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Abstract
Higher levels of soil organic matter improve soil water retention, meaning they could mitigate
agricultural yield losses from drought. Yet evidence to support such claims is mixed and
incomplete. Using data from 12 376 county-years in the United States of America, we show that
counties with higher soil organic matter are associated with greater yields, lower yield losses, and
lower rates of crop insurance payouts under drought. Under severe drought, an increase of 1% soil
organic matter was associated with a yield increase of 2.2± 0.33 Mg ha−1 (32.7 bu ac−1) and a
36± 4.76% reduction in the mean proportion of liabilities paid. Similar, yet smaller, effects were
found for less severe levels of drought and this effect was reduced as soil clay content increased.
Confirmatory pathway analyses indicate that this positive association of soil organic matter and
yields under drought is partially explained by positive effects of soil organic matter on available
water capacity and cation exchange capacity, but that soil organic matter may be imparting yield
protection via mechanisms not fully captured by those metrics. Overall, our results suggest soil
organic matter predicts yield resilience at regional scales in the United States. We argue that data on
soil organic matter should be used in agricultural policy and financial planning, with our analyses
providing quantitative evidence of the co-benefits of soil organic matter believed fundamental to
advancing soil health and carbon sequestration initiatives.

1. Introduction

Rain-fed agriculture, which made up 75% of global
cropland use as of 2000 (Portmann et al 2010), is
highly susceptible to extreme weather conditions,
such as heat and drought. Extreme heat accelerates
plant development, effectively shortening growing
season length and reducing harvest index, and in
extreme instances, extreme heat causes plant repro-
ductive failures, such as kernel abortion in maize,
that drastically reduce yields (Sage and Kubien 2007,
Craufurd andWheeler 2009, Hsiao et al 2019). Simil-
arly, drought leads to elevated vapor pressure deficit
which can lead to increased transpiration by plants,
closing of stomata, and ultimately reduced rates of
photosynthesis that slow plant growth and reduce
grain yields (Lobell et al 2013, 2014). Climate change
is predicted to increase the incidence and severity of

droughts and floods (Meehl et al 2007, Luber and
McGeehin 2008), thereby increasing the risk of crop
failures and yield losses (Urban et al 2012). Conser-
vative estimates for maize suggest yields could drop
between 20% and 80% in the US under plausible
future climate scenarios (Schlenker andRoberts 2009,
Lobell et al 2014, Hsiao et al 2019). Such scenarios
threaten global food security and suggest that resili-
ence planning to mitigate these impacts is necessary.

Increasing soil organic matter can increase soil
water holding capacity on similarly textured soils
(Hudson 1994, Minasny and McBratney 2018) and
improve water infiltration (Boyle et al 1989, Elliott
and Efetha 1999, Franzluebbers 2002) by support-
ing greater aggregate formation and, hence, a greater
volume of pore spaces (Lado et al 2004). Researchers
have argued that soils with higher organic matter
can retain more water under vapor pressure deficit,
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protecting crops from losses induced by extreme heat
and drought better than low organic matter soils
(Bot and Benites 2005, Iizumi and Wagai 2019, Car-
minati and Javaux 2020). Yet recent work suggests
the actual effect of soil organic matter on plant avail-
able water is modest (Libohova et al 2018, Minasny
andMcBratney 2018), and it is unclear whether these
effects on water retention are great enough to reduce
drought-induced yield losses. Studies have demon-
strated that higher soil organic matter is associated
with lower long-term interannual yield variability at
regional scales (Pan et al 2009, Williams et al 2016).
But lower variability is not necessarily indicative of
greater resilience or protection against yield losses
and/or crop failure under adverse conditions. Some
field-level studies have shown that practices known
to increase soil organic matter can protect yields
(Gaudin et al 2015, Bowles et al 2020), but these do
not explicitly test the relative effect of organic matter
and do not provide information at county or regional
scales which are arguably most relevant to policy ini-
tiatives. Furthermore, these studies did not attempt
to quantify how the effect of soil organic matter on
yields does or does not scale under different drought
conditions.

In light of these evidence gaps, we quantified the
impact of soil organic matter on agronomic risk to
drought in the United States of America. We ana-
lyzed county-level maize (Zea mays L.) yield and
crop insurance payouts in the US from 2000 to 2016
in combination with soil characterization data and
county-level Standardized Precipitation Evapotran-
spiration Index (SPEI) data. Data were gathered for
754 counties where maize production was predomin-
antly rain-fed, representing a total of 12 376 county-
years, 5945 of which experienced drought conditions
over the summer growing season (Kane et al 2020).
We hypothesized that counties with higher levels of
soil organic matter in surface soils (0–30 cm depth)
where most of the fine-root biomass is found, would
be less prone to yield losses in drought years given
expected positive effects of soil organicmatter on crop
water availability and that, as a result, a lower propor-
tion of crop insurance liabilities would be paid out in
drought years.

2. Methods

2.1. Data collection
2.1.1. Maize yield data
We collected mean maize (Zea mays L.) yield
(Mg ha−1) data for all US counties between the years
2000 and 2016 for which maize yield data were avail-
able from the United States Department of Agricul-
ture National Agricultural Statistics Service (USDA
NASS) (USDANASS Staff 2018) accessed via the rnas-
sqs package (Potter et al 2019) in the R v.3.6.3 statist-
ical software environment (R Core Team 2020). Data
were limited to the years 2000–2016 to minimize the

confounding effect improvements in maize genetics
may have on yield data and because other data used
to estimate drought incidence in each county detailed
below were only available beginning in the year 2000.
We removed data from counties in which corn was
not grown for at least 16 of the 17 years in the study
period. Yield data were then detrended on a county
basis per the method detailed in Lu et al (2017).
Briefly, we fit a locally weighted regression model
wherein yield was the dependent variable and year
was the independent variable. Models were fit using
the R package caret (Kuhn et al 2020) using a ten-fold
cross validation approach wherein the span para-
meterwas constrained to a range of 5–10 years and the
degree parameter was allowed to be either 1 (linear)
or 2 (polynomial). We then added the yearly residuals
of these models to the long-term county average yield
to estimate detrended yield for each county-year in
the study period, and we also divided the observed
yield by the predicted yield of these models for each
county-year to estimate yield anomaly.

Because soil organic matter might protect yields
by improving soil water dynamics, irrigation could
mask the effects of soil organic matter on agricul-
tural resilience. As such, we restricted the analysis
to primarily non-irrigated acres. We also retrieved
data from USDA NASS (USDA NASS Staff 2018) via
the rnassqs (Potter et al 2019) on the total num-
ber of corn acres harvested in each county-year and
the total number of irrigated corn acres harvested
in each county-year for the US Agricultural Census
years of 1997, 2002, 2007, and 2012. The US Agri-
cultural Census is conducted every 5 years, so data
on irrigation within our study period is only avail-
able for those years. We then calculated the percent
of maize-growing acres that were irrigated in each
county for each census year, averaged those figures
across all four census years, and filtered yield data to
those counties in which corn-growing acres were on
average ⩽5% irrigated during the study period and
in which average acres irrigated had a standard devi-
ation of ⩽1% across the four census years for which
data were retrieved.

2.1.2. Drought data
We retrieved county-level SPEI figures from the Cen-
ter for Disease Control (National Environmental
Public Health Tracking Network 2018). SPEI is a
multi-scalar drought index based on the similar
Standardized Precipitation Index (Vicente-Serrano
et al 2009, 2012). Differences between cumulat-
ive monthly precipitation and potential evapotran-
spiration are calculated for a chosen time scale
(i.e. 1 month, 3 months, etc). These figures are
then standardized based on a log-logistic distribu-
tion so that they are comparable across locations.
The CDC dataset we used is based on a 1 month
standardization. We summarized SPEI data in each
county-year by calculating the mean of monthly SPEI
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values for the summer growing seasonmonths ofMay
to August.

In addition to SPEI, we also retrieved drought
data from The National Drought Mitigation Cen-
ter (The National Drought Mitigation Center 2019c),
which reports on a daily basis the percent area of each
county that is at each level of their drought index:
D0 (no drought)—D4 (severe drought). This drought
index is a categorization based on the PalmerDrought
Severity Index, Standardized Precipitation Index, soil
and streamflow models, and local expert assess-
ment/verification byUSDA field agents (TheNational
Drought Mitigation Center 2019b). We then conver-
ted these coverage statistics to a daily Drought Sever-
ity Classification Index (DSCI), per the instructions
of the US Drought Monitor website (The National
Drought Mitigation Center 2019a). Briefly, DSCI is
a weighted sum of the percent area of each county
under each drought index level. We then subset daily
DSCI data to the months of May to August, the
months that are most crucial to maize growth and
yield, and averaged them for each county-year across
the study period. DSCI data were not used in our
primary analyses but were instead used in a set of
sensitivity analyses (supplementary information) to
determine the relative importance of how drought is
quantified on estimating the mitigating effect of soil
organic matter on yields under drought.

2.1.3. Crop insurance data
The USDA Risk Management Agency collates a vari-
ety of data on the US crop insurance market on an
annual basis, including total liabilities, total indem-
nities, and cause of loss. These data are available at the
county-level via the USDA Southwest Climate Hub’s
AgRisk Viewer (Southwest Climate Hub 2018). We
retrieved data on total liabilities and total indemnities
in USD for maize due to loss by drought for the same
set of counties for which we retrieved yield data. We
then used these data to calculate loss cost (Reyes and
Elias 2019), a unitless index based on the ratio of total
indemnities to total liabilities in a given county-year.
Loss cost implicitly accounts for differences in USD
figures across years due to inflation, as well as differ-
ences across counties due to differences in total out-
put and coverage patterns.

2.1.4. Soil data
To aggregate soil data for each county in our ana-
lysis we first identified those areas in each county
that are primarily used for maize production. To do
so, we used the ‘Corn Frequency’ raster available at
USDA NASS’s CropScape portal, which reports how
many years between 2008 and 2017 each pixel was
used for maize production (Han et al 2014). We then
subset this raster to only those pixels in which maize
was produced for two or more years to identify pixels
from any field in whichmaize was grownwith relative
consistency but not opportunistically (e.g. in a high

price year), while also eliminating non-crop areas.
This subset of pixels was thenused to generate amask-
ing layer used in subsequent steps.

The gSSURGO database is spatially organized as
a series of discrete polygons referred to as map units
that are composed of different component soil series.
Associated with each soil series is characterization
data organized by pedological horizon, including soil
texture, soil organic matter, and measures of soil bio-
physical characteristics. As such, we first used the aqp
(Beaudette et al 2020) package in R to convert char-
acterization data for each component soil series to a
fixed depth increment of 0–30 cm to represent the
typical rooting zone of maize. We then calculated a
representative map unit value for each soil character-
istic soil organic matter (%), clay content (%), H3O+

concentration (mol), cation exchange capacity (meq
100 g soil−1), and available water capacity (%) by cal-
culating a map unit mean weighted by the relative
proportions of each component soil series in a map
unit. We then converted the data to a raster format
and used the masking layer described previously to
remove soil data in each county from areas where
maize is not consistently grown. Finally, we used these
masked rasters to calculate county-level means for all
soil properties we then used in our analyses.

2.1.5. Cropping system management
For the purposes of this study we did not include data
on the rates of different cropping systemmanagement
strategies or practices, such as mean fertilizer rate by
county or incidence of conservation tillage by county.
Such data are not available at the county level or on
a timestep that would make them sufficiently useful
for our analysis. For example, data on per area fertil-
izer use is available via USDA NASS only at the state
level, and questions on implementation of conserva-
tion agriculture practices were only recently included
in the agricultural census. Given these inconsisten-
cies in data, we could not account for management
effects with a fixed effect for each practice. Instead, we
accounted for them by implementing a random effect
for state (section 2.2). We argue that since farms in
the same state are generally more likely to implement
fertilizer rates and management practices similar to
other farms in their state than those out of their state,
our model accounts to some degree for broad differ-
ences in management. Whereas direct estimation of
the effect of differentmanagement practices would be
preferable, sufficient data simply do not exist and use
of current, sparser data could lead to flawed inference.

2.2. Data analysis
Initial data analysis demonstrated that the yield
response to SPEI begins to saturate above SPEI values
of 0, indicating that when the balance of precipitation
and evapotranspiration is negative, yields drop below
the typical yield potential of a given area. Addition-
ally, we found that when SPEI decreased (i.e. drought
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conditions became more severe) the impact of soil
organic matter was greater onmaize yield (Mg ha−1),
yield anomaly, and loss cost (supplementary inform-
ation). As such, we chose to subset our data into
different levels of drought severity based on SPEI
and then analyze each subset to understand how the
effect of soil organic matter on each outcome variable
changed as drought severity changed. Drought sever-
ity thresholds were calculated based on the global
mean and standard deviation of SPEI. Very severe
drought was defined as greater than two standard
deviations from the global mean (SPEI ⩽ −1.02);
severe drought as between one and two standard devi-
ations from the mean (−1.02 < SPEI⩽−0.46); mod-
erate drought as between one standard deviation from
the mean and the mean (−0.46 < SPEI ⩽ 0.10); and
normal conditions as greater than or equal to the
mean (SPEI > 0.10).

Within each of these drought subsets we then fit
a series of models wherein the dependent variable
in these models was either yield (Mg ha−1), yield
anomaly, or loss cost. Independent variables across
all models included soil organic matter, soil clay con-
tent, and soil H3O+ concentration. These variables
were chosen by fitting a multivariate linear model
with multiple potential independent variables then
assessing variance inflation factors to eliminate spuri-
ous, highly collinear variables.We also included a ran-
dom effect of state to account for possible impacts of
geographic differences in management and produc-
tion environment on model outcomes not accoun-
ted for in the data we collected. For yield and yield
anomaly, linear mixed effects models including all
possible interaction effects were fit using a restricted
maximum likelihood approach in the lme4 (Bates et al
2020) package in R. For loss cost, amixed effects Tobit
regression model was fit using a Newton–Raphson
maximization approach in the censReg (Henningsen
2020) package in R to account for the fact that loss
cost was left censored at a value of 0. Prior to model
fitting, all observations of each independent variable
were standardized so that coefficient estimates would
also be standardized. Data standardization was done
by subtracting the mean of a given variable from each
observation and then dividing that value by 2× the
standard deviation of that variable (Gelman 2008).

Finally, we conducted a series of confirmatory
path analyses to evaluate to what extent the impacts
of soil organic matter on maize yields were medi-
ated by their impacts on soil available water capa-
city and cation exchange capacity, a proxy variable for
soil fertility, under both drought and normal condi-
tions. First, we split data into those observations from
normal SPEI years (SPEI > 0.10) and drought SPEI
years (SPEI ⩽ 0.10), and then calculated the mean
yield (Mg ha−1) for each county under either set of
conditions. We then employed a piecewise structural
equation modeling approach using the piecewiseSEM
(Lefcheck et al 2019) package in R to fit models in

which the effects of soil organic matter were either
partially mediated or fully mediated by its effects on
available water capacity and cation exchange capa-
city. Briefly, the fully mediated SEM was such that
available water capacity and cation exchange capacity
were modeled as functions of soil organic matter and
yield was modeled as a function of available water
capacity and cation exchange capacity. Whereas, in
the partially mediated SEM, available water capacity
and cation exchange capacity were modeled the same
way, but soil organic matter was included as an addi-
tional independent variable for modeling yield. To
determine the most parsimonious model, we com-
pared models via an analysis of variance and on the
basis of AIC/BIC scores. Coefficients were extrac-
ted from the final model and standardized to then
assess whether or not effects of organic matter on
yields under drought were mediated by its impacts
on available water capacity and cation exchange capa-
city. An initial analysis with all data in either SPEI
category indicated a negative relationship between
cation exchange capacity and yields. When we manu-
ally inspected data we found that this result was the
consequence of outlying cation exchange capacity val-
ues, defined as being two standard deviations greater
than the mean (CEC ⩾ 31.9), with extremely high
clay content. As such, we removed these outliers for
the final path analysis to better estimate effects on
typical soils, but include results from a path ana-
lysis including these observations in supplementary
information.

3. Results and discussion

3.1. Maize yields and yield anomalies
We found that across all county-years and pos-
sible weather conditions, soil organic matter con-
tent was a strong positive predictor of yield. Soil
organic matter had a standardized marginal effect
of 0.83 with a standard error of 0.04, meaning an
increase of 1% soil organic matter was associated
with an increase in yields of 0.83 ± 0.04 Mg ha−1.
This observed relationship between soil organic
matter and yield is consistent with other studies
which show yield increases are associated with higher
levels of soil organic matter (Oldfield et al 2019).
Our analysis extends these observations by show-
ing that as drought conditions became more severe,
the marginal effect of soil organic matter on yields
increased (figure 1; table 1). For example, under
moderate drought conditions (−0.46⩽ SPEI < 0.12)
an increase of 1% soil organic matter was associated
with an increase in yields of 0.76± 0.07Mg ha−1, and
under very severe drought conditions (SPEI <−1.02)
a 2.2 ± 0.33 Mg ha−1 increase. Interaction effects
of other soil properties with soil organic matter also
emerged across the severe, moderate, and normal
drought categories (table 1). Sensitivity analyses
of these interaction effects revealed that in many
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Figure 1.Maize yields increase with soil organic matter content (%), with the effect becoming more pronounced with increasing
drought severity. Drought levels are based on the following ranges of SPEI: Very severe <−0.99; Severe⩾−0.99 <−0.44;
Moderate⩾−0.44 < 0.12; Normal⩾ 0.12. Numbers on each panel represent the marginal effect of soil organic matter for the
corresponding drought level and trendlines represent predicted yields based on that marginal effect.

Table 1. Results of linear mixed effects models across multiple levels of drought severity relating yield (Mg ha−1) to soil organic matter
(SOM, %), clay (%), and H3O+ concentration (mol). Coefficients for terms are standardized. Sample numbers for each drought level
are as follows: Very severe, n= 410; Severe, n= 1537; Moderate, n= 3998; Normal, n= 6431. Conditional coefficient of determination
for each model is as follows: Very severe, R2 = 0.53; Severe, R2 = 0.45; Moderate, R2 = 0.51; Normal, R2 = 0.59.

Drought Term Coefficient Std. error p

SOM 2.1976 0.3339 < 0.0001
Clay 0.4999 0.3355 0.1371
H3O

+ 0.5665 0.6013 0.3467
SOM:Clay 0.6549 0.6312 0.3001
SOM:H3O

+ 0.0426 0.9302 0.9635
Clay:H3O

+ 1.0140 0.9089 0.2653

Very severe

SOM:Clay:H3O
+ 0.9120 1.6866 0.5890

SOM 1.1820 0.1270 < 0.0001
Clay −0.1776 0.1340 0.1852
H3O

+ −0.3637 0.1716 0.0342
SOM:Clay 0.8457 0.2340 0.0003
SOM:H3O

+ −0.5317 0.2429 0.0288
Clay:H3O

+ −0.0274 0.2900 0.9249

Severe

SOM:Clay:H3O
+ −1.6099 0.5223 0.0021

SOM 0.7616 0.0687 < 0.0001
Clay 0.3132 0.0718 < 0.0001
H3O

+ −0.3794 0.0949 0.0001
SOM:Clay 0.6793 0.1189 < 0.0001
SOM:H3O

+ −0.2837 0.1264 0.0249
Clay:H3O

+ −0.2869 0.1549 0.0640

Moderate

SOM:Clay:H3O
+ −0.5372 0.2941 0.0678

SOM 0.7266 0.0514 < 0.0001
Clay 0.2085 0.0577 0.0003
H3O

+ −0.5189 0.0856 < 0.0001
SOM:Clay 0.5992 0.0985 < 0.0001
SOM:H3O

+ −0.1456 0.1219 0.2322
Clay:H3O

+ −0.2103 0.1445 0.1456

Normal

SOM:Clay:H3O
+ 0.1430 0.2600 0.5822

cases outlying observations were responsible for
the interaction. When those outliers were removed,
the size and significance of interaction effects
and corresponding main effects were diminished

(supplementary information (available online at
stacks.iop.org/ERL/16/044018/mmedia)). However,
interaction effects of soil organic matter and clay
content were robust to outlier observations and
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indicated that the effect of soil organic matter on
yields remained positive at higher levels of clay but
was diminished relative to lower clay soils. This result
is consistent with broad-scale studies which demon-
strate the primary importance of clay on the water
holding capacity of soils and the diminished impact
of organic matter when clay is high (Libohova et al
2018, Minasny and McBratney 2018). Nonetheless,
our results show the effect of soil organic matter is
still positive, regardless of clay content, and improves
maize yields, and that soil organicmatter was the only
soil property that consistently buffered yields against
drought conditions.

To more fully evaluate whether this greater rel-
ative yield advantage under drought is because soil
organic matter protects against drought-induced
yield losses, we also evaluated the relationship
between soil organic matter and annual yield anom-
aly, the ratio of observed yield to expected yield
estimated from long-term trends (Lu et al 2017).
Under very severe drought conditions (SPEI <−1.01)
an increase of 1% soil organic matter content
was associated with a mitigation of yield losses
of 12 ± 0.03%, under severe drought conditions
(−1.01 ⩽ SPEI < −0.46) this effect decreased to a
5 ± 0.01% mitigation, and under moderate drought
(−0.46 ⩽ SPEI < 0.10) the effect was non-significant
(table S2).

Further examination of yield anomaly data
revealed that counties with lower soil organic mat-
ter content have high interannual variability, outper-
forming historical yield trends in favorable conditions
but experiencing greater losses relative to historical
trends under adverse conditions. Whereas counties
with high soil organic matter have low interan-
nual variability and consistently yield near expected
yields based on historical trends, even under adverse
drought conditions. For example, in counties with
greater than 2.5% soil organic matter content, the
meanof soil organicmatter content across all counties
in this study, the interquartile range for yield anom-
alies was 98%–107% of expected yield under normal
conditions and 91%–104% under all drought condi-
tions. By contrast, counties with lower than 2.5% soil
organicmatter ranged from 99% to 114% of expected
yield under normal conditions and 82%–104%under
all drought conditions. This pattern is consistent with
previous studies demonstrating that higher soil car-
bon is associated with lower long-term interannual
yield variability (Pan et al 2009, Williams et al 2016).
Our findings offer additional insight by demonstrat-
ing that those reductions in interannual variability
are partly explained by the association of higher soil
organic matter and lower yield losses under drought
conditions.

3.2. Crop insurance
Given the decrease in yield risk associated with
greater levels of soil organic matter, we expected that

Figure 2. Higher levels of soil organic matter were
associated with lower loss cost, the unitless ratio of crop
insurance indemnities to liabilities, under drought
conditions. Figure 2(a) is a map of mean soil organic matter
content across counties (n= 730) within a subset of states
(PA, WI, MI, MN, IL, IN, IA, OH, MO, and KY) included
in this study. Figure 2(b) is a map of mean loss cost under
all drought conditions in those same counties. The
marginal effect of soil organic matter on loss cost under all
drought conditions is−6.47 (σ = 0.84, p < 0.001).

lower yield risk would be reflected in crop insur-
ance payouts to farmers. Specifically, we expected that
counties with higher soil organic matter would have
lower loss cost (Reyes and Elias 2019), a metric based
on the ratio of total indemnities to total liabilities.
Our results support this expectation, showing that
soil organicmatter is associatedwith reduced loss cost
under drought conditions and that themarginal effect
of soil organic matter increases as drought severity
increases (figure 2). Under very severe drought con-
ditions (SPEI ⩽ −1.02), an increase in soil organic
matter of 1% was associated with a 36 ± 4.76%
reduction in loss cost (table S3). Similar to yield
anomaly, though, this effect decreases sharply as SPEI
approaches normal. Soil organic matter was associ-
ated with an 8.4± 1.41% reduction in loss cost under
severe drought conditions (−1.02 < SPEI ⩽ −0.46)
and just a 4 ± 0.73% reduction under moderate
drought (−0.46 < SPEI ⩽ 0.10). Nevertheless, given
the expectation of increasing frequency of severe
droughts (Adams et al 1990, Meehl et al 2007, Hay-
hoe et al 2010), our results suggest that it would be
strategic for rain-fed US agriculture to directly incor-
porate differences in soil properties into policy and
insurance planning for yield resilience.

3.3. Path analyses
The fact that we found that soil organic matter
appeared to impart such effective protection against
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Figure 3. Increases in yield under drought associated with
increasing soil organic matter appear only partially
mediated by increases to soil available water capacity
induced by higher soil organic matter. Figure 3 is a diagram
of a structural equation model of best fit developed during a
series of confirmatory pathway analyses. Numbers on each
arrow represent standardized coefficients of the relationship
between the variables connected, and the direction of
arrows indicate variable dependence. Solid lines indicate
statistically significant (p⩽ 0.05) relationships and dotted
lines indicate non-significant relationships.

yield losses under severe drought appears inconsistent
with results from recent studies using large soil data-
bases into how soil organicmatter influences the plant
available water capacity in soils. Briefly, the ability of
soils to provide water to plants is often estimated as
‘available water capacity’, which typically is the differ-
ence in water content of saturated soil samples dried
on pressure plates at −1500 kPa and −33 kPa (Soil
Survey Staff 2015, Cassel and Nielsen 2018). These
analyses have suggested that the net impact of soil
organicmatter on available water capacity is relatively
modest and contingent on soil texture (Libohova et al
2018, Minasny and McBratney 2018). To investigate
potential discrepancies in conclusions between these
past studies and our work, we performed a series of
confirmatory path analyses (Shipley 2009, Lefcheck
2019) to investigate the extent to which soil organic
matter associations with yields under drought and
non-drought conditions are related to its influence on
available water capacity and cation exchange capacity,
used here as a proxymeasure of soil fertility.We found
that soil organic matter was strongly associated with
cation exchange capacity but only weakly associated
with available water capacity, and under both drought
and non-drought conditions, cation exchange capa-
city and available water capacity were positively asso-
ciated with yields (figure 3). However, our confirmat-
ory path analysis also suggested that soil organic mat-
ter had an independent, unmediated positive effect on
yields under both drought and non-drought condi-
tions (table S4).

These results confirm that soil organic matter has
a positive influence on yields via its effects on available
water capacity and soil fertility. But it also suggests
that soil organic matter likely influences plant water

availability and soil fertility in ways not captured
by how those properties are commonly measured.
Although our analyses cannot resolve these additional
influences, we do know that soil organicmatter affects
other important soil biophysical properties, such as
porosity, bulk density, and water infiltration (Boyle
et al 1989, Franzluebbers 2002, Lado et al 2004, Libo-
hova et al 2018). Favorable changes in all of these
properties may increase the soil volume from which
plants can drawwater andmay effectively increase the
supply of water to plants between rain events. In addi-
tion, soil organic matter is also an important source
of key nutrients for plant growth. Under drought con-
ditions, water transpiration and radiation efficiency
in maize plants increase with increasing nitrogen fer-
tilizer use (Teixeira et al 2014) and nitrogen fertilizer
can be important formaintaining keymetabolic func-
tions and increasing yield (Zhang et al 2007). Fur-
ther work is required to ascertain whether soil organic
matter has similar, nutrient-mediated effects under
drought conditions.

3.4. Broader implications
Our analyses are based on subcontinental-scale vari-
ation in soil organic matter and yield outcomes.
As such, they cannot be used to argue directly
that field-scale increases in soil organic matter
achieved through conservation agricultural practices
such as cover-cropping or reduced tillage, will lead
to the same level of meaningful yield protection
under drought. More specifically, the demonstrated
increases in soil organic matter such practices often
achieve is smaller than the relative range of soil
organic matter content represented in this study, and
the magnitude of the effect of a soil organic mat-
ter demonstrated here may not be maintained at the
field scale. Similarly, our results are specific to the
‘corn belt’ region of the US and we only examined
the impact of soil organic matter under drought on
maize. Much of this region comprises relatively high
organic matter soils, and maize is a drought sensit-
ive crop. Last, our results likely mask substantial vari-
ation in management practices (i.e. fertilizer regimes,
tillage, cover crops, etc) that could also impart resili-
ence on rain-fedmaize systems. Additional farm-scale
evidence is required to understand whether increases
in soil organic matter over time are associated with
resilience to drought conditions at the farm scale,
whether or not management practices can impart
similar resilience, and whether or not these results are
generalizable to other geographies, agro-ecological
zones, and crops.

Nevertheless, our results do appear to have the
potential to directly inform agricultural financing
programs and policy in theUS. At present, knowledge
of risk is incorporated into US Federal Crop Insur-
ance Programs (FCIP) only indirectly. Premiums are
based on the Actual Production History (APH) of a
given area and farm, and current policy dictates that
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APH be calculated based on a 10 year trend excluding
years in which yield losses were extreme (Bryant and
O’Connor 2017). While differences in soil organic
matter and other biophysical limitations to resilience
are arguably endogenous to these yield data, APH
may become less predictive of risk under future cli-
mate scenarios where drought frequency is predicted
to increase. It may therefore be more strategic for
policy planning for agricultural resilience to explicitly
consider differences in soil properties, such as organic
matter levels, across counties. For instance, if maize
yields in counties with low soil organic matter are
particularly vulnerable to drought, it may make more
sense to incentivize a transition to crops that aremore
appropriate to soil and predicted climate conditions
in those counties, than to focus exclusively on eco-
nomic protection through insurance.

Furthermore, while more extensive evidence is
needed to understand if the trends we identified at the
aggregate-level scale down to the farm, we argue that
our findings generally support the notion that large-
scale efforts to restore soil organic matter levels at
regional/continental scales should improve the resi-
lience of agricultural systems. Such a notion is key to
soil health initiatives aimed at increasing agricultural
resilience by rebuilding soil organic matter (Bradford
et al 2019) and initiatives such as 4 ‰ that argue
the co-benefits of increased soil organic matter are an
important additional incentive to advancing soil car-
bon sequestration (Lal 2016, Chenu et al 2019).

4. Conclusions

Our analyses demonstrate that counties with higher
mean soil organic matter content are associated with
lower maize yield loss due to drought, that this
relationship is strongest under severe drought con-
ditions, and this increased yield protection trans-
lates to lower crop insurance payouts under drought
conditions. Furthermore, we demonstrate that these
impacts are not solely mediated through the impact
of soil organic matter on conventional measures of
plant available water, but likely occur through addi-
tional pathways that influence soil water supply and
use by plants, which appear to collectively provide
the yield protection benefits we document here. At
least at the county level then for US rain-fed maize
agriculture, soil organic matter content appears to
be an important predictor of resilience to the type
of drought conditions that are likely to occur more
frequently under future climate scenarios. Further
work should investigate whether similar benefits of
soil organic matter for yield protection are afforded
by agricultural managements that build organic mat-
ter in agricultural soils worldwide. In the interim,
our analyses highlight the potential value of integrat-
ing soil information into resilience planning as agri-
cultural outcomes become more uncertain with the

increasing incidence and severity of extreme weather
events.
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