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Abstract
Since 2001, a synthesizing element in Intergovernmental Panel on Climate Change assessment
reports has been a summary of how risks in a particular system could change with additional
warming above pre-industrial levels, generally accompanied by a figure called the burning embers.
We present a first effort to develop burning embers for climate change risks for heat-related
morbidity and mortality, ozone-related mortality, malaria, diseases carried by Aedes sp., Lyme
disease, and West Nile fever. We used an evidence-based approach to construct the embers based
on a comprehensive global literature review. Projected risks for these health outcomes under
1.5 ◦C, 2 ◦C, and >2 ◦C of warming were used to estimate at what temperatures risk levels
increased from undetectable to medium, high, and very high, from the pre-industrial baseline,
under three adaptation scenarios. Recent climate change has likely increased risks from
undetectable to moderate for heat-related morbidity and mortality, ozone-related mortality,
dengue, and Lyme disease. Recent climate change also was assessed as likely beginning to affect the
burden of West Nile fever. A detectable impact of climate change on malaria is not yet apparent but
is expected to occur with additional warming. The risk for each climate-sensitive health outcome is
projected to increase as global mean surface temperature increases above pre-industrial levels, with
the extent and pace of adaptation expected to affect the timing and magnitude of risks. The embers
may be an effective tool for informing efforts to build climate-resilient health systems including
through vulnerability, capacity, and adaptation assessments and the development of national
adaptation plans. The embers also can be used to raise awareness of future threats from climate
change and advocate for mitigation actions to reduce the overall magnitude of health risks later this
century and to expand current adaptation efforts to protect populations now.

Abbreviations

IPCC Intergovernmental Panel on Climate
Change

RFC Reasons For Concern
SSPs Shared Socioeconomic Pathways
UNFCCC United Nations Framework Conven-

tion on Climate Change

1. Introduction

The long-term objective of the UNFCCC is to pre-
vent dangerous anthropogenic interference with the
climate system (UNFCCC1992). Article 2 of theCon-
vention states that interference would not be dan-
gerous if greenhouse gas emissions were stabilized
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at levels that will ensure that ecosystems have time
to adapt naturally; that food production is not
threatened; and that economic development can pro-
ceed in a sustainable manner (UNFCCC 1992). The
question to the scientific community was how to
quantify dangerous interference in ways that would
be consistent, repeatable, and comparable over time,
understanding that what is considered dangerous is a
socially held value.

To inform negotiations on the level of ambi-
tion of greenhouse gas emission reductions consist-
ent with this purpose, Smith et al (2001) synthes-
ized climate change risks to enable readers to ‘evalu-
ate the relationship between increases in global mean
temperature and impacts.’ The authors identified five
aggregate RFC to facilitate public discussions and
policy decisions pertaining to what is dangerous cli-
mate change. The assessment determined what tem-
perature above pre-industrial temperatures increased
the risk level, in steps from undetectable to very high.
RFCs can be used individually or in combination
to understand the relationship between global mean
temperature increase and:

(a) damage to or irreparable loss of unique and
threatened systems (e.g. tropical glaciers, coral
reefs, mangroves, and biodiversity hot spots);

(b) distribution of impacts (e.g. income inequality);
(c) global aggregate market and non-market dam-

ages;
(d) probability of extreme climate effects (e.g.

extreme weather and climate events); and
(e) probability of large-scale singular events such as

the breakup of the West Antarctic Ice Sheet or
the collapse of the North Atlantic thermohaline
circulation.

For each RFC, a companion figure (burning
ember) showed the temperature range at which risk
levels change; the transitions were determined by a
combination of assessment of the scientific literature
and expert judgment of the author team and review-
ers. The baseline was pre-industrial temperatures.

Subsequent IPCC assessment reports updated
the diagram to reflect new scientific evidence and
insights, showing that risks were projected to be
greater and to occur sooner than described in the pre-
vious assessment cycles (Schneider et al 2007, Oppen-
heimer et al 2014, Smith et al 2009, Hoegh-Guldberg
et al 2018, IPCC 2019a, IPCC 2019b). The IPCC Spe-
cial Report on Climate Change and Land developed
the method further by conducting expert elicitations
to determine the temperature transitions where risk
increased from undetectable through to very high
(Zommers et al 2020).

This framework and diagram are iconic elements
of IPCC assessment reports, used to inform policy
by communicating climate change-related risks in an
easily understandable and accessible manner. There

is growing interest in incorporating considerations of
vulnerability and adaptation into the embers, and the
concept has been extended to apply to several spe-
cific systems. In 2015, Gattuso et al applied the frame-
work to summarize the risks of elevated concentra-
tions of carbon dioxide and climate change on coastal
and marine organisms and ecosystem services, sum-
marizing how risks to, for example, warm water cor-
als and fin fish, are projected to increase with climate
change. Hoegh-Guldberg et al (2018) in the IPCC
Special Report onGlobalWarming of 1.5 ◦C included
the first ember for a climate-sensitive health outcome:
heat-related morbidity and mortality. We update the
comprehensive literature review in Ebi et al (2018) on
the projected health risks of warming of 1.5 ◦C and
higher to construct health embers for six health out-
comes. We complement the evidence-based assess-
ment with expert judgment to assess the likely future
risks under different assumptions of socioeconomic
development.

2. Methods

We used an evidence-based approach to construct the
embers, based on projections of health risks under
1.5 ◦C, 2 ◦C, and >2 ◦C of warming, for heat-
related morbidity and mortality; mortality related
to exposure to ozone; and the geographic distribu-
tion, vectorial capacity, or mortality associated with
dengue; Lyme disease; malaria; and West Nile virus.
We first updated the Ebi et al (2018) comprehens-
ive review of the projected health risks of climate
change, particularly the table documenting the pro-
jected changes in risk at 1.5 ◦C and 2 ◦C to include
projections of risks at >2 ◦C of warming, and to add
literature published through June 2020. The same
search terms and databases were used for the update;
see annex 1 in supplementary material (available
online at stacks.iop.org/ERL/16/044042/mmedia) for
the search terms and tables summarizing projections
for each health outcome included.

The assessment was global, drawing on world-
wide literature. We did not attempt to construct
burning embers for geographic regions because there
were insufficient projections at finer scales to sup-
port robust evidence-based assessments.We note that
levels of risk of different health threats can be very dif-
ferent in different regions and can respond very dif-
ferently to efforts to build health system resiliency,
including levels of adaptive capacity.

Because most health projections were for time
periods (e.g. 2050s, 2080s), not temperatures, time
periods were converted to expected warming as in
Ebi et al (2018) (see tables in supplementary mater-
ials). The diversity in study approaches and methods
meant it was not possible to combine the projections
into a meta-analysis, and few projections considered
possible future adaptation.
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Table 1. Risk transitions and associated colors used in the embers diagram.

Color Risk Definition

White Undetectable No impacts/risks detectable and attributable to climate change
Transition to yellow Low Impacts/risks detectable and attributable to climate change
Yellow Moderate Impacts/risks detectable and attributable to climate change with at least medium

confidence
Transition to red Substantial Substantial impacts/risks attributable to climate change
Red High Severe and widespread impacts/risks attributable to climate change
Purple Very high Even more severe and widespread, irreversible, or persistent impacts/risks

attributable to climate change with the presence of significant irreversibility,
combined with limited ability to adapt

Source: Hoegh-Guldberg et al (2018).

The projections of health risks by temperat-
ure were used by the authors to judge when the
level of risk of specific outcomes could change sub-
stantially, drawing on present understanding of the
role of temperature in the exposure pathway. As
detailed in the supplementary tables, temperature is
directly associated with heat-related morbidity and
mortality. Temperature alters exposure pathways in
more complex ways for ozone and the four vector-
borne diseases assessed. We used the risk trans-
itions defined for other burning ember diagrams
(see table 1 for definitions). Because of the lim-
ited number of detection and attribution studies
(e.g. Mitchell et al 2016, Ebi et al 2017), the author
team agreed on the temperature at which there was
or likely would be a transition from undetectable
to moderate risk (e.g. white to yellow). If a risk
was judged to have changed from moderate (yel-
low) to substantial (red), then the transition was
assumed to occur approximately halfway between the
starting (e.g. 1.5 ◦C) and ending temperature (e.g.
2 ◦C). Because of the limited projections for global
mean temperature increases above 2 ◦C, the author
team discussed and agreed on transitions at higher
degrees of warming. There are differences in risk
among the health outcomes, as would be expected,
because of different thresholds and non-linearities
in relation to temperature increase and levels of
adaptation.

Once the transitions between risk categories were
determined, the authors then agreed on the level of
confidence in each transition. The IPCC approach
to determining the confidence in key findings in the
5th Assessment Report was used (IPCC 2010). Con-
fidence was based on an evaluation of the extent of
evidence (amount, quality, and consistency, ranked
as limited, medium, or robust) and the level of agree-
ment across the projections (low,medium, and high).
The level of confidence was expressed using five qual-
ifiers: very low, low, medium, high and very high.
The embers are based on global averages unless oth-
erwise noted, assuming average susceptibility within
each adaptation level.

The embers were drawn using the ‘Embers Fact-
ory’≪https://climrisk.org/emberfactory≫.

2.1. Adaptation scenarios
We consider three levels of adaptation based on the
SSPs (O’Neill et al 2017, Sellers and Ebi 2018): worlds
in which adaptation would: fall behind in prevent-
ing avoidable climate-sensitive morbidity and mor-
tality (SSP3); continue the current development trend
with slowly improving adaptation (SSP2); and aim for
sustainable development where adaptation is more
effective than today in preventing adverse climate-
sensitive health outcomes (SSP1). Table 2 lists some
of the characteristics of health systems under the
three SSPs. We assumed that projections that did
not explicitly consider adaptation followed a SSP2
pathway.

We expect health systems would continue to take
action to prepare for and manage the risks of cli-
mate change. But the speed at which challenges were
recognized and addressed would follow the path-
ways described in table 2. For example, under SSP3,
policies proven effective in other jurisdictions could
be implemented too late to achieve their objectives,
thus exposing populations to greater hazards with
insufficient programs and technologies to prevent
avoidable morbidity and mortality.

The transition points for each health outcome for
low (SSP3) and high adaptation (SSP1) were judged
by the author team on the basis of their collective
expertise, taking into account each of the develop-
ment pathways. Some health authorities have begun
taking measures to prepare for climate change but,
in many respects, most health systems worldwide
presently have low adaptation, with localized, incre-
mental, and generally disjointed activities (Smith et al
2014, Hess and Ebi 2016, UNEP 2018), aligned gen-
erally with characteristics of SSP3. In theory, this
provides a reference point or counterfactual for the
future levels of adaptation of health systems. How-
ever, because health systems are constantly evolving,
generally but not always improving, it would be inap-
propriate to assume that health systems would make
no additional efforts tomanage climate-related health
risks as the climate continues to change.

Looking ahead, health models could be improved
by incorporating a range of possible adaptation path-
ways, based upon studies of observed adaptation, to

3
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Table 2. Selected characteristics of health systems under the shared socioeconomic pathways.

SSP3 SSP2 SSP1

Basic
characteristics

Reactive; failure to adapt;
siloed information channels
and national governance;
limited partnerships

Incomplete planning; new
information incorporated
as convenient; occasional
partnerships

Proactive; adaptively
managed; frequent
partnerships; interdisciplinary

Building blocks of health systems

Leadership and
governance

Little focus at national and
international levels on climate
change and health; minimal
planning conducted

Planning on climate change
and health, but not compre-
hensive and often sidetracked
by other issues

Strong climate change and
health planning apparatus,
including health compon-
ents of national adaptation
plans; regional/international
partnerships

Health
information
systems

Vulnerability and adaptation
assesssments rarely, if ever
conducted; information not
useful for planning; minimal
risk monitoring or climate
change and health research

Vulnerability and adapta-
tion assessments occasionally
conducted, but generally of
poor quality; early warnings
incomplete; fiscal and polit-
ical constraints on climate
change and health research

Vulnerability and adapta-
tion assessments regularly
conducted and used in plan-
ning; robust early warning
networks; research agenda
focused on vulnerable com-
munities

Climate resilient
and sustainable
technologies and
infrastructure

Facilities sited and construc-
ted without climate consider-
ation incorporated; medical
supply chains not modified

Capital cost serves as key
factor in siting and construc-
tion; increasing vulnerability
of facilities to shocks

Health infrastructure
designed to be robust to
storms/floods, with redund-
ant systems added to ensure
continuity of care

Service delivery Policies to manage envir-
onmental health hazards
generally not followed;
care practices not modified
to accommodate climate
information; few changes
to emergency management
procedures; health inequities
worsen

Environmental health policies
are not robust; marginal
improvements in care prac-
tices; risk assessments and
communication inadequate;
no shift in health inequities

Policies to manage environ-
mental health hazards regu-
larly reviewed; practitioners
review care practices and
adjust as appropriate based
on local climate and health
conditions; robust commu-
nication tools developed;
health service improvements
reduce health inequities

Health system
objectives

Unaccountable, inefficient,
inequitable, low-quality, vul-
nerable, unsustainable

Intermittent accountabil-
ity, moderate efficiency, fair
quality, variable resilience,
moderately sustainable

Accountable, efficient, equit-
able, high-quality, resilient,
sustainable

Source: modified from Sellers and Ebi (2018).

provide greater insights into the extent to which these
pathways could reduce future risks.

3. Results

The tables in supplementarymaterials provide a basic
description for each study included in the assess-
ment, including the health outcome metric used, the
study baseline, climate model(s), scenario, time peri-
ods of interest, projected impacts at 1.5 ◦C, 2 ◦C, and
>2 ◦C, and other factors considered. There were 40
studies published since Ebi et al (2018). There were
three new studies in addition to the thirty-four stud-
ies included in Ebi et al (2018) projecting heat-related
mortality (Lee et al 2019, Varquez et al 2020, Zhang
et al 2020); four new studies projecting ozone-related
mortality (Heal et al 2013, Stowell et al 2017, Chen
et al 2018, Chowdury et al 2018). There were five
new studies in addition to the ten in Ebi et al (2018)

projecting changes in the geographic range of the
malaria vector or numbers of people at risk of mal-
aria (Laporta et al 2015, Kibret et al 2016, Ren et al
2016, Akpan et al 2019, Ryan et al 2020). There were
19 new studies projecting changes in the geographic
range of themosquito vector or intensity of transmis-
sion of dengue fever, Zika virus, chikungunya, and
yellow fever (Colon-Gonzalez et al 2013, Henry and
Mendonca 2020, Liu et al 2019a, Liu et al 2019b,
Proestos et al 2015, Butterworth et al 2017,Monaghan
et al 2018, Carbajo et al 2019, Jing-Chun et al 2019,
Kramer et al 2019,Messina et al 2019, Ryan et al 2019,
Cabrera et al 2020, Iwamura et al 2020, Kakala et al
2020, Khan et al 2020, Rohat et al 2020, Sintayehu
et al 2020, Tran et al 2020). These are in addition to
the 19 studies in Ebi et al (2018). There were four new
studies in addition to the eight in Ebi et al (2018) pro-
jecting the geographic distribution and onset of Lyme
disease (Monaghan et al 2015, Alkishe et al 2017, Li
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Figure 1. Details of burning embers for heat-related morbidity and mortality. The dots show the confidence in the transitions,
with four dots very high confidence, three dots high confidence, two dots medium confidence, and one dot low confidence.

et al 2019, MacDonald et al 2020). And finally, there
were five new studies in addition to the six in Ebi
et al (2018) projecting changes in West Nile fever or
its vector (Morin and Comrie 2013, Harrigan et al
2014, Paull et al 2017, Bhowmick et al 2020, Gangoso
et al 2020). There were fewer projections for other
health risks, such as undernutrition and impacts of
heat stress on occupational health, and so are not
included.

To illustrate how the levels of additional
impact/risk due to climate change are graphically
represented in the ember diagrams, figure 1 shows
the details for heat-related morbidity and mortal-
ity. Figure 2 shows the burning embers under three
adaptation scenarios for heat-related morbidity and
mortality, ozone-related mortality, malaria, dengue
and other diseases carried byAedesmosquitoes, Lyme
disease, and West Nile fever.

As expected from Hoegh-Guldberg et al (2018),
heat-related morbidity and mortality increased with
projected temperature increase, with risks higher
under SSP3 than SSP1. Detection and attribution
studies (Mitchell et al 2016, Ebi et al 2017, 2020)
show that climate change is already causing additional
deaths during heatwaves; therefore, the risk transition
shifted from undetectable (white) to moderate (yel-
low) before 1 ◦C of warming. Because most heat-
related deaths are preventable (Hajat and Kosatsky
2010) and because heatwave early warning systems,
based on heatwave action plans, have been demon-
strated to reduce mortality (Fouillet et al 2008), we
assumed that adaptation under SSP2 would delay
the risk transition from moderate to high (red) until
global temperatures increased to 2 ◦C. The trans-
ition time to higher risk was longer under SSP1 and
shortened under SSP3. Risk is expected to transition

to very high (purple) as temperatures rise to 3.5 ◦C
under SSP2 and 3 ◦C under SSP3, based on the range
of temperatures within which human physiological
responses are effective in maintaining core body tem-
perature (Vanos et al 2020). The ability to success-
fully manage heat-related morbidity and mortality
will be increasingly challenged with higher degrees
of warming, particularly in circumstances that amp-
lify heat risks, including where high temperatures are
accompanied by high humidity and increased expos-
ures render public health interventions less effective
(Woodward et al 2020).

The embers for ozone-related mortality show
a similar pattern to those for heat-related mor-
bidity and mortality because ozone formation is
temperature-sensitive, although the risk transitions
are at lower temperatures because there are far
fewer adaptation options with increasing challenges
to adaptation in SSP3. The underlying projections
assumed that precursor emissions will remain con-
stant; if regulations reduce precursor emissions, then
the embers would likely overestimate the levels of risk.
Embers were not created for mortality related to par-
ticulate matter because of the uncertainty of how cli-
mate change could affect atmospheric concentrations
(Ebi and McGregor 2008).

Embers were created for four vectorborne dis-
eases: malaria, dengue and other diseases carried by
Aedes sp., Lyme disease, andWest Nile fever. Weather,
particularly temperature, and other environmental
variables are key factors determining the distribution
of their vectors and the months over which they are
active (Brugueras et al 2020).

Creating embers for malaria took into account
that some regions may become too hot and/or dry
for the Anophelesmosquito with additional warming.
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Figure 2. Burning embers for health under three adaptation scenarios. The dots show the confidence in the transitions, withfour
dots very high confidence, three dots high confidence, two dots medium confidence, and one dot low confidence.

Therefore, even though risks are projected to increase
overall at higher levels of warming, they may not
increase everywhere andmay even be reduced in some
regions. The complexity of the malaria transmission
cycle and the presence of multiple drivers of mal-
aria incidence mean that it has not yet been possible
to detect a change in malaria that can be attributed
to climate change. The assessed projections indicate
the impact of climate change could be evident within
another half degree of warming and rise steadily with
higher temperatures because of further shifts in the
geographic distribution, seasonality, and intensity of
transmission. This is consistent with malaria increas-
ing in many African countries (WHO 2020). It is too
early to determine whether climate change is affecting
increases in the geographic range of an AsiaAnopheles
mosquito involved in a recent outbreak of malaria in
Djibouti City (Sinka et al 2020); if this is the case,
then temperature transitions may be underestimated.
The challenges associated with developing and deliv-
ering an effective vaccine for malaria mean that risk
is expected to increase even under SSP1.

Large outbreaks of dengue fever occurred world-
wide in 2019–2020. Three million cases occurred in

the Americas alone in 2019, over double the number
of cases that occurred annually over previous years
(PAHO 2020). Over 2 million cases occurred through
September 2020. Outbreaks also were recorded in
multiple countries in the Western Pacific Region of
WHO (WPRO 2020), raising concerns that climate
change was contributing to the increase in the geo-
graphic range and number of months that the mos-
quito species that carries dengue, Aedes sp., is active
(Ryan et al 2019).

These mosquitoes also can carry yellow fever,
Chikungunya, and Zika viruses. As with malaria, the
risk transitions took into account that some regions
may become too hot and/or dry for the mosquito
in some regions with additional warming. Climate
change may be one reason for recent changes in the
geographic range of Aedes sp. (Sukhralia et al 2019),
supporting the risk transition from undetectable to
moderate before 1 ◦Cofwarming. Indeed, local trans-
missions of Chikungunya and Zika have been con-
firmed during the last years in Euro-Mediterranean
countries (World Health Organization 2017). The
responsiveness of the vector to additional warming
and the potential for vector control programs to

6
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address changes in risk suggests that under SSP2, risk
could transition from moderate to high with another
degree of warming, with the risk continuing to climb
with additional warming. Greater (SSP3) or fewer
(SSP1) challenges to adaptation would shift the tem-
perature at which risk transitions occurred (down
and up, respectively).

A detection and attribution study suggested that
climate change has already affected the geographic
distribution and numbers of cases of Lyme disease
in Canada (Ebi et al 2017); therefore, the risk trans-
ition from undetectable to moderate was before 1 ◦C
of warming. The responsiveness of the vector to addi-
tional warming suggests that under SSP2, risk could
transition from moderate to high with another half
degree of warming, with the risk continuing to climb
with additional warming. Additional investments in
adaptation, such as enhancing surveillance and mon-
itoring systems, could delay the increase in risk under
SSP1; the lack of such measures would fail to reduce
risks to health under SSP3.

Climate change has apparently already affected
the geographic range of West Nile fever. Since emer-
ging in southern and eastern Europe during the sum-
mer of 2010 following a severe heatwave, there have
been annual outbreaks, suggesting an endemic trans-
mission cycle and thus a resurgent public health prob-
lem (Paz 2015). In 2018, the virus was detected for
the first time in Germany (Kampen et al 2020). Under
SSP2, risk was assessed to increase to moderate start-
ing at 1.5 ◦C of warming and to further increase
with additional warming. As with the other vector-
borne diseases, risk transitions were assessed to occur
sooner under SSP3 and take longer under SSP1 due
to more aggressive adaptation measures and greater
resiliency of health systems.

4. Discussion

This first effort to develop burning embers for mul-
tiple health risks of climate change shows both the
extent towhich risks could increasewith higher ambi-
ent temperatures and the opportunities for proact-
ive adaptation under SSP1 to reduce those risks. As
expected, global risks are projected to increase as
temperatures increase above pre-industrial levels. Cli-
mate change likely has already increased risks from
undetectable to moderate for heat-related morbidity
and mortality, ozone-related mortality, dengue, and
Lyme disease. Recent climate change was assessed as
possibly beginning to affect the burden of West Nile
fever.

The available literature is more focused on pro-
jecting risk than quantifying the numbers of cases,
although the Y axis of the embers diagrams suggests
interchangeability. Risks and impacts are correlated
but the relationship is variable across the health out-
comes assessed. For instance, risks related to heat-
related morbidity and mortality are highly correlated

with impacts. Formosquito-borne disease, the literat-
ure is more focused on populations at risk or the geo-
graphic range of the vector than on projecting num-
bers of additional cases of disease. At lower levels of
risk, transitions from undetectable to detectable and
attributable can occur without widespread impacts.
Risks can increase due to the presence of a hazard and
some degree of population exposure and susceptib-
ility. As risks increase, so could impacts, particularly
when large populations are susceptible and exposed.
This is particularly likely with novel hazards for which
current adaptation is minimal and opportunities to
expand such efforts are limited or face barriers, for
example, due to limited resources or technologies.

Risk transitions differ across the SSPs, with the
transitions occurring at lower temperatures under
SSP3 and at higher temperatures under SSP1, illus-
trating the extent to which the strength of health sys-
tems is likely a critical determinant of the magnitude
of future health risks. However, these descriptions of
adaptive capacity are qualitative and have not been
quantified as input into model projections. Projec-
tions based on these quantifications are needed to
verify the accuracy and usefulness of the proposed
scenarios. If accurate, they illustrate the imperat-
ive for strengthening health systems, with sufficient
adaptive capacity to prepare for and manage health
risks as the climate continues to change.

The effectiveness of adaptation may not be sym-
metric with increasing temperatures. The difference
between a well-adapted world and a poorly adapted
world for the health of individuals and communit-
ies may be most marked with moderate warming
(around the yellow to red zone). Adaptation matters
less (in relative terms) when the threat of impacts
is slight and becomes more important as the threat
increases. At higher levels of warming, adaptation
becomes increasingly marginal as risks increase fur-
ther and limits to adaptation are approached. This
can be illustrated by the impact of air conditioning;
access does not matter much when it is not so hot but
becomes more significant as temperatures rise along
with health risks. Eventually at very high temperat-
ures, air conditioning can become unreliable if power
grids buckle under increased demand. Air condition-
ing may not be fit for purpose as a primary form of
adaptation at very high temperatures.

The complexity and diversity of possible chal-
lenges in adapting, as highlighted in the SSPs, mean
that progress in protecting health is unlikely to be
smooth, even for jurisdictions that begin early and
aggressively. Health authorities that lack the capa-
city to build climate resilient health systems, or are
delayed in implementing needed measures, will have
to address significantly higher risk levels as the cli-
mate continues to warm. The starting point makes a
difference—one might expect the level of adaptation
would make more of a difference in protecting health
in the short term, particularly if the health system and
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population are unprepared and are more vulnerable
to impacts. Awareness, a sense of urgency, and oppor-
tunities to act will not be evenly distributed across the
full range of warming. At lower temperature changes,
there may not be sufficient incentive to make signific-
ant change; higher temperatures will demonstrate the
necessity, but adaptation may be too constrained or
too late. In addition, the requirements and resources
for well-planned and proactive adaptation to protect
health may become increasingly constrained as indi-
viduals and health systems must cope with greater
impacts at higher levels of warming.

On the other hand, a progression from medium
to high adaptation might amplify benefits and pro-
tection through the creation of synergies and co-
benefits of actions. For example, regular assessments
that inform the siting of climate resilient infra-
structure with redundancy in the case of disasters
and support by adequate levels of funding would
heighten preparedness of the health sector for a
range of climate and non-climate related hazards.
In this case, risks might not move from yellow to
red until higher temperatures in the high adaptation
scenario.

A strength of the study is that the embers are
based on published projections, at least under SSP2.
Study limitations include the use of expert judgment
to estimate the risk transitions under SSPs 1 and 3 and
the limited numbers of projections at higher degrees
of warming. It would be helpful to compare the res-
ults of this assessment with a formal expert elicita-
tion process similar to that used by Zommers et al
(2020).

We suggest the embers may be an effective
communication tool that can be used by health
organizations and institutions, such as the World
Health Organization and its regional offices, other
UN organizations, ministries and departments of
health, and other health decision-makers, to inform
vulnerability, capacity, and adaptation assessments,
the development of plans to build climate-resilient
health systems, and national adaptation priorities.
The embers also can be used to advocate for mitig-
ation to reduce the overall magnitude of risks later
this century and for accelerated adaptation actions
to delay risk transitions for as long as possible. Most
embers are global averages, and these could, with
due caution, be downscaled to regional or national
levels using expert judgment until more projections
are available. Doing so would provide national and
local decision-makers greater insights into challenges
the populations they serve, and their healthcare sys-
tems, could be expected to face.
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