
     

PAPER • OPEN ACCESS

A long-term intelligent operation and management
model of cascade hydropower stations based on
chance constrained programming under multi-
market coupling
To cite this article: Jia Lu et al 2021 Environ. Res. Lett. 16 055034

 

View the article online for updates and enhancements.

You may also like
Coordinated operation method of cascade
hydropower stations considering runoff
error
Miao You and Kongfei Hu

-

A Load-Based Method for Peak
Operations of Cascaded Hydropower
Stations
Sen Wang, Jianjian Shen and Shanzong
Li

-

Research on the Influence of Ecological
Flow on Cascade Short-term Power
Generation Operation in the Baishui River
Basin
Jia Zhou, Chusheng Liang and Xiangming
Tao

-

This content was downloaded from IP address 3.135.183.187 on 24/04/2024 at 12:39

https://doi.org/10.1088/1748-9326/abef90
https://iopscience.iop.org/article/10.1088/1742-6596/2195/1/012016
https://iopscience.iop.org/article/10.1088/1742-6596/2195/1/012016
https://iopscience.iop.org/article/10.1088/1742-6596/2195/1/012016
https://iopscience.iop.org/article/10.1088/1755-1315/690/1/012013
https://iopscience.iop.org/article/10.1088/1755-1315/690/1/012013
https://iopscience.iop.org/article/10.1088/1755-1315/690/1/012013
https://iopscience.iop.org/article/10.1088/1742-6596/2399/1/012029
https://iopscience.iop.org/article/10.1088/1742-6596/2399/1/012029
https://iopscience.iop.org/article/10.1088/1742-6596/2399/1/012029
https://iopscience.iop.org/article/10.1088/1742-6596/2399/1/012029
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjstGTVyyKW4ox4cD__-os2yPFuFAhzPH5qrek6zqNjq1TAUlg1BjGiZGTO78250m7iHj8vtLliZ5Ykfph0ubvD51LJJe7zCX6KbkZJMX1Z3cPOLtI3cCVAmgd-UnZZsyl3EayaIE6ArZfANdfE1UbPvbeHRKBiw9CSYoBvqyMcrehTRzsSTNDpE4PEG2MAUmVkz_337BSHHT_sCsMyOiiTKoFnJNvGB6UuabvtOkF8HIEQZV2MIFiiQ5-f75vgF84Xwg5NUvXMPO8-ZJggy5Gw3sFC8TQ7J3BXDTVO80g5T0o2-Aphu4q4_ZzhFgB73sSJI1tnEMrmlHCUTiAAw4lJY&sig=Cg0ArKJSzNNJsWFWtIde&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://www.owlstonemedical.com/breath-biopsy-complete-guide/%3Futm_source%3Djbr%26utm_medium%3Dad-b%26utm_campaign%3Dbb-guide-bb-guide%26utm_term%3Djbr


Environ. Res. Lett. 16 (2021) 055034 https://doi.org/10.1088/1748-9326/abef90

OPEN ACCESS

RECEIVED

28 October 2020

REVISED

2 March 2021

ACCEPTED FOR PUBLICATION

17 March 2021

PUBLISHED

14 May 2021

Original content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

LETTER

A long-term intelligent operation and management model of
cascade hydropower stations based on chance constrained
programming under multi-market coupling
Jia Lu∗

, Gang Li∗, Chuntian Cheng and Benxi Liu
Institute of Hydropower System and Hydroinformatics, Dalian University of Technology (DUT), Dalian No. 2 Linggong Road, Ganjingzi
District, Dalian City, Liaoning Province 116024, People’s Republic of China
∗ Authors to whom any correspondence should be addressed.

E-mail: glee@dlut.edu.cn

Keywords: cascade hydropower stations, multimarket, Copula-SARIMA, chance-constrained programming

Abstract
Under the medium- and long-term electric markets, cascaded hydropower stations face a series of
practical challenges due to the uncertainty of inflow and market price. For long-term dispatch
scheduling, the allocation of power generation in multimarkets is critical, including clean energy
priority consumption market, inter provincial market and intra provincial market in order to
maximize the operator’s expected revenue and reduce the market operation risks. Based on the
hydro-dominant electricity market structure and settlement rules, we propose a long-term optimal
operation method for cascade hydropower stations considering the uncertainty of multiple
variables. First, a seasonal autoregressive integrated moving average model is used to handle the
time-varying and seasonal characteristics of inflow series by using a copula connect function to fit
the joint distribution of the monthly inflow, the clearing price of the intra provincial market and
the delivery volume of the inter provincial market. Then, uncertain chance-constrained
programming is established. Finally, a developed particle swarm optimization algorithm embedded
in a Monte Carlo simulation is solved for hydropower operation policies, and the maximum
revenue, resource allocation and scheduling strategy are obtained under the corresponding risk
tolerance. Taking the actual data of cascaded hydropower stations in Yunnan Province, China, as an
example, a simulation analysis is carried out. The results show that the proposed method can
reasonably describe the uncertainty and correlation between the variables, realizing the optimal
allocation of resources among multimarkets, and provide references for the long-term optimal
operation of cascade hydropower stations in a multimarket environment. The results also show
that the decision strategies should be determined considering the decision-maker’s risk preference.

1. Introduction

Long-term optimal operations of cascaded hydro-
power stations, using a monthly scheduling period
throughout one year, play a key role in the water
level control of reservoir operation, energy transfer
between thewet season anddry season, compensation
for other power sources, etc (Allen and Bridgeman
1986, Barros et al 2003, Labadie 2004, Li et al 2010,
Gu et al 2017), especially in hydro-dominated areas.
With a new round of electricity marketization reform
in China, however, the traditional operation meth-
ods of cascade hydropower plants have been greatly

impacted. Under the medium- and long-term electri-
citymarkets, themonthly generating capacity inmul-
tiple markets needs to be reasonably allocated (Cheng
et al 2018, Liu et al 2019). This includes the clean
energy priority consumptionmarket, inter provincial
market and intra provincial market, according to the
influence of themarket clearing price and transaction
settlement rules, to maximize the revenue and reduce
marketization risk.

When participating in the above markets, cascade
hydropower stations need to formulate a long-term
operation plan including a monthly operation sched-
ule and trading capacity. Within this framework,
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the coupling effect of the monthly trading capacity
(generation capacity) and settlement rules should be
considered, and reasonable allocation of electricity
resources should be based on the settlement prior-
ity of each market. If the method of power alloca-
tion is unreasonable, this may lead to the failure of
part of the contract, which will lead to the loss of
a hydropower station’s interests. On the other hand,
there are several uncertainties in hydrological (reser-
voir inflow, water quality, etc) and market (clear-
ing price, volume, etc) factors in operation planning
and management. For example, the inflow distribu-
tion is uneven and random in the year. Hydropower
stations need to reallocate them in time and space
through long-term dispatching to achieve the goal of
efficient utilization. Meanwhile, in order to obtain
a greater benefit of electricity sales, hydropower sta-
tions need to adjust the operation scheme to track
changes in the clearing price, and the uncertainty
of price and inflow may lead to the failure of the
contract.

The following sections present a thorough review
of literature on relevant issues including different
sources of uncertainty and their dependencies,
decision-makers’ risk preferences and optimization
approaches, particularly with regard to chance-
constrained programming (CCP). Regarding uncer-
tainty in hydrological factors, many works choose
the reservoir inflow as the primary and only source
of uncertainty (Oliveira et al n.d., Ventosa et al n.d.,
Barforoushi et al 2006, Hansen 2010). Regarding the
market sources of uncertainties, a review of the lit-
erature reveals the importance of the clearing price
(Conejo et al 2003, Kang et al 2005, Zareipour et al
2010, Nojavan et al 2015) and volume uncertainty
(Gianfreda 2010, Gianfreda et al 2010). Some studies
believe there is a correlation between the two kinds of
uncertainties (Faria and Fleten 2011, Saadaoui 2013,
Saâdaoui and Mrad 2017).

In addition to the aforementioned sources of
uncertainty, the risk attitude at different levels
of decision-makers plays a key role in reservoir
operation. This has been analysed in different
applications including optimal reservoir operation
(García-González et al 2007, Bourry et al 2009,
Moghaddam et al 2013, Liu et al 2015). Regarding
the application of systems analysis and optimiza-
tion techniques, a review of the literature reveals that
both hydrological and market sources of uncertainty
have been examined by similar uncertainty-based
optimization models and solution approaches. In
this line, stochastic linear programming (Grygier and
Stedinger 1985), stochastic nonlinear programming
(Shrestha et al 2005), stochastic dynamic program-
ming (Thanos andYeh 2010) andCCP (Liu et al 2018)
are some of the approaches suitable for tackling large-
scale optimal reservoir operation problems. Account-
ing for the interdependency of random paramet-
ers, copula-based CCP has recently been used in the

subject areas of waste management (Chen et al 2016)
and power systems optimization (Chen et al 2017).

In this study, we propose a cascade hydropower
station optimization model for optimal design and
long-term operation considering multiple interde-
pendent sources of uncertainty under multimarket
coupling. Based on the presented review of the lit-
erature on the uncertain factors and their origins in
these systems, the uncertainty sources considered are
in the processes of reservoir inflow, clearing price of
the intra provincialmarket and delivery volume of the
inter provincial market. The seasonal autoregressive
integratedmoving average (SARIMA)model is adop-
ted to consider the time-varying and seasonal char-
acteristics of inflow series to ensure that the simu-
lation results are more reasonable. The objective is
to obtain the maximum revenue, resource allocation
and scheduling strategy under the corresponding risk
tolerance. In addition to ordinary constraints includ-
ing characterizing the dynamics and the physical pro-
cesses taking place in the system such as water balance
equations over time and space, the model includes
probabilistic constraints on meeting the maximum
output requirement. Themodel is therefore a chance-
constrained program in which the dependence struc-
ture of the mentioned random factors is considered
using copula functions and covariances to consider
dependencies in various random variables. The com-
plex deterministic equivalent of the program, which
is highly nonlinear and nonconvex, is solved by the
particle swarm optimization (PSO) algorithm of a
nested Monte Carlo simulation. The model frame-
work is shown in figure 1.

Taking a cascade hydropower station in Southwest
China as an example, it is verified that the proposed
method can reasonably describe the uncertainty and
correlation between the inflow, price of the intra pro-
vincial market and volume of inter provincial mar-
ket. At the same time, it achieves optimal allocation of
the resources among multiple markets and can better
coordinate the relationship between profit and risk,
to provide a reference for the long-term operation of
cascade hydropower stations in a multicoupling mar-
ket environment.

2. Correlation analysis andmodelling of
multivariate variables

The reservoir inflow, market clearing price and deliv-
ery volume of the inter provincial market are all time
series, which have a series of typical characteristics
such as time-varying volatility and volatility aggrega-
tion. These cannot be handled by ordinary simulation
methods. Meanwhile, the mentioned random factors
are interdependent, and their correlations need to
be considered before the simulation. The SARIMA
model (Guin 2006) has the advantages of consider-
ing the series autocorrelation, trend and seasonality
at the same time. The copula function (Li 1999) can
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Figure 1.Model framework.

measure the dependence mechanism between vari-
ables which contains almost all the information of
random variables. Therefore, combining the SAR-
IMA model with a copula function can reasonably
describe the dependence between multivariate time
series without losing important details.

In summary, this article uses the SARIMA model
to describe the marginal distribution of the time
series, and then connects the series after a prob-
ability integral transformation using a copula func-
tion to describe the correlation structure between the
multivariate variables. Different time series have dif-
ferent conditional marginal distributions. The res-
ulting conditional marginal distribution functions
can be connected by a copula function, which can
completely describe the interdependence between
the series. The Copula-SARIMA model has different
marginal distributions, which is better than the tra-
ditional linear model, so it can effectively analyse the
nonlinear relationship between multiple variables.

2.1. Establishing SARIMAmodel of inflow
2.1.1. Basic test of sample
To ensure that the fitting results are correct and reas-
onable when modelling the volatility of the time
series, a series of tests need to be performed on the
samples. The specific steps are as follows:

(a) Normality test. If the time series does not obey
the normal distribution, it is possible to use the
SARIMA model to fit it. Therefore, using the

skewness and kurtosis joint testmethod (Jarque–
Bera) to test whether the series obeys a normal
distribution, the expression of the JB statistic is
as follows:

JB=
Ts

6

[
S2 +

1

4
(K− 2)2

]
(1)

where Ts represents the sample size, S represents the
skewness coefficient, and K represents the kurtosis
coefficient. If the sample follows a normal distribu-
tion, then the JB statistic approximately follows a chi-
square distribution with 2 degrees of freedom.

(b) Stationarity test. Stationarity means that the
unconditional expectation of the random vari-
able yt is constant, the variance is constant, and
the covariance does not change over time. The
specific expression is as follows:

E |yt|= a,Var |yt|= σ2,
Cov(yt − yt−i) = σi.

(2)

In an autoregressive process, yt = byt−1 + α+ εt.
If the lag coefficient b is 1, it is called the unit root.
When the unit root exists, the relationship between
the independent variable and the dependent vari-
able is deceptive because any error in the residual
series will not decay as the sample size increases,
which means that the influence of the residual in
the model is permanent. Use the ADF (Augmented
Dickey-Fuller test) unit root to test the stationarity of
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the time series. If the result of the ADF unit root test b
does not equal 1, then reject the null hypothesis that
the series has unit roots. If the sample has stationar-
ity, then the series is stationary if there is no unit root,
and vice versa.

(c) Autocorrelation test. Draw the autocorrelation
graph and partial autocorrelation graph of the
sample. If the test data does not all fall within the
acceptance area, then it gradually converges to
the acceptance area, indicating that there is a tail
in the series data. Then, the series has an auto-
correlation and partial correlation.

(d) White noise inspection. If a series is stationary,
then it is necessary to judge whether the data
are white noise. Use Ljung–Box statistics to test
whether the series is a pure random series; if not,
then the series is not white noise.

2.1.2. Identification and fitting of SARIMA model
parameters
(a) Estimation of SARIMA model. SARIMA(p, d, q)

(P, D, Q)S is a widely used method of time-series
analysis and simulation that adds seasonal and
periodic analysis to the original ARIMA model.
p is the order of nonseasonal autoregression, d is
the order of nonseasonal difference, q is the order
of nonseasonal moving average, P is the order
of seasonal autoregression, D is the order of sea-
sonal difference, Q is the order of seasonal mov-
ing average and S is the order of seasonal period.
The structure is as follows:

Yt =
Θ(B)ΘS(B)

Φ(B)ΦS(B)∇d∇D
S

εt (3)

where Yt represents the time series to be fit-
ted, εt is the residual of the fitted model,
Θ(B) = 1 − θ1B−…−θqBq is the moving average
coefficient polynomial,ΘS(B)= 1−θ1BS−…−θqBQS

is the seasonal moving average coefficient polyno-
mial,Φ(B)= 1−φ1B−…−φpBp is the autoregressive
coefficient polynomial,ΦS(B)= 1−φ1BS−…−φpBPS

is the seasonal autoregressive coefficient polynomial,
and∇d and∇D

S are nonseasonal and seasonal differ-
ence items, respectively. The seasonal difference of
the time series is eliminated by the method of series
difference and seasonal difference.

The values of p, d, q, P, D and Q were preliminar-
ily determined by the auto correlation function (ACF)
and partial autocorrelation function (PACF). Accord-
ing to the literature, the values of P and Q should
not exceed the second order. Therefore, the Akaike
information criterion (AIC) values of different mod-
els are calculated by fitting the models one by one in
the range of 0–2.

(b) Fitting of SARIMA model. The AIC values
obtained from the above steps are optimized.

The lower the AIC, the better the model fitting
effect. After the values of p, d, q, P, D and Q
are determined, the maximum likelihood estim-
ation (MLE) is used to estimate the parameters
of the model to obtain the marginal distribution
function of time-series variables, and then the
nonlinear correlation structure between the vari-
ables is connected by a copula function.

2.2. Copula function of variable selection
2.2.1. Marginal distribution transformation
Probability integral transformation assumes that the
cumulative distribution function of variable x is F(x),
F(x) is continuous, u= F(x), and nomatter what dis-
tribution x obeys, u obeys [0, 1] in a uniformly dis-
tributed fashion. Since the copula function requires
the independent variables of the marginal function to
obey the uniform distribution of [0, 1], the sample
series {u1, u2, u3} of each variable is fitted through
the above SARIMA model as the marginal distribu-
tion of the copula function, and then {ux, uy, uz}
perform a probability integral conversion to obtain
a uniform distribution series {u1′, u2′, u3′} obeying
[0, 1]. Finally, a suitable copula function is chosen to
connect.

2.2.2. Copula function selection
Since the samples fitted in this paper are ternary vari-
ables, t-copula and Gaussian-copula can be used for
fitting. In this paper, t-copula function is selected to
establish the joint distribution of variables. As the fol-
low reasons: (a) t-copula function belongs to elliptic
distribution family, which is easy to be extended to
high dimension, and it can describe the correlation
between variables; (b) the runoff of cascade reservoirs
involves small probability floods such as 1000 year
return period or 100 year return period, t-copula can
describe the correlation of extremum. T-copula can
describe a large range of upper tail correlation char-
acteristics, which is suitable for extreme value ana-
lysis (Nikoloulopoulos et al 2009). The case study
shows that t-copula is superior to Gaussian copula
in the description of extremum correlation (Zong-
Run et al 2010). The distribution function C(·,·,...,·)
and its density function c(·,·,...,·) of the multivariate
t-copula model is

C(u1,u2,u3) = Tρ,v(T
−1
v (u1),T

−1
v (u2),T

−1
v (u3))

=

ˆ ˆ ˆ
Γ
(
v+N
2

)
|ρ|−

1
2

Γ
(
v
2

)
(vπ)

N
2

×
(
1+

1

v
x ′p−1x

)
dx1dx2dx3

(4)

c(u1,u2,u3)

= |ρ|−
1
2
Γ( v+N

2 )Γ( v
2 )

N−1

Γ( v+1
2 )

N

(1+ 1
v ζ

′ρ−1ζ)
− v+N

2

n=1∏
N

(1+
ζ2n
2 )

− v+1
2

(5)
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where ρ is a symmetric positive definite matrix with
a diagonal element of 1, |ρ| is the determinant value
corresponding to the matrix and Tp,v(u1, u2, u3) is the
correlation coefficient matrix with ρ and the degree-
of-freedom v multivariate standard t distribution.
Tv

−1 (·) is the inverse function of the univariate t
distribution function Tv(·) with degree of freedom v,
x = (x1, x2, x3)′, ξ = (ξ1, ξ2, ξ3)′, ξn= Tv

−1 (un) and
n= 1,2,3.

According to the marginal distribution paramet-
ers of variables, the parameter values of the t-copula
function are calculated, and then the distribution
function of the t-copula function can be obtained by
formulas (4) and (5). Finally, a Kendall rank correla-
tion coefficient and Spearman correlation coefficient
are calculated by t-copula random number points
with the same sample number and comparedwith the
statistics of the sample number. The advantages and
disadvantages of fitting are tested in turn.

2.2.3. Generation method of simulation data
Similar to the simulationmethod of the binary copula
function, the multivariate copula function simula-
tion can generate a randomnumber series (u1, …, un)
that obeys the specified n-valued copula function
C (·,·,...,·) through the conditional distribution of
random variables. In fact, we need to simulate the
interdependent three-dimensional random variables,
we can only simulate the three components one-to-
one, and the split pair of variables constitute inter-
dependent two-dimensional random variables. The
reason why it can be carried out in this way is that
the ternary joint distribution can be obtained accord-
ing to the binary conditional distribution and copula
function. The specific steps are:

F(x1,x2,x3) = C(u1,u2,u3)

=

−∞ˆ

x3

C(F(x1 |x3),F(x2|x3))dF(x3)

=

−∞ˆ

u3

C(C(u1 |u3),C(u2|u3))du3 (6)

where C is copula function; F(x1|x3) and F(x2|x3) are
conditional probability distribution functions of vari-
ables X1 and X2 given X3.

Because the market development time of this
paper is short, and the number of electricity price
and electricity quantity in the sample is too small,
only SARIMA fitting is carried out for the marginal
distribution of runoff series (the runoff sample is
from 1953 to 2019), and the kernel density estima-
tion method is used to fit the marginal distribution
of other variables.

(a) According to F(x1, x2, x3) = C(u1, u2, u3)
which obtained from the direct statistics

of data, the binary conditional Copula
functions C(u1|u3) = ∂C(u1, u3)/∂u3 and
C(u2|u3)= ∂C(u2, u3)/∂u3 are calculated;

(b) A random sequence (v1, v2, v3) is generated,
which contains three variables that obey [0, 1]
independent distribution, and then a random
sequence that obeys the specified 3-element
t-copula function Tp,v is generated.

(c) According to SARIMA model, m groups of run-
off series are generated, and the corresponding
u3 is solved according to x= F−1(u);

(d) According to the binary conditional copula func-
tion obtained in step 1, and Nelson theorem, the
corresponding variables are obtained through
the inverse functions of C(u1|u3) and C(u2|u3),
that is, the random sequence that obeys the dis-
tribution of three variable t-copula function is
obtained.

(e) According to the distribution function F(xn) of
each variable, the variable value corresponding
to un is calculated.

3. Long-term optimizationmodel based
on CCP inmultimarket

It is assumed that the cascade hydropower stations
belong to the same stakeholder and that each station
is a price taker. Tomake the model closer to the actual
project, refer to the actual dispatch mode and intro-
duce a dynamic assessment of the delivery default in
the model. That is, dynamically adjust the assessment
electricity price according to the proportion of the
default power energy. Considering that the cost of
cascade hydropower generation is mainly composed
of fixed costs, it does not affect model optimization,
which is ignored in this paper. Take the year as the
dispatch cycle and one month as a period.

3.1. Objective function
The income of cascade hydropower stations mainly
comes from clean energy priority consumption mar-
ket, interprovincial market, intra provincial market
and Penalty lossmodel for breach of contract. Among
them, the priority of clean energy priority consump-
tion market settlement is the highest and the price is
set to a fixed value according to the flood and dry sea-
sons. The second is the inter provincial market mar-
ket, according to the statistical data of market oper-
ation, the volume of this market can be considered
that the price in a year is a fixed value. Finally, the
intra provincial market, the price is cleared accord-
ing to the bidding price. According to the settlement
rules, because of the uncertainty of inflow and intra
provincialmarket clearing price, the allocated volume
in the inter provincial market of the tap power sta-
tion may not be completed. Therefore, the loss of
default should be considered in the calculation of rev-
enue. That the mathematical model of the long-term
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Figure 2. Sample display and correlation analysis chart.

optimal operation of cascade hydropower stations
based on chance constraints under multiple market
coupling is as follows:

maxR

R=max
T∑

t=1

N∑
i=1

J∑
j=1

(rj.i,t)
(7)

r1,i,t = e1,i,t × p1,t (8)

r2,i,t = e2,i,t × p2,t (9)

r3,i,t = e3,i,t × p3,t (10)

r4,i,t = e4,i,t × p4,t (11)

e4,i,t = e ′2,i,t − e2,i,t (12)

p4,t = e4,i,t/e
′
2,i,t × p2,t × 0.5 (13)

ei,t = ηi ×Qi,t ×Hi,t ×∆t (14)

Hi,t =
Zi,t−1 +Zi,t

2
−Zd

i,t
−Hd

i,t
(15)

where R is the total revenue of the cascade power sta-
tion, rj,i,t represents the profit or loss of station i in
the market in the tth month, j = 1 is the revenue
of the clean energy priority consumption market,
j = 2 is the revenue of the inter provincial market,
j = 3 is the revenue of the intra provincial market,
j = 4 is the penalty loss for breach of contract, and
N is the number of cascade power stations. T is the
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price of intra-

provincial market

volume of inter-

provincial market

monthly inflow of tap 

station

Figure 3. Sample display and correlation analysis chart.

total dispatching period, and r1,i,t, e1,i,t and p1,t are
the priority consumption market revenue and settle-
ment volume and price of station i in the tth month,
respectively. r2,i,t, e2,i,t and p2,t are the inter provin-
cial market revenue, settlement volume and price of
station i in the tth month, respectively, and i = 1.
r3,i,t, e3,i,t and p3,t are the intra provincial market rev-
enue, settlement volume and price of station i in the
tth month, respectively. where r4,i,t , e4,i,t , e’2,i,t and p4,t
are the penalty loss, default amount and transaction
volume in the inter provincial market and penalty
price of the tap station in the tth month, i = 1. ei,t,
Qi,t, Hi,t,, Zi,t, Zd

i,t and Hd
i,t are the average generat-

ing capacity, average generating flow (m3 s−1), head,
decision level, downstream tail water level and head
loss of the hydropower station i in the tth month,
respectively; ηi is the output coefficient of hydro-
power station i; and∆t is the time step.

3.2. Constraints
In addition to the conventional hydraulic constraints,
the constraints in the model also include revenue
constraints, market constraints and opportunity con-
straints. Due to the limitation of paper space, see the
appendix B for details.

3.3. Model solving method
The traditional method to solve a chance-constrained
problem transforms the CCP model into its equival-
ent deterministic model according to the given con-
fidence level in advance, and then solves it. However,
in the mathematical model of the long-term optimal
operation of cascade hydropower stations in the mul-
timarket, there are many random variables, and the

opportunity constraints are too complex. This is usu-
ally difficult to achieve by traditionalmethods. There-
fore, we use a Monte Carlo simulation method to
deal with the random variables, and then use the PSO
method to solve them. The specific steps are shown in
figure 2.

4. Results

Based on the electricity market dominated by hydro-
power in a province of China, see appendix A1 for
the main operation parameters of power stations A, B
and C involved in the calculation. A is the tap station,
and the output process directly affects the operation
of the downstream stations. The long-term schedul-
ing period is one year, the time period is one month,
and the number ofMonteCarlo sampling is 1000. The
number of population is 100, the maximum number
of iterations is 5000, the inertia factor is 0.9, and the
learning factor is 2.

4.1. Multivariate correlation analysis
The random variables studied in this paper are the
monthly inflow of the tap station, the clearing price
of the intra provincial market and volume of the inter
provincial market. The samples used in this paper
involve 48 months from January 2016 to Decem-
ber 2019. The details of the samples are shown in
figure 3. The three variables show obvious seasonality
and volatility. At the same time, it can be seen from
(d) that there are correlations among the variables.
Red represents a negative correlation, blue represents
a positive correlation; and the deeper the colour, the
stronger the correlation (the Sperson coefficient of

7
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Figure 4. Inflow samples used for fitting.

price and volume is−0.55296, that of the volume and
inflow is 0.39326 and that of the inflow and price is
−0.84908).

For the multivariate variables with strong cor-
relation in this paper, a copula function can be
used to analyse the correlation between variables
and contain almost all the details without determin-
ing whether the traditional linear correlation coeffi-
cient can correctly measure the correlation between
variables. For marginal distributions, the traditional
method assumes that the variance of time-series vari-
ables is fixed, which is not in line with reality. For
example, inflow series show obvious seasonality. The
ARIMA model can only capture the linear relation-
ship of a time series but cannot capture the nonlinear
relationship, which leads to an error in the simulation
results and deviations from reality.

However, the SARIMA model takes into account
the seasonal factors and carries out a 12-step differ-
ence simultaneously with the first-order difference of
time series, thus eliminating the seasonal effect and
solving the above problems. Due to the short devel-
opment time of the market studied in this paper, the
numbers of price and volume in the sample are too
small, so only the marginal distribution of the inflow
series is fitted (inflow samples from 1953 to 2019).
The inflow details are shown in figure 4. Themarginal
distribution of other variables was fitted by the kernel
density estimation method.

Before fitting the SARIMA model, it is necessary
to conduct a basic test of the inflow data. The res-
ult of the JB test is 1. The original hypothesis that
the series has a normal distribution is rejected, which
means that the distribution is not a normal distribu-
tion. The result of the ADF unit root test does not
equal 1, the original hypothesis of the unit root exists
in the rejection series, and the sample is stationary.
ACF and PACF were drawn to test the autocorrela-
tion. The results of the Ljung box test were 1, which
rejected the original hypothesis of white noise, and
the series was not white noise. The specific test results
are shown in figure 5. The basic test shows that the
SARIMA model can be used to fit the inflow series.

The values of model p, d, q, P, D andQ are identi-
fied and processed by the R language, and the optimal
model is SARIMA (1, 0, 1) (2, 1, 1) [12]. Then, the
parameters of the model are estimated by the MLE
method. The fitting results are listed in table 1. Then,
100 sets of inflow processes are generated, and the
results are shown in figure 6. The model SARIMA
(1, 0, 1) (2, 1, 1) [12] was used to simulate the runoff
series from1953 to 2019, the rootmean square error is
11.945%, which indicates that the fitting runoff pro-
cess is in good agreement with the actual runoff.

According to the method described in
section 2.2.1, the marginal distribution of each
variable is transformed into a uniform distribu-
tion subject to [0, 1] through probability integral

8
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Figure 5. Basic test of inflow samples.

Table 1. Parameter estimation and test comparison of SARIMA.

Model AR(1) MA(1) SAR(1) SAR(2) SMA(1)

Parameter 0.4977 0.0172 0.0193 0.0937 −0.9486
s.e. 0.0746 0.0877 0.0483 0.0478 0.0288

transformation, in which the inflow series uses some
data after marketization from 2016 to 2019, and uses
the marginal distribution of the whole sample for
probability integration to obtain a uniform distri-
bution. Then, the t-copula function proposed in
section 2.2.2 is obtained by the two-stage maximum
likelihoodmethod of nonparametric estimation. One
hundred sets of scenarios were randomly generated,
and the correlation coefficients between variables
were calculated for verification (the Sperson coeffi-
cient of price and electricity quantity is −0.45609,
electricity quantity and inflow are 0.346654, and
inflow and price are−0.87613). Finally, a comparison
is made with the t-copula function without the SAR-
IMA model, and the results are shown in figure 7. It
can be seen from the figure that inflow and price have
negative value (red box) in the scenarios generated by
the conventionalmethod, while themethod proposed
in this paper can generate more reasonable scenarios.
The reason for this situation is that the fluctuation

range of runoff is large, when only using t-coupla
to generate simulation data, we need to use the mar-
ginal distribution function obtained by kernel density
estimation to transform. In the face of extreme cases,
the stochastic runoff process obtained by transforma-
tion is prone to negative values. The runoff stochastic
process generated by SARIMA model can avoid the
above situation, and t-copula can better fit the tail
dependence, so t-copula with SARIMA adjustment
can work better.

4.2. Analysis of long-term optimal scheduling
results
4.2.1. Analysis of optimal operation results of cascade
hydropower stations under multimarket coupling
A scenario was generated by random sampling
according to the joint distribution fitted in this paper.
This was calculated by the PSO algorithm and com-
pared with the results of the maximum generating
model. The calculation results are shown in figure 8.
First, with regard to the water level, the operation res-
ults of the downstream reservoir water level with poor
regulation capacity are the same, and the water level
of the tap power station varies greatly in the flood
season. In terms of generation, the conventional dis-
patchingmode generatesmore power in the flood sea-
son and less in the dry season. Themodel in this paper
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Figure 7. Comparison of simulation results of two models.

does not follow this law, and the total power is lower
than in the conventional model.

The resource allocation results in the abovemulti-
market coupling model are shown in figure 9 (since B
and C do not participate in the delivery market, only
B is shown). It can be seen from the figure that when
participating in the coupling market, stations tend to
generate more electricity when the price is high and
less when the price is low, and allocate more volume
in the market with high price and less volume in the
market with low price, or break even on the contract.
Given the factors of price, head and inflow, themonth
with the largest generating capacity does not appear
when the price is the highest. The influence of settle-
ment price and assessment price is taken into account
when A allocates resources. In May, for example, the
settlement price in the clean energy priority con-
sumption market is the highest. To increase revenue,
all power resources should be allocated to thismarket.
However, due to the default assessment mechanism
of the inter provincial market, some of the resources
need to be completed to avoid additional losses. B

allocates power resources in the inter provincial mar-
ket and clean energy priority consumption market
according to the price.

4.2.2. Analysis of dispatching results under specified
risk tolerance
According to themodel described in section 3, change
the risk α, β1 and β2 that the power station is
willing to bear, and then calculate and analyse the
scheduling schemes of situation 1 (considering the
uncertainty of all variables), situation 2 (consid-
ering the uncertainty of price and inflow), situ-
ation 3 (considering the uncertainty of price and
volume) and situation 4 (considering the uncer-
tainty of inflow and volume). The results are lis-
ted in table 2. It can be seen from table 2 that
with an increase in the willingness of stations to
bear risk, the possible generation power and target
profit also increase. Further analysis shows that the
change in α has an obvious effect on the generation
revenue.
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Figure 8. Comparison of optimal operation results of cascade hydropower stations.

To analyse the impact of risk tolerance α in
the above four situations objective functions on
the long-term operation income of cascade hydro-
power stations, results corresponding to different
α in different situations are plotted in figure 10.
When the risk tolerance is high (risk preference)
and medium (risk neutral), situation 4 has the

highest income. Situation 1 comes next. Situation
2 and situation 3 are similar. When the risk tol-
erance is low (risk aversion), situation 3 has the
highest income. Situation 4 comes next, and situ-
ation 2 and situation 1 are similar. When the risk
is high, compared with fluctuations when the elec-
tricity price, inflow and power are more volatile,
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Figure 9. Electricity distribution results in coupled Market.

Table 2. The influence of willing to take risks on scheduling schemes in different situations.

Risk/ Risk/ Risk/ Generation revenue (billion CNY)

(1-α) (1-β1) (1-β2) 1 2 3 4

0.2 0.8 0.8 6.79270 6.64658 6.85830 6.88258
0.5 0.8 0.8 7.12256 6.95439 7.02261 7.24354
0.8 0.8 0.8 7.38562 7.29536 7.27267 7.58284
0.9 0.9 0.9 7.57898 7.36454 7.33506 7.90049
0.95 0.9 0.9 7.66697 7.40683 7.35844 7.92991
0.95 0.95 0.95 7.68509 7.46514 7.43070 7.93850
0.95 0.99 0.99 7.70521 7.48250 7.51599 8.01121
0.99 0.99 0.99 7.76063 7.72186 7.53619 8.02226

large flows bring more power generation and can
allocate more delivery resources to obtain more rev-
enue. When the risk is low, the inflow tends to
dry up, and the allocated amount of volume in
the inter provincial market is less. Although the
intra provincial market price increases, the gener-
ating capacity greatly reduces, leading to an over-
all decrease of income. Situation 3 does not con-
sider the uncertainty of inflow, which has little impact
on the increase in power generation, so the rev-
enue is the highest. Situation 4 does not consider

the uncertainty of the intra provincial market price,
which has little impact on the price fluctuation
in the flood season, so the revenue comes next.
Situation 1 and situation 2 take into account the
variables that play a major role in revenue, res-
ulting in lower price during the flood season and
reduced water supply, so they have the lowest rev-
enue. The results of the model are consistent with
the actual situation, so it can be seen that the copula-
SARIMAmodel proposed in this paper can be used to
reasonably evaluate the uncertainty factors brought
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Figure 10. Income corresponding to different risk tolerance in different scenarios.

by cascade stations participating in multimarket
coupling.

5. Conclusions

(a) There are many uncertain factors in the market
operation of cascade hydropower: inflow, price,
etc. These are all time series. By using a Copula-
SARIMA model, we combined the research of
the correlation degree and correlation mode of a
multivariate situation, and considered the volat-
ility and time-varying nature of the time series
at the same time. Compared with the constant
correlation model, which considers the uncer-
tainty of variables alone, the fitting data gener-
ated by this method maintains the correlation
between samples, making the simulation experi-
ment more reasonable.

(b) Large-scale cascade hydropower stations play
a role in regulating and storing natural inflow
due to their large storage capacity. In the
medium- and long-term market environ-
ment, water resources can be redistributed
in time and space according to the situ-
ation of incoming water and market clearing,
to achieve the efficient utilization of water
resources, improve income and reduce the

default assessment caused by the randomness of
inflow.

(c) As a signal to guide the resource allocation
of cascade hydropower stations in a variety of
coupled markets, considering the uncertainty of
inflow, volume and other factors at the same
time, the price can encourage the market parti-
cipants to evaluate income more reasonably and
can provide an effective reference for the cas-
cade hydropower stations to arrange the oper-
ation scheme of each time scale, formulate the
transaction plan, optimize the resource alloca-
tion and obtain more benefits.
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Appendix A

Table A1.Main characteristic parameters of cascade hydropower stations.

Hydropower station A B C

Operation Multi-year Seasonal Daily
Normal water level (m) 1240 994 899
Dead water level (m) 1166 988 882
Maximum outflow (m3 s−1) 20 683 16 805 5000
Minimum outflow (m3 s−1) 0 0 0
Output coefficient 9.4 8.5 8.5
Starting water level (m) 1224.7 991.6 895.9
End water level (m) 1226.4 991.6 895.9
Guaranteed power generation (million kW) 4.2 1.67 1.35
Minimum power generation (million kW) 0 0 0
Maximum power generation flow (m3 s−1) 2202 2233 2085

Appendix B

(a) Profit constraint.

P(R⩾ R̄)⩾ α. (16)

(b) Hydraulic connection of upstream and down-
stream reservoirs.

qi,t = Qi−1,t + SPi−1,t + q ′
i,t (17)

where qi,t is inflow of station i in the t th month
(m3 s−1); Qi-1,t and SPi−1,t are the generation
flow (m3 s−1) and wastewater flow (m3 s−1) of
hydropower station i − 1 in the tth month, respect-
ively; and q′i,t is the interval inflow between station
i − 1 and station i in the tth month (m3 s−1). Note
that due to the large regulating effect of the tap sta-
tion, the downstream interval discharge q′i,t is treated
as constant.

(c) Water balance constraint.

Vi,t = Vi,t−1 + 3600× (qi,t −Qi,t)×∆t (18)

whereVi,t is the storage capacity of station i at the end
of the tth month (m3).

(d) Reservoir water level constraint.

Zi,min ⩽ Zi,t ⩽ Zi,max (19)

where Zi,min and Zi,max are the lowest and highest
water levels in front of the dam of reservoir i, respect-
ively.

(e) Water level at the beginning and end stage
constraint.

Zi,0 = Zi,begin (20)

Zi,T = Zi,end (21)

where Zi, begin is the water level of station i at the
beginning of the month (m). Zi, end is the water level
of station i at the end of the month (m).

(f) Water discharge constraint.

P(Q ′
i,min

⩽ Qi,t + SPi,t ⩽ Q ′
i,max

)⩾ β1 (22)

where Q′
i,min and Q′

i,max are the minimum and
maximum water discharge of station i, respectively
(m3 s−1).

(g) Generating discharge constraint.

Qi,min ⩽ Qi,t ⩽ Qi,max (23)

whereQ′
i,min andQ′

i,max are the minimum and max-
imum generation discharge of station i, respectively
(m3 s−1).

(h) Output constraint.

P(Pi,min ⩽ ηi ×Qi,t ×Hi,t ⩽ Pi,max)⩾ β2. (24)

(i) Water level storage capacity relation constraint.

Vi,t = fi,zv(Zi,t) (25)

where fi, zv(•) is the relationship function of the water
level and storage capacity of station i.

(j) Tail water level discharge relation constraint.

Zd
i,t = fi,zq(Qi,t) (26)

where fi,zq(•) is the relationship function of the tail
water level and discharge of station i.

(k) Restriction of settlement electricity quantity in
each market.
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e1,i,t ⩽ ei,t (27)

e2,i,t ⩽min(ei,t − e1,i,t,e
′
2,i,t) (28)

e3,i,t ⩽ ei,t − e1,i,t − e2,i,t (29)

ei,t=e1,i,t + e2,i,t + e3,i,t (30)
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