversity showed negative associations withmost selec-
ted states, and were significantly negatively associated
with allocation in Oregon and Wyoming, and New
Mexico and Oklahoma, respectively. Subsidies alloc-
ation in Nebraska, Idaho, and Tennessee showed no
significant association with the indicator variables.

For the EUMSmodels, few indicators showed sig-
nificant associations to AES spending per area (see
appendix G). In the UK, only the proportion of agri-
cultural land cover was significantly negatively associ-
ated with subsidies, and the positive association with
GHGemissions bordered on significance (P= 0.051).
In France, average farm income was significantly
positively associated with subsidies allocation. Mod-
els for Italy and Germany showed no significant
associations.

5. Discussion

Our results suggest some level of inefficacy of AES in
targeting areas with the highest environmental needs
under current program designs in the US and the
EU. While we found agreement between spending
and low SOC and high GHG emissions in both the
US and the EU, and spending and N surplus in the
EU, our findings suggest a mismatch of payments
with other environmental variables, including AWS
and local biodiversity loss in the US and soil erosion
and P balance in the EU. This partially confirms our
hypothesis of a mismatch between AES and envir-
onmental need when accounting for socio-economic
factors that may moderate allocation. These find-
ings support the growing body of literature advoc-
ating for more robust spatial targeting of AES, as
well as increased consideration of landscape multi-
functionality, synergies and trade-offs in AES alloc-
ation (Shortle et al 2012, Galler et al 2015, Zasada
et al 2018, Pe’er et al 2020, Seppelt et al 2020).

Selected models for the US and the EU retained
many of the original environmental and socio-
economic indicator variables, confirming that both
AES programs rely on similar underlying principles
and utilise comparable funding mechanisms (Baylis
et al 2008). However, differences were found in the
amount of variance explained by themodels, with dif-
ferences among states accounting for more variation
in the US than in the EU. This suggests greater variab-
ility in allocation formulas among US states than EU
MS. This may be explained by the EU’s mandate that
25% of the MS budget must be allocated to AES (EU
2005). The uniformity of AES spending in the EUwas
also confirmed by the lack of within-MS variation in
allocation emerging from the individual-State mod-
els. These models may have benefitted from finer res-
olution AES data; however, data for NUTS3 regions
is only available from MS-specific databases and was
thus not accessible here.

5.1. Successful AES allocation for environmental
goals
Our analyses showed success of both EQIP and
EAFRD in targeting areas of high GHGs, reflecting
the programs’ goals regarding agricultural emissions
reduction and carbon sequestration. This alignment
was also reflected in themodels ofNorthCarolina and
Arkansas, large producers of livestock, rice, soybeans,
feed grains, and cotton—all strong drivers of agri-
cultural GHGs (EPA 2015, FTM 2016, NASS 2017).
Cropland and livestock emissions reduction are fun-
damental for meeting Paris Climate Agreement of
mitigation targets (Reisinger and Clark 2018, Rogelj
et al 2018), and our results suggest that AES may be
successfully targeting areas of greatest need. Although
both programmes showed a positive association with
SOC, this was only significant in the US. As improved
SOC sequestration and agricultural GHG emissions
mitigation are linked (Frank et al 2017), this may be a
potential win-win scenario from the same AES meas-
ures. These results are promising and warrant further
investigation to understand the drivers of this success-
ful targeting, which could be applied to other areas of
environmental need.

The EUmodel illustrated EAFRD’s success in tar-
geting areas of greatest N surplus. The EU has been
addressing issues of N imbalance since the 1990s with
the nitrates directive (EU 1991), and our results indic-
ate that the spatial distribution of AES funding may
help further reduce N surplus. In contrast, this match
was not mirrored by P surplus, which was negat-
ively associated with AES spending. This result war-
rants further exploration, as the EU lacks a common
P management strategy (Ronchi et al 2019).

5.2. Mismatches of AES allocation and
environmental need
More so than successes, clear mismatches of fund-
ing and environmental needs emerged from our res-
ults, highlighting potential misdirection of AES and
gaps in environmental targeting of EQIP and EAFRD.
Although indicators of soil erosion, biodiversity loss,
water stress, and nutrient management are explicitly
featured inAES programs’ goals (table 2), both theUS
and the EU showed mismatches between policy pri-
orities and funding allocation. Soil erosion was neg-
atively associated with AES in the EU, and did not fea-
ture in the US model, while the opposite was true for
local biodiversity.

In the EU, the discrepancy between funding alloc-
ation and soil erosion comports with previous stud-
ies highlighting how the lack of a common bind-
ing strategy has inhibited soil conservation efforts
(Turpin et al 2017, Helming et al 2018), a short-
coming that the new Healthy Soil Initiative strives
to mitigate (EC 2020b). Moreover, the absence of
an association with biodiversity conforms with exist-
ing literature highlighting insufficient spatial tar-
geting of conservation measures (Pe’er et al 2014,
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Batáry et al 2015). In the EU, 0.57% of EAFRD
funding is reserved for Natura 2000 sites (Meas-
ure 12, Dwyer et al 2016); however, the agricul-
tural matrix surrounding protected areas is crucial
in supporting biodiversity (Gonthier et al 2014) and
biodiversity conservation is among the supporting
ecosystem services financed within Measure M10
(‘Agri-environment climate’).

We found that subsidy allocation in the US con-
centrated in areas of reduced water stress need,
while the variable was excluded from the EU model.
Agriculture is a major cause of freshwater ecosys-
tems degradation (Allan 2004, Poole et al 2013) and
water efficiency is becoming increasingly important
in light of climate change and groundwater depletion
(Marshall et al 2015, Cotterman et al 2018). Thus, this
mismatch warrants further policy attention. While it
is possible that high water stress and at-risk biod-
iversity areas are more likely to be enrolled in the
CRP program in the US due to its focus on envir-
onmentally sensitive lands, or in complementary ini-
tiatives like the Conservation Reserve Enhancement
Program, this result also highlights the lack of geo-
graphical targeting by EQIP since its 2002 reform
(Shortle et al 2012, Drevno 2016, Hellerstein 2017).
At the state level, water stress emerged as a strong
negative predictor in Oregon, indicating a mismatch
between EQIP spending and environmental need.
Oregon’s water supply is threatened by droughts and
irrigation demands, with repercussions for agricul-
ture and public health (OEC 2012, Schimpf and Cude
2020). In the EU, the post-2020 CAP reform revised
the water exploitation index to relate water stress
to availability of renewable water resources, possibly
enabling more efficient AES allocation in the future
(EEA, 2020).

Nutrient surplus and runoff, especially when tied
with water stress and flooding, have serious socio-
environmental repercussions that can be amelior-
ated with sustainable practices (Jones et al 2017,
Blanco-Canqui 2018, Roy et al 2021); however, they
did not remain in the US model. As the US accounts
for large proportions of global livestock production
and croplandN surplus (West et al 2014, FAO 2019b),
nutrients are known threats to the US water supply
(Grant et al 2002, Howarth et al 2002). EQIP sub-
sidizes nutrient management plans and infrastruc-
ture development to improve surface water quality,
and mandates 50% of total spending to livestock
producers (NRCS 2017). Notably, it provides waste
management assistance to concentrated animal feed-
ing operations, leading sources of nonpoint water
pollution due to chemical inputs and manure run-
off from animal feed crops (Burkholder et al 2007,
Martin et al 2018). While conservation practices
have been shown to reduce nonpoint source load-
ings locally (Poudel 2016, Liu et al 2018, Sneeringer
et al 2018), significant amounts of agricultural land

are over-fertilised and need improved nutrient man-
agement (Jackson et al 2000,NRCS2011, 2013, 2014a,
Long et al 2018). Moreover, these ‘pay-the-polluter’
initiatives have been criticised due to insufficient
resources, as well as their full reliance on voluntary
compliance (Collins 2012, Shortle et al 2012, Shortle
and Uetake 2015, Drevno 2016). It should be noted
that demand for EQIP funding consistently exceeds
allocation (Stubbs 2010), thus, funding limitations
may constrain AES’ ability to optimize spatial target-
ing; our results highlight a potential gap in AES tar-
geting which should be further investigated, partic-
ularly due to the severe impacts of nutrient surplus
and manure runoff associated with US high livestock
densities.

5.3. AES allocation and socio-economic variables
In some cases, social context may explain the mis-
match between funding and environmental need. In
the EU, AES were allocated to areas with higher pro-
portions of female producers, suggesting that EAFRD
program goals regarding gender equality and rural
development successfully influenced funding alloca-
tion, despite, or perhaps in competition with, envir-
onmental need. In the US, instead, the propor-
tion of female producers was negatively associated
with county spending. This could be due to gender
inequality not being a main focus of EQIP per se,
but only of overarching USDA policies (NRCS 2019).
There may be opportunities for EQIP to learn from
EAFRD’s focus on social inclusion, especially consid-
ering the propensity of women farmers to farm in sus-
tainable, conservation-oriented ways in line with AES
program goals (Paul and Fremstad 2016).

Neither program was successful at targeting
younger farmers, although only the EU includes addi-
tional benefits for young farmers in policy targets
(table 2). This supports the findings from an EU audit
that despite policy priorities, young farmer participa-
tion is declining due to poorly defined interventions
and unsatisfactory monitoring systems (ECA 2017).
Rented land did not remain in the EU model, and
our findings suggest a negative association between
tenancy and AES in the US. While Reimer et al
(2013) argued that EQIP funding may be preferred
over CRP in states with larger proportions of ren-
ted land, other studies indicated land ownership as
a positive predictor of EQIP participation at local
scales (Parker et al 2007, Nyaupane et al 2012, Zhong
et al 2016). Rented land is not an explicit target of
either AES program; however, previous studies have
evidenced lower uptake of sustainable practices by
tenant farmers, particularly in conventional systems
(Sklenicka et al 2015, Walmsley and Sklenǐcka 2017,
Ranjan et al 2019). Local EQIP initiatives and selec-
ted EAFRD measures could thus be tailored towards
tenants to increase widespread adoption of sustain-
able practices in conventional landscapes.
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Given EAFRD’s re-distributive goals, it is some-
what surprising that farm income was not signi-
ficantly associated with AES allocation in the EU,
although a negative association did exist. This could
be due to our focus on measures M4 (‘Investments
in physical assets’) and M10 (‘Agri-environment-
climate’), while excluding other EAFRD funds. Fur-
thermore, there are myriads of drivers which could
motivate farmer AES applications that we do not
capture here, including personal beliefs, previous
experiences and crop prices (McCracken et al 2015,
Pavlis et al 2016, Holland et al 2020). Without
detailed information on the applications received and
approved, we cannot isolate drivers of farmer adop-
tion from those of EQIP and EAFRD’s selection cri-
teria when interpreting socio-economic patterns of
AES allocation.

5.4. Influence of farming context on AES allocation
Contextual factors related to agricultural production
systems may also explain mismatches between AES
spending and environmental need, as previous stud-
ies have suggested that production system type and
structure are a larger driver of subsidy allocation than
environmental conditions (Reimer et al 2013, Reimer
and Prokopy 2014, Zasada et al 2018). Our find-
ings suggest that the potential for AES to remediate
environmental issues may be curtailed within policy
frameworks by limited participation from farmers
engaged in highly intensive and expansive operations.
This may be due to higher utilisation costs of cer-
tain conservation practices in intensive farming, or
a greater predisposition for these practices in lower
intensity areas (see Früh-Müller et al 2019). This was
evidenced by significant negative associations with
the proportion of agricultural land cover in the US
and EU, and with farm size in the US. In the US,
AES spending per area was strikingly lower in cent-
ral regions typically dominated by large farms, while
coastal areas had higher spending, despite being less
dominated by agriculture. Similarly, in the EU, pre-
dominantly agricultural regions such as central Ger-
many and France received lower payments per area.

Our results align with Zasada et al (2018), who
also found that smaller farms were more likely to
receive higher AES in the EU. However, previous
research on the influence of farm size on US con-
servation practice adoption reports contrasting res-
ults, with some finding larger farms more (Baradi
2009) and other less (McLean-Meyinsse et al 1994)
likely to adopt conservation practices. Others assert
that the influence of farm size varies depending on
the management practice and conservation program
in question (Soule et al 2000, Lambert et al 2007,
Reimer 2015). Future research should further explore
whether these farms are less likely to engage with
AES—particularly since they are drivers of sustain-
ability issues and experience environmental risks that
AES may help mitigate.

6. Conclusions

Our analysis is novel in its approach to compare
subsidy systems across continents using an interdis-
ciplinary, human-environment systems perspective.
The differences between US and EU AES systems
are well documented; however, by developing a con-
sistent framework to assess environmental need, we
have identified successes andmismatches in subsidies
allocation, and common challenges and opportunit-
ies for future policy development and research in both
the US and the EU. These findings can help inform
refinements to EQIP and EAFRD allocation mechan-
isms and identify opportunities for improved spatial
targeting of AES spending. Furthermore, we identify
several socio-economic factors associated with AES
allocation that bear further investigation, including
the relationship between production system and like-
lihood of applying for and receiving payments. Finer-
scale analyses could assess further indicators of par-
ticular interest for the US or the EU, which we did
not include for comparability—for example, demo-
graphic indicators to account for underserved pro-
ducers, including racial minorities and farmers with
income at or below the national poverty level in the
US, and traditional farmers in the EU. Moreover,
we did not account for environmental and socio-
economic climate change risks in this analysis, a crit-
ical area for the sector, and a strong opportunity
for future research. Finally, although we investig-
ate spatial targeting of subsidies, we did not analyse
the temporal impact of AES. Long-term mainten-
ance of conservation practices is critical to ameliorate
the negative externalities of agriculture. For example,
changes in soil carbon can take decades to mani-
fest. Additionally, historical AES payments may show
varying associations to environmental needs, due to
changes in policy frameworks and allocation formu-
las that have occurred in recent decades.

This research contributes to the growing
evidence-base surrounding spatial targeting of AES
programs, with implications for farmer engagement
and environmental quality. Identifying mismatches
in allocation is particularly relevant in light of recent
and upcoming reforms of both subsidy programs.
While EQIP is increasing its focus on addressing
soil health and climate resilience, biodiversity loss,
nutrient management, and water stress warrant fur-
ther attention. Similarly, as the CAP 2020 reform
recognises the need for fundamental approaches to
sustainable agricultural management, we identified
loss of biodiversity, P surplus, and water stress as
EAFRD sustainability goals that may need additional
targeting.
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Appendix A. Brief overview of funding
allocationmechanisms

A.1. EQIP
Allocation is administered by the USDA’s Natural
Resource Conservation Service (NRCS), distributed
from the federal government to each state first, and
then distributed within each state to its counties. For
the national allocation to states, NRCS determines
each state’s EQIP funds using a formula that reflects
national priorities and available natural resources,
including: the significance of environmental and
natural resource concerns and the opportunity for
environmental improvement, the ways the program
can best assist producers in complying with Fed-
eral, State, local, and Tribal environmental laws, and
the amount of agricultural land in different land
use categories. For state-level fund distribution, the
State Conservationist develops an allocation formula,
considering State and local level resource concerns,

science-based information on environmental status,
and relevant local programs and specialized farm-
ing operations (e.g. specialty crops, livestock, organic,
small-scale), among other factors (NRCS 2019). The
incentives provided include technical assistance and
cost-shares of up to 75% of implementation costs.

A.2. EAFRD
Funds are provided in the form of less favoured area
payments, agri-environment schemes, and invest-
ment support towards rural development in MS. The
framework for fund allocation is based on a two-
tier process: at the central stage (EU level), the over-
all framework is established, financial modalities are
outlined and eligibility criteria are defined. Addi-
tionally, the EU outlines a set of six priority areas,
including fostering knowledge transfer and innova-
tion; enhancing viability and competitiveness of agri-
culture; promoting food chain organization, animal
welfare and risk management; promoting resource
efficiency, and low-carbon and climate resilient agri-
culture; preserving and enhancing ecosystems; and
promoting social inclusion, poverty reduction, and
economic development in rural areas. The distri-
bution of the overall amount for rural develop-
ment between MS is based on objective criteria and
past performance. At the second level, MS develop
national strategic plans and set quantitative object-
ives for priority areas. At least four of these national
level priorities must address the EU level priorit-
ies. A minimum value of 30% of rural development
funds must be set aside for environmental manage-
ment measures, falling primarily within the measures
considered in this study: M4 ‘Investments in phys-
ical assets’, which receives the highest share of EAFRD
budget (24%), and M10 (‘Agri-Environment Cli-
mate’), which receives the third highest share (20%,
ENRD CP 2015). There are several AESs across dif-
ferent EUMS, and the allocationmechanisms for spe-
cific subsidies tend to vary depending on the focus of
the scheme (EC 2013).

Appendix B. Brief overview of the
conservation reserve program

Administered by the USDA’s Farm Service Agency
(FSA), the CRP is a land retirement program. In
exchange for a yearly rental payment for 10–15 years,
farmers enrolled in the program agree to remove
environmentally sensitive land from agricultural pro-
duction and plant species that will improve envir-
onmental health and quality (Hellerstein 2017). The
long-term goal of the program is to re-establish valu-
able land cover to help improve water quality, prevent
soil erosion, and reduce loss of wildlife habitat. The
main mechanism of farmer enrolment in this pro-
gram is through a competitive process known as CRP
General Sign-up.During a bidding period, any farmer
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with highly erodible or environmentally sensitive cro-
pland can apply for the program by indicating the
parcels they wish to enrol and the annual payments
they require together with the contract length. FSA
then determines allocation based on national rank-
ings of an Environmental Benefits Index (EBI) score
and based on an overall budget that varies year by
year. All parcels with an EBI score above the critical
national cutoff are accepted while all parcels with an
EBI score below the cutoff are rejected (Hellerstein
2017). Because CRP is largely a land retirement pro-
gram, and because of its distinctly bottom-up fund-
ing allocation mechanism and decision-making pro-
cess, this program is fundamentally different from the
focus of our study—conservation practices used on
working farmland supported by EQIP and EAFRD
with largely top-down allocation strategies.

Appendix C. Manure nitrogen runoff
vulnerability index

For each county, the index was calculated following
Kellogg (2000):

Vulnerability=N in manure

× runoff

national average runoff

× crop area+ pasture area

total area
.

Surface runoff is a measure of the potential for
water soluble nutrients to run off fields during pre-
cipitations and flooding. Thus, the index estimates
themaximumpotential for livestockmanure nitrogen
to move from farms to the water supply. We estim-
ated the amount of nitrogen excreted by each livestock
type following the nitrate vulnerable zones guidance
(DEFRA 2013, 2019).

Livestock type
Total N produced by 1

livestock unit (kg N year−1)

Adult bovine 101
Adult swine 88
Sheep 7.6
Goat 15
Poultry 231
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Figure D2.Maps of the predictors used in this study for 23 EU member states and the UK.
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Appendix F. Distribution of correlation coefficients with spending

Figure F3. Violin plots of Pearson correlation coefficients between (A) EQIP spending per hectare of agricultural area in the US
and (B) EAFRD spending for selected measures per hectare of agricultural area in the EU and the indicator variables. Only
correlation coefficients for states and MS with≥4 regions are shown.
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Table G2. Estimate model results for individual-state analysis in the US for the five states with the greatest and least absolute distance
from the average Pearson’s correlation coefficient summed across all model variables. ∗P< 0.05: ∗∗P< 0.01: ∗∗∗P< 0.001.

State Variable Estimate SE t-value Sig.

Greatest distance
New Mexico (n= 29) R2 = 0.85 Intercept 5.71 2.20 2.59 ∗

Local biodiversity −6.68 1.34 −5.00 ∗∗∗

Soil organic carbon 9.63 2.43 3.96 ∗∗∗

GHG emissions 0.90 0.98 0.92 ns
Water stress 0.97 0.65 1.49 ns
Prop. female farmers −0.03 0.13 −0.21 ns
Prop. renting farmers 0.43 0.16 2.69 ∗

Farm size 0.10 0.10 0.94 ns
GDP per capita −0.19 0.12 −1.58 ns
Prop. agricultural land −0.55 0.19 −2.91 ∗∗

Montana (n= 52) R2 = 0.56 Intercept −1.09 0.99 −1.10 ns
Local biodiversity −0.58 0.89 −0.65 ns
Soil organic carbon 1.02 0.97 1.05 ns
GHG emissions −2.85 0.98 −2.90 ∗∗

Water stress −0.49 0.49 −1.00 ns
Prop. female farmers 0.16 0.22 0.74 ns
Prop. renting farmers 0.62 0.22 2.78 ∗∗

Farm size −0.15 0.09 −1.77 ns
GDP per capita −0.12 0.14 −0.85 ns
Prop. agricultural land 0.47 0.30 1.60 ns

Nebraska (n= 92) R2 = 0.17 Intercept 2.12 0.70 3.01 ∗∗

Local biodiversity −0.89 0.80 −1.11 ns
Soil organic carbon 0.20 0.67 0.30 ns
GHG emissions 0.22 0.16 1.42 ns
Water stress −0.60 0.36 −1.65 ns
Prop. female farmers −0.15 0.28 −0.54 ns
Prop. renting farmers 0.05 0.39 0.13 ns
Farm size −0.02 0.24 −0.10 ns
GDP per capita 0.30 0.22 1.36 ns
Prop. agricultural land −0.35 0.53 −0.65 ns

Oregon (n= 33) R2 = 0.49 Intercept 1.85 3.86 0.48 ns
Local biodiversity −7.09 4.39 −1.61 ns
Soil organic carbon −1.65 2.78 −0.59 ns
GHG emissions 7.26 4.37 1.66 ns
Water stress −14.68 5.71 −2.57 ∗

Prop. female farmers −0.90 1.28 −0.71 ns
Prop. renting farmers 0.61 0.94 0.65 ns
Farm size −1.36 1.01 −1.34 ns
GDP per capita 0.50 0.36 1.38 ns
Prop. agricultural land −0.14 1.34 −0.10 ns

Wyoming (n= 21) R2 = 0.61 Intercept −4.99 3.17 −1.57 ns
Local biodiversity −2.44 3.94 −0.62 ns
Soil organic carbon 6.59 5.23 1.26 ns
GHG emissions 3.69 3.69 1.00 ns
Water stress −3.31 1.42 −2.33 ∗

Prop. female farmers −0.61 0.50 −1.20 ns
Prop. renting farmers −1.04 0.41 −2.53 ∗

Farm size −0.28 0.16 −1.73 ns
GDP per capita 0.03 0.20 0.14 ns
Prop. agricultural land −0.95 0.73 −1.31 ns

(Continued.)
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Table G2. (Continued.)

State Variable Estimate SE t-value Sig.

Least distance
Arkansas (n= 75) R2 = 0.14 Intercept 0.85 4.68 0.18 ns

Local biodiversity −1.06 3.80 −0.28 ns
Soil organic carbon 2.22 7.50 0.30 ns
GHG emissions 2.64 1.24 2.12 ∗

Water stress −3.17 4.27 −0.74 ns
Prop. female farmers −1.61 1.93 −0.83 ns
Prop. renting farmers −1.35 1.74 −0.78 ns
Farm size −4.13 5.25 −0.79 ns
GDP per capita −1.02 1.28 −0.80 ns
Prop. Agricultural land −2.22 4.62 −0.48 ns

Idaho (n= 40) R2 = 0.14 Intercept 4.54 1.72 2.65 ∗

Local biodiversity −5.68 4.44 −1.28 ns
Soil organic carbon 0.36 1.94 0.19 ns
GHG emissions −0.32 0.76 −0.41 ns
Water stress −4.43 4.50 −0.98 ns
Prop. female farmers −0.76 1.02 −0.74 ns
Prop. renting farmers −0.13 0.78 −0.17 ns
Farm size −0.02 1.82 −0.01 ns
GDP per capita −1.41 1.03 −1.38 ns
Prop. Agricultural land −1.85 1.68 −1.10 ns

North Carolina (n= 92) R2 = 0.13 Intercept −0.10 3.94 −0.03 ns
Local biodiversity 1.51 3.27 0.46 ns
Soil organic carbon 0.55 1.06 0.52 ns
GHG emissions 1.88 0.62 3.03 ∗∗

Water stress −1.35 3.09 −0.44 ns
Prop. female farmers 0.43 0.89 0.48 ns
Prop. renting farmers 0.91 1.01 0.90 ns
Farm size −11.20 6.38 −1.76 ns
GDP per capita −2.21 0.97 −2.27 ∗

Prop. Agricultural land −2.67 3.35 −0.80 ns
Oklahoma (n= 77) R2 = 0.20 Intercept 1.43 0.51 2.80 ∗∗

Local biodiversity −1.92 0.66 −2.90 ∗∗

Soil organic carbon 2.11 0.80 2.64 ∗

GHG emissions 0.66 0.39 1.67 ns
Water stress −0.65 0.40 −1.63 ns
Prop. female farmers −0.24 0.34 −0.70 ns
Prop. renting farmers 0.50 0.32 1.57 ns
Farm size 0.18 0.71 0.26 ns
GDP per capita −0.23 0.19 −1.21 ns
Prop. Agricultural land −0.14 0.40 −0.34 ns

Tennessee (n= 93) R2 = 0.15 Intercept 2.13 1.73 1.23 ns
Local biodiversity −1.61 1.54 −1.05 ns
Soil organic carbon 2.67 2.29 1.17 ns
GHG emissions 1.98 1.20 1.65 ns
Water stress −0.94 1.95 −0.48 ns
Prop. female farmers −1.70 0.97 −1.75 ns
Prop. renting farmers −1.28 0.96 −1.33 ns
Farm size 3.03 4.00 0.76 ns
GDP per capita −0.14 0.64 −0.22 ns
Prop. Agricultural land −1.42 1.70 −0.84 ns
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Table G3. Estimate model results for individual-State analysis in the EU for the member states with more than 15 NUTS2. ∗P< 0.05:
∗∗P< 0.01:∗∗∗P< 0.001.

Member state Variable Estimate SE t-value Sig.

United Kingdom (n= 31) R2 = 0.81 Intercept 74.24 31.63 2.35 ∗

Phosphorous balance −28.18 20.96 −1.35 ns
Nitrogen balance −16.87 16.11 −1.05 ns
Soil erosion 8.34 12.29 0.68 ns
Soil organic carbon 14.37 9.81 1.47 ns
GHG emissions 40.39 19.42 2.08 ns
Prop. of female farmers −8.64 17.63 −0.49 ns
Prop. of young farmers −20.85 19.21 −1.09 ns
Farm income −5.24 13.75 −0.38 ns
GDP per capita −0.09 9.46 −0.01 ns
Prop. agricultural land −53.20 9.58 −5.55 ∗∗∗

France (n= 21) R2 = 0.74 Intercept 6.94 2.67 2.60 ∗

Phosphorous balance 4.30 2.24 1.92 ns
Nitrogen balance −1.30 1.40 −0.93 ns
Soil erosion −0.23 1.86 −0.13 ns
Soil organic carbon 0.19 2.08 0.09 ns
GHG emissions −0.64 2.60 −0.25 ns
Prop. of female farmers −1.90 1.82 −1.05 ns
Prop. of young farmers 0.07 2.00 0.04 ns
Farm income 13.55 4.29 3.16 ∗

GDP per capita −1.66 1.32 −1.26 ns
Prop. agricultural land 3.60 2.47 1.46 ns

Italy (n= 19) R2 = 0.64 Intercept 87.53 101.06 0.87 ns
Phosphorous balance −107.21 87.54 −1.23 ns
Nitrogen balance 84.46 83.71 1.01 ns
Soil erosion −0.03 10.13 0.00 ns
Soil organic carbon 87.56 105.45 0.83 ns
GHG emissions 46.50 36.99 1.26 ns
Prop. of female farmers 46.12 36.30 1.27 ns
Prop. of young farmers 52.18 28.67 1.82 ns
Farm income 28.36 185.64 0.15 ns
GDP per capita −6.06 30.49 −0.20 ns
Prop. agricultural land 23.33 36.64 0.64 ns

Germany (n= 34) R2 = 0.42 Intercept 23.97 15.05 1.59 ns
Phosphorous balance 6.33 5.57 1.14 ns
Nitrogen balance −5.21 5.60 −0.93 ns
Soil erosion 14.96 17.92 0.84 ns
Soil organic carbon 4.41 6.45 0.68 ns
GHG emissions −1.04 8.21 −0.13 ns
Prop. of female farmers −4.16 12.00 −0.35 ns
Prop. of young farmers −2.60 5.91 −0.44 ns
Farm income 7.60 6.46 1.18 ns
GDP per capita −5.98 4.64 −1.29 ns
Prop. agricultural land 6.79 9.54 0.71 ns
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Appendix H. Spatial models

We used Moran’s I statistic to determine the rela-
tionship between the US and EU model residuals
and their surrounding values. We tested this with
a Monte-Carlo simulation with 1000 permutations
using moran.mc in the spdep R package. This com-
pares the observed value ofMoran’s I with a simulated
distribution to assess the likelihood that the observed
values could be observed at random. We tested sev-
eral spatial models on our data, and present the spa-
tial error models obtained with errorsarlm from the
spatialreg package in R.

The US model had a Moran’s I of 0.16 indicat-
ing that there was some spatial autocorrelation in the

residuals. There was a correlation of each county and
the adjacent counties of 0.31, and the random inter-
cepts for each state revealed a pattern of coastal states
having positive random intercepts. Figure H5 shows
the residuals of the model, and figure H6 the random
intercepts. Table H4 and figure H7 present the spatial
error model.

The EU model also had a Moran’s I of 0.15.
The random intercepts did not show a clear geo-
graphic pattern, however, there was a correlation
of each NUTS2 region and the adjacent regions of
0.26. Figure H8 shows the residuals at NUTS2 level,
figure H9 the random intercept for each country, and
table H5 the spatial error model output shown in
figure H10.
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Table H4. Spatial error model for the US. ∗P< 0.05;∗∗P< 0.01; ∗∗∗P< 0.001.

Variable Estimate SE z-value Sig.

Intercept 1.123 0.14 7.993 ∗∗∗

Local biodiversity −0.097 0.05 −2.004 ∗

Soil organic carbon 0.164 0.04 4.423 ∗∗∗

GHG emissions 0.253 0.03 9.636 ∗∗∗

Water stress −0.107 0.05 −2.344 ∗

Prop. female farmers −0.069 0.02 −2.928 ∗∗

Renting farmers −0.068 0.02 −2.878 ∗∗

Farm size −0.111 0.03 −4.367 ∗∗∗

GDP per capita −0.06 0.02 −3.678 ∗∗∗

Prop. agricultural
land

−0.318 0.04 −7.906 ∗∗∗

Table H5. Spatial error model for the EU. ∗P< 0.05;∗∗P< 0.01; ∗∗∗P< 0.001.

Variable Estimate SE z-value Sig.

Intercept 2.751 0.339 8.113 ∗∗∗

Nitrogen balance 0.166 0.081 2.062 ∗

Phosphorous balance −0.173 0.084 −2.051 ∗

Soil erosion −0.142 0.062 −2.302 ∗

Soil organic carbon 0.197 0.082 2.401 ∗

GHG emissions 0.313 0.077 4.046 ∗∗∗

Prop. of female
farmers

0.258 0.084 3.056 ∗∗

Prop. of young
farmers

0.001 0.104 0.007 ns

Farm income −0.127 0.048 −2.631 ∗∗

GDP per capita −0.097 0.061 −1.592 ns
Prop. agricultural
land

−0.487 0.089 −5.449 ∗∗∗
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Figure H8. Residuals of the EU model by NUTS2.
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Figure H9. Random intercepts of the EU model by member State.
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Figure H10. Residuals of the EU spatial error model by NUTS2.
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