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Abstract
Low-carbon pathways consistent with the 2 ◦C and 1.5 ◦C long-term climate goals defined in the
Paris Agreement are likely to induce substantial co-benefits for air pollution and associated health
impacts. In this analysis, using five global integrated assessment models, we quantify the emission
reductions in key air pollutants resulting from the decarbonization of energy systems and the
resulting changes in premature mortality attributed to the exposure to ambient concentrations of
fine particulate matter. The emission reductions differ by sectors. Sulfur emissions are mainly
reduced from power plants and industry, cuts in nitrogen oxides are dominated by the transport
sector, and the largest abatement of primary fine particles is achieved in the residential sector. The
analysis also shows that health benefits are the largest when policies addressing climate change
mitigation and stringent air pollution controls are coordinated. We decompose the key factors that
determine the extent of health co-benefits, focusing on Asia: changes in emissions, urbanization
rates, population growth and ageing. Demographic processes, particularly due to ageing
population, counteract in many regions the mortality reductions realized through lower emissions.

1. Introduction

The central goal of the Paris Agreement—adopted
in 2015 by the United Nations Framework Con-
vention on Climate Change—is to intensify global
efforts to mitigate risks of climate change by keep-
ing a global temperature rise within century well
below 2 ◦C relative to pre-industrial levels, and to
push further towards strategies to limit the rise in
temperature below 1.5 ◦C [1]. Literature shows that
reaching the Paris targets will require a major trans-
formation of the energy and land-use systems. Spe-
cifically, it implies several or all of the following:

(a) reaching net zero carbon dioxide (CO2) emis-
sions globally around the middle of the century
and simultaneous deep cuts in emissions of non-
CO2 greenhouse gases (GHGs); (b) restructuring the
energy system through demand reductions, decar-
bonization of power and fuel supply, electrification of
energy end-use, (c) major reductions in agricultural
GHG emissions, (d) possibly removal of CO2 from
the atmosphere, (e) and societal changes towards
low demand patterns for land- and GHG-intensive
goods. The transformations required to reach the
1.5 ◦C target need to be more rapid than for a 2 ◦C
target [2, 3].
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Numerous studies have pointed out that strin-
gent GHG-mitigation strategies as outlined above
may induce substantial co-benefits for air pollution
and associated health impacts, and that the potential
for synergies grows with the ambition level of the car-
bon mitigation targets [4–12]. The quantification of
implications of climate strategies for air quality (AQ)
is particularly relevant for policymakers due to severe
impacts of air pollution on human health, which cur-
rently accounts worldwide for the most health dam-
aging burden associated with environmental pollu-
tion [13]. The health risk posed by air pollution
impacts both urban and rural communities, with the
total mortality burden from indoor and ambient air
pollution being fifth behind dietary, high blood pres-
sure, tobacco and diabetes risks [14].

Recent estimates suggest that about 5–7 mil-
lion premature deaths worldwide are attributable to
exposure to ambient and indoor air pollution annu-
ally (about equally shared), whereby emerging eco-
nomies inAsia suffer themost [13, 15–19]. TheWorld
Health Organization (WHO) Guideline [14] reports
that only <10% of the global population are currently
exposed to levels of air pollution that do not pose
a significant risk to their health. While ambient air
pollution is especially severe in some of the fastest-
growing urban regions, around three billion people
globally continue to depend on burning solid fuels
in their homes for cooking and heating, resulting in
very high levels of indoor air pollution. In 2013, it
was estimated that exposure to ambient and indoor
air pollution cost the world’s economy someUS$ 5.11
trillion in welfare losses [20].

Studies quantifying the impacts of 2 ◦Cmitigation
pathways on air pollution and health [6, 9, 21, 22]
conclude that health co-benefits are substantial in
terms of decreased exposure levels, premature mor-
tality or abatement costs. Newer comparisons indic-
ate that mitigation pathways consistent with 1.5 ◦C
would result in even stronger synergetic effects for air
pollution compared to pathways that are consistent
with 2 ◦C [23–26]—e.g. that worldwide health bene-
fits over the century for 1.5 ◦C pathways could be in
the range of 110–190 million fewer premature deaths
compared to 2 ◦C pathways [24]. Consistently across
the literature sources, the synergies for air pollu-
tion are highest in the developing world, particularly
in Asia [27–29], although the demography-related
factors were not explicitly analyzed. In addition to sig-
nificant health benefits, there are also economic gains
and cost savings from the emissionmitigation that are
related to reduced mortality/morbidity and environ-
mental impacts [12, 30], as well as to lower emission
control costs. McCollum et al [31] estimated reduc-
tions in the cumulative investment needs in air pollu-
tion control technologies by about 35% globally until
2030 in 1.5 ◦C pathways.

In this paper we advance the ongoing research
by a robust multi-model comparison of air pollution

impacts of 1.5 ◦C and 2 ◦C pathways in combina-
tion with changing bottom-up assumptions on AQ
policies in an internally consistent modelling frame-
work. To fill lacking insights from the aforemen-
tioned literature on the role of future demographic
processes, using a novel decomposition approach we
highlight impacts of underlyingmid-termpopulation
dynamics in the climate mitigation scenarios for the
resulting health co-benefits. In this analysis, air pol-
lution and associated cost impacts are quantified and
reported globally, whereas Asia and individual Asian
countries are a focus domain for the assessment of
health impacts.

The structure of the paper is as follows: in
the methodology section the set of modelling tools
employed in this study is described together with the
key assumptions behind the scenarios under exam-
ination. The next section summarizes modeling res-
ults in terms of sector- and region-specific changes in
the emission levels and pollution control costs. There-
after, co-benefits are quantified for the ambient AQ
and for associated mortality impacts. Health implic-
ations of the decarbonization pathways are analyzed
further by decomposing key drivers responsible for
changes in the future number of premature deaths.
Discussion and conclusion sections summarize the
modeling insights and policy messages derived from
this study.

2. Methods

Air pollution related implications of climate pathways
are computed using the GHG–Air Pollution Interac-
tions and Synergies (GAINS)model [32], whereby the
underlying projections of activity in the energy sys-
tem originate from five global integrated assessment
models (IAMs):

(a) AIM/CGE (Asia-Pacific Integrated Model) [33],
(b) IMAGE (Integrated Model to Assess the Global

Environment) [34],
(c) MESSAGEix-GLOBIOM (Model for Energy

Supply Strategy Alternatives and their Gen-
eral Environmental Impact—Global Biosphere
Management Model) [35],

(d) REMIND-MAgPIE (Regional Model of Invest-
ments and Development) [36],

(e) WITCH-GLOBIOM (World Induced Technical
Change Hybrid) [37].

Technical documentation for each model is sum-
marized in the supplementary information (SI)
(available online at stacks.iop.org/ERL/16/045005/
mmedia) and can also be found in [38]. Energy scen-
arios corresponding to respective climate targets have
been produced by IAMs in the form of aggregated
energy balances. For this study, these have been con-
verted into the GAINS structure following the down-
scaling procedures reported by [4, 21, 39]. Each of
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the models has a different geographical resolution,
therefore the data conversion followed a spatial map-
ping of IAMs and GAINS regions. Mapping matrices
for activity variables and regions used for a linkage
between IAMs and GAINS are provided in SI. Fur-
ther details on individual IAMs as well as on the scen-
ario design are provided in an interactive Scenario
Explorer [40].

Once implemented in GAINS, the activity projec-
tions form a basis for the calculation of emission tra-
jectories, pollution control costs, concentration levels
and associated health impacts. The GAINSmethodo-
logy [32, 41] allows for quantification of the drivers,
mechanisms and impacts of emissions, and explores
options for reducing impacts on health or environ-
ment. Projections of future economic activity and
energy use are derived from individual IAMs and
agricultural production projections originate from
the Food and Agriculture Organization of the United
Nations (FAO) [42]. Current emissions are estimated
based on international activity statistics, with emis-
sion factors reflecting local conditions in 180 regions/
states/provinces worldwide.

The GAINS model allows for simulation of
impacts of various strategies to control air pollu-
tion. The current legislation (CLE) strategy assumes
country- and sector-relevant policies and meas-
ures that are already adopted today or have been
announced as intended policies. For those that have
been announced, the extent and timing of their
implementation is assessed according to the pre-
vailing institutional, political and economic circum-
stances. On the other hand, the maximum feasible
reduction (MFR) strategy assumes highest feasible
application rates for the most efficient abatement
technologies and policy practices to reduce pollut-
ant emissions. It implies that—for example in the
1.5 ◦C-world—the energy investment decisions take
into account air pollution and climate goals at the
same time, in order to avoid undesired lock-in effects
and reduce the overall costs of compliance. Details
on CLE and MFR control strategies are discussed in
[21, 43] and in supplementary information (S4).

Through the implementation in GAINS it is pos-
sible to quantify impacts of low carbon pathways
for the overall air pollution abatement costs. Within
the GAINS cost concept, the model computes incre-
mental expenditures needed to install and operate the
add-on abatement technologies/measures such that
countries comply with their respective AQ legisla-
tion. The expenditures on emission controls are dif-
ferentiated into investments, fixed operating costs,
and variable operating costs. Some of the cost- and
technology-characteristics are common for all coun-
tries, including removal efficiencies, unit investment
costs, fixed operation and maintenance costs, vari-
able cost components like extra demand for labor,
energy, and materials. A 4% discount rate is used
to annualize the investment cost over the lifetime

of control equipment. The calculation routine takes
into account several country-specific parameters, for
instance, average boiler sizes, capacity/vehicles utiliz-
ation rates, emission factors [32, 44]. Because GAINS
computes additional costs of air pollutant abatement,
the cost parameters in GAINS are not harmonized
with those used by IAMs and do not enter their
respective cost functions.

Considering several hundred reduction options,
their impacts on ambient AQ and population expos-
ure are computed for both urban areas and surround-
ing rural regions, based on the results of the European
Monitoring and Evaluation Programme atmospheric
chemistry and transport model (for more details see
chapter 2 of [27]). A linear approximation of the
full model is used to estimate ambient fine particu-
late matter (PM2.5) from emissions of primary PM
(PPM) and secondary PM precursors (SO2, NOx,
NH3, VOC) on a 0.5◦ × 0.5◦ grid. To adequately rep-
resent elevated concentrations in cities, a downscal-
ing of PPM concentrations is done for urban areas
with a population >100 000 in 2010 [45]. Here, PPM
concentrations arising from low-level sources are re-
distributed within the grid cell proportional to the
emission density, based on a regression between emis-
sion and concentration increments. Although high
concentrations of other pollutants, such as ozone
and nitrogen oxides, are also known for their health
impacts we focus on PM2.5 which is the pollutant with
the largest impact on human mortality [46, 47].

Health impacts from exposure to PM2.5 in ambi-
ent air are quantified following the method adopted
by the WHO for the 2016 Global Burden of Ambient
Air Pollution study [48]. Premature deaths are calcu-
lated as attributable fraction of total disease- and age-
specific deaths for five diseases: ischemic heart dis-
ease, chronic obstructive pulmonary disease, stroke,
lung cancer, and acute lower respiratory infections.
The population attributable fraction (PAFdca) of air-
pollution related deaths from disease d in country c
and age a are calculated as

PAFdca =

∑
i

popci
popc

(RRdai − 1)

1+
∑
i

popci
popc

(RRdai − 1)
(1)

where i represents the grid cells hosting population
popci belonging to country c. RRdai is the disease and
age specific relative risk as calculated from the integ-
rated exposure response functions (IERs) for PM2.5

concentration levels in the respective spatial unit (grid
cell). IERs correspond to those developed by the GBD
2013 assessment (updated from [49]) and used in the
WHO 2016 Burden of Ambient Air Pollution study
[13]. Premature deaths (pd) attributable to ambi-
ent PM2.5 exposure are calculated by multiplying the
PAFdca from equation (1) with age specific baseline
cases of deaths ddca from disease d in country c:
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pddca = PAFdca× ddca. (2)

Baseline age specific mortality projections are taken
from UNWorld Population prospects (2010 edition)
[50], to which age specific shares of disease contribu-
tions to total deaths in 2010 are applied as estimated
by the Global Burden of Disease (GBD) 2013 ana-
lysis [16, 47]. We assume that while total age-specific
deaths vary according to the UN projections, the rel-
ative shares of individual diseases contributing to age-
specific deaths remain unchanged in the future. The
analysis in this study is restricted to premature mor-
tality and does not address the morbidity impacts of
pollution. Furthermore, impacts of indoor air pollu-
tion are not considered in this assessment.

Several factors determine the trends in premature
deaths—in particular, there is an interplay between
changes in emissions driving ambient concentra-
tions, and changes in population structure which
in many cases lead to more people in vulnerable
high-age groups. To explain the modelled trends
of PM2.5-related health impacts over time (t) and
across the different scenarios, we separate contribu-
tions from emission changes, from urbanization, and
from demographic changes (population growth and
ageing). Writing the total (relative) change of annual
PM2.5 related deaths pd from 2015 to 2050 as

pd(t1) = pd(t0)× femis × furb × fpopgrowth × fageing.
(3)

We can separate each of these determining multiplic-
ative factors f. A series of sensitivity calculations was
conducted for this purpose, inwhich all possible com-
binations of 2015 and 2050 values were used for the
different input parameters emissions (emiss), urban-
ization rate (urb), population size (popgrowth), pop-
ulation age structure (ageing). The relative change in
premature deaths between 2015 and 2050 was then
evaluated for each parameter (n) and each scenario
individually, with the other parameters left constant
and set to all possible combinations, to derive differ-
ent versions fnscj of each factor fn in scenario s and
country c, (j is a running index over the six possible
settings of the other parameters). Owing to the com-
plexity of the health impact calculations, it is not self-
evident that it is possible to use a formulation with
independent (commutative) factors as in equation
(3). However, we find that the values of fnsc are quite
stable across all such combinations j—in other words,
the factors are independent of each other—and thus
we can use their averages fnsc as robust indicators
to describe the relative influences of the different
determinants.

2.1. Scenarios
Five scenarios examined in this study include the
National Policies (NPi) scenario that considers the
current energy and climate policies adopted by G20
countries up to 2030 with an equivalent carbon

emission mitigation effort thereafter. This scenario
serves as a reference in this study. Nationally Determ-
ined Contributions (NDC) assumes implementation
of country specific NDCs by 2030, with a continu-
ation of equivalent global climate action after 2030.
Well Below 2 Degrees (2 ◦C) and Toward 1.5 Degrees
(1.5 ◦C) aim at limiting the increase in global aver-
age temperature to 2 ◦C and 1.5 ◦C above the pre-
industrial level, over the period until 2100. The NPi,
NDC, 2 ◦C and 1.5 ◦C scenarios are combined with
a set of air pollution policies that allows for a com-
pliance with the CLE for air protection in each coun-
try. The fifth scenario−1.5 ◦C+MFR—assumes the
same climate target as in the 1.5 ◦C case, while to
achieve the MFR in air pollutants the best available
technologies and abatementmeasures are applied. All
scenarios listed above are based on the SSP2 ‘middle-
of-the-road’ narrative for future societal develop-
ments described in detail in [51]. Assumptions for
each scenario are summarized in table 1 and further
information is reported by [31, 52] and CD-LINKS
Scenario Explorer [40].

As the key focus of this paper are implications
of climate mitigation strategies and demographic
trends on air pollution related impacts, we do not
provide descriptions of the evolution of energy sys-
tems in eachmodel and the resultingCO2 trajectories,
however, underlying projections including socioeco-
nomic drivers, are accessible in [40] and in SI (S5).

3. Results

3.1. Global trends in selected air pollutant
emissions
In this section, we focus on the future trajectories of
three key air pollutants that are main contributors to
ambient PM2.5; primary particulate matter (PM2.5)
and precursors of secondary PM (SO2 and NOx).
Owing to the current AQ legislation, emissions of all
three pollutants remain flat or decline by 2030 in the
NPi scenario (figure 1), but without further air pollu-
tion controls or more stringent climate policies sub-
sequently increase for SO2 and NOx towards 2050.
Increase in emissions of primary PM2.5 by 2050 is less
pronounced for all models. Emissions in the NDC
scenario are lower than in NPi, however, the growing
trend beyond 2030 remains comparable to the refer-
ence. Significant decline of emissions, relative to NPi,
is observed in the 2 ◦C scenario, and the reductions
are even greater in the 1.5 ◦C case, reaching about
20% to 40% for SO2 and NOx, and about 10% to
30% for PM2.5, relative to 2015. Ranges in the emis-
sion reductions achieved by the five models are lar-
ger for SO2 and NOx as compared to PM2.5, indic-
ating significant differences in restructuring of the
energy systems across models. Combining the 1.5 ◦C
climate target with the MFR controls strategy brings
about a rapid decline of each pollutant (70% to 80%)
by 2030 and this reduction is maintained until 2050.
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Table 1. Definition of scenarios.

ACRONYM Climate policies Air pollution policies

NPi National Policies until 2030, equivalent effort there-
after

Current legislation

NDC National Policies until 2020, after which implementa-
tion of Nationally Determined Contributions (NDCs)
until 2025/2030, equivalent effort thereafter

Current legislation

2 ◦C National Policies until 2020, as of 2020 staying within
1000 GtCO2 budget for 2011–2100 period, corres-
ponding to a >66% chance of staying below 2 ◦C
throughout 21st century

Current legislation

1.5 ◦C National Policies until 2020, as of 2020 staying within
400 GtCO2 budget for 2011–2100 period, correspond-
ing to a >66% chance of staying below 1.5 ◦C in 2100

Current legislation

1.5 ◦C+MFR As in 1.5 ◦C Maximum feasible reduction

Emissions in the 1.5 ◦C+MFR scenario represent the
low end of emissions levels in this modeling exercise
(red line in figure 1—maximum reductions across
models). This illustrates that a combination of strin-
gent climate policy and air pollution controlmeasures
results in the highest AQ benefits.

Pollutant-specific reductions in the emission
levels relative to 2015 are displayed in figure 2 in rela-
tion to the changes in CO2 emissions in the period up
to 2050 in order to illustrate effects of climate- versus
air pollution-policies. Three scenarios are depicted:
2 ◦C, 1.5 ◦C and 1.5 ◦C + MFR. In the first two
cases with the CLE assumptions, differences in relat-
ive reductions for SO2 and NOx reflect the structural
changes in individual models under the 2 ◦C/1.5 ◦C
climate targets (fuel mix changes, efficiency meas-
ures, demand reductions). It is observed that the rel-
ative changes for PM2.5 are less pronounced and dif-
ferences across IAMs are smaller because of lesser
impacts of low carbon strategies on key PM-sources
(e.g. households). The combination of 1.5 ◦C path-
way with MFR strategy results in relative reductions
that are nearly proportional to the CO2 decline until
2040 but they are attenuated thereafter, in the period
2040–2050, by when the key polluting sources, such
as fossil fired power plants, are practically eliminated
from the energy system.

Different emitting sectors contribute to the
changes in emission levels for each pollutant. Sectoral
contributions to the emission reductions induced by
the climate policies as computed inGAINS for the five
models are depicted in figure 3. For SO2, the power
and industry sectors are the dominant sources of
emission cuts due to a rapid phasing out of fossil fuels
from the energy mix by 2050. Transport contributes
the largest share of the reductions of NOx in all mod-
els except WITCH, which shows significantly lower
transport activity and also NOx emissions already in
the NPi scenario with a reduced need for electrifica-
tion in the 2 ◦C and 1.5 ◦C scenarios. The dominant
source of PM2.5 emissions across all models and scen-
arios in 2050 is biomass burning in the residential
sector. However, this sector is less affected by climate

policies as compared to other sources—except for
REMIND, which projects the strongest reduction in
residential biomass use. In some cases (particularly
for IMAGE) emissions even increase due to a higher
biomass demand in the 2 ◦C and 1.5 ◦C scenarios.
On the other hand, the adoption of the MFR meas-
ures combined with the 1.5 ◦C structural changes in
2050 results in rapid PM2.5 declines in each model,
where the industry, residential and other sources
(i.e. waste, agriculture) play the key role in the abate-
ment process.

The co-benefits of climate strategies for abating
air pollutants are significantly larger in the devel-
oping world compared to the industrialized regions
(figure 4). Besides the structural differences of the
economies, this is also associated with the exist-
ing air pollution policies and regulations that affect
the overall mitigation potential originating from the
decarbonization of the energy system in all regions.
The common pattern emerging from our simula-
tions is that Asian countries account for the largest
share of emission reductions in absolute terms, fol-
lowed by the Middle East and Africa. An excep-
tion is the SO2 abatement reported for the WITCH
and MESSAGE model, where the reforming indus-
trialized economies (REF) achieve higher reductions
when compared to other IAMs. It is noted that in
per capita terms, reductions by regions converge
over time.

3.2. Cost impacts
In theNPi scenario, the abatement cost reach 0.7–0.95
trillion EUR (€) in 2050, while this cost is reduced
by 25% to 50% in the 2 ◦C scenario and to 40% to
70% in the 1.5 ◦C scenario combined with the CLE
assumptions. As can be seen in figure 5, the domin-
ant share of cost savings is reported for the transport
sector, followed by power generation and industry.
The cost co-benefits are significantly reduced in the
1.5 ◦C+MFR case due to an adoption of more costly
measures, which in addition control air pollution not
directly impacted by the climate target (e.g. industrial
processes and waste).

5



Environ. Res. Lett. 16 (2021) 045005 P Rafaj et al

Figure 1. Ranges and averages of global projected change in emissions of three PM2.5 precursors for different scenarios, relative to
2015.

Figure 2. Ranges of global reductions in SO2, NOx and PM2.5 relative to the average CO2 reductions in comparison to the year
2015, in 2 ◦C, 1.5 ◦C and 1.5 ◦C+MFR scenarios, for the period 2015–2050.

Cost implications of the selected low carbon scen-
arios are illustrated further in figure 6, where the
savings in control costs are plotted in relation to the
CO2 abated in 2050 for each IAM. For three mod-
els (AIM, IMAGE, MESSAGE), these reductions are
quantified in average at about 10€/tCO2 to 12€/tCO2

for 2 ◦C and 1.5 ◦C scenarios, respectively. Cost sav-
ings (as well air pollutant emission reductions) for
the other two models (REMIND, WITCH) are com-
paratively smaller (5–6 €/tCO2), which is explained
by a combination of lower transport demand reduc-
tions and favorable fuel mix changes in the transport
sector relative to NPi that in turn results in less co-
benefits under mitigation strategies. Adoption of the
MFR strategies over the 1.5 ◦C target (the red square
in the graph) reduces the cost gains between 20%
(AIM) to 80% (WITCH).

In the right panel of figure 6, the total air pollution
control costs are shown as a fraction of global gross
domestic product (GDP). In the NPi scenario, the
adoption of end-of-pipe measures cost 0.6%–0.8% of

GDP in 2050, while these expenditures are reduced in
average to 0.3%–0.4% in 1.5 ◦C and 2 ◦C scenarios.
The implementation of MFR controls leads to overall
increase in air pollution control costs that partially
offset the cost co-benefits induced by the decarboniz-
ation of the energy system. However, economic bene-
fits could be significantly greater if the effects of lower
mortality are monetized and internalized in the cost
calculations [53, 54].

3.3. Impacts on AQ
For quantifying impacts on ambient PM2.5 concen-
trations and relatedmortality, we focus onAsia due to
the high policy relevance for that region. This allows
for a more detailed analysis of country level differ-
ences in a very diverse world region which contains
several countries ranking among the highest ambi-
ent PM2.5 exposures worldwide. Figure 7 illustrates
calculated PM2.5 concentrations for the year 2015,
projected concentrations in NPi for 2050, as well as
reductions under 1.5 ◦C and 1.5 ◦C+MFR scenarios

6
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Figure 3. Contribution of sectors to global emission reductions (colored bars) by models and climate policy scenarios in 2050
relative to NPi. Black bar represents the remaining emissions in each scenario.

(based on results for MESSAGE) in 2050. The highest
concentration levels in 2015 and in 2050 (NPi) are
estimated for the Indo-Gangetic plain in northern
India, northeastern China, and parts of Pakistan and
Afghanistan. Contrary to the first two regions, where
the concentrations drop in 2050 is evident in 1.5 ◦C
and evenmore so in 1.5 ◦C+MFR scenarios, the high
concentrations in Western Asia, as well as parts of

Northern China andMongolia, are mostly influenced
by wind-blown dust. Therefore, concentrations in
these areas do not decrease noticeably even under
strong cuts of anthropogenic emissions as in the 2050
policy scenarios.

However, most of these arid areas that show up
as PM2.5 hot spots are very sparsely populated and
thus play little role for overall population exposure,
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Figure 4. Contribution of regions to the emission reductions (colored bars) by models and climate policy scenarios in 2050
relative to NPi. The black bar represents the remaining emissions in each scenario. OECD= the OECD 1990 countries, EU
members/candidates; ASIA= Asian countries except the Middle East, Japan and Former Soviet Union states; LAM= Latin
America and the Caribbean; MAF=Middle East and Africa; REF= Reforming Economies of the Former Soviet Union. Regions
definition is provided in SI (S6).

whereas some of the urban pollution hot spots hardly
show up on a regional map because they are too
small in size. Hence, the population exposure dis-
tribution as shown in figure 8, resulting from an
overlay of grid concentrations with population on
the same grid, is more telling about the shares of

population exposed to different levels of ambient
PM2.5 concentrations. In particular, it gives a clear
indication of the fraction of population exposed
to PM2.5 levels exceeding either national ambient
AQ standards, or the WHO AQ guideline [55].
This aspirational guideline recommends a maximum
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Figure 5. Reductions in air pollutant abatement cost in climate policy scenarios by sector in 2050, relative to the NPi scenario.

Figure 6. Left panel: Reductions in global air pollution control cost in 2050 per ton of CO2-abated by scenario and model, relative
to NPi. Right panel: Share of air pollution control cost in global GDP in 2050 by scenario and model.

annual mean concentration of PM2.5 at 10 µg m−3

and introduces a set of interim targets towards
improved AQ: Interim target-1 (25–35 µg m−3),
Interim target-2 (15–25µgm−3) and Interim target-3
(10–15 µg m−3).

In 2015, <2% of the population in China and
India lived in areas with AQ complying with the

WHO guideline and <40% of people were exposed
to concentrations below 35 µg m−3 (figure 8).
By 2050, without climate policies, the situation
even worsens in India. In the 1.5 ◦C scenario, the
share of population exposed to concentrations below
35 µg m−3 increases to 60% in China and 45%
in India. In the 1.5 ◦C + MFR case, about 20%
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Figure 7.Modelled ambient PM2.5 concentrations due to natural and anthropogenic sources in Asia, 2015 (a), 2050 under the
NPi, (b) 1.5 ◦C, (c) and 1.5 ◦C+MFR (d) scenarios, as well as reductions in 2050 under 1.5 ◦C (e) and 1.5 ◦C+MFR (f)
scenarios as compared to NPi (MESSAGE model).

people enjoy AQ adhering to the WHO AQ guideline
(<10 µg m−3) in both countries, and nearly the
whole population is projected to live within or below
the Interim target-1 concentrations. Since this figure
refers to total PM2.5 concentrations including nat-
ural dust, achieving the WHO guideline for the
entire population is not feasible even under strictest
emission cuts.

Exposure to PM2.5 increases the likelihood to die
from several diseases. One commonly used measure
of health impacts of ambient air pollution is the
absolute number of annual deaths attributable to
this risk factor. Figure 9 shows the trends of annual
premature deaths over time for different scenarios,
alongside with population weighted mean concen-
trations and mortality rates per capita. A striking
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Figure 8. Population exposure distribution to PM2.5 in China and India, projected for the NPi, 1.5 ◦C, and 1.5 ◦C+MFR
scenario (MESSAGE model) until 2050.

feature is that for most countries the projected pre-
mature mortality (in absolute terms) in 2050 shows
strong increases over 2015, even under constant or
decreasing emissions/concentrations. Only the most
ambitious decarbonization pathway in conjunction
with the strictest controls reach substantive decreases
in absolute premature deaths. Compared toNPi scen-
ario, the 1.5 ◦C + MFR case results in 1 million
people less dying prematurely (−40%) due to air
pollution in China and India combined. Across the
Asia domain, this reduction is approximately 2.5–3
million cases or 40% to 51% depending on the IAM
used. In the case of Japan, it is observed that under
the 1.5 ◦C + MFR scenario, concentrations drop to
very low levels (∼5 µg m−3), leading to dispropor-
tionally strong and rapid decreases inmortality due to
the non-linear shape of the dose-response functions
applied in this study.

3.4. The role of demographic changes
in the projected health impacts
When analyzing future projections of premature
mortality associated with AQ, caution is needed in
the interpretation of trends over time. To understand
the reasons behind apparently counter-intuitive res-
ults discussed above, we seek to disentangle the differ-
ent drivers of changes, using as an illustrative example
the changes from 2015 to 2050 in terms of total num-
bers of deaths attributed to ambient PM2.5 exposure.
The variations of PM2.5 precursor emissions under

different scenario assumptions have been described
in section 3.1. In addition to the pure emission
related changes, however, demographic changes play
a major role. While emissions determine the spa-
tial distribution of ambient PM2.5, exposure is given
by ambient PM2.5 times population, so a changing
population pattern through urbanization results in
different exposure. If we quantify absolute numbers
of premature deaths, the absolute size of the pop-
ulation matters. Finally, population ageing results
in more people in vulnerable age groups with high
baseline mortality rates, and therefore higher attrib-
utable numbers of premature deaths.

As described in section 2, we decompose the
relative change in premature deaths between 2015
and 2050 for each scenario s and each country c
into four independent factors fnsc related to emis-
sion changes, population growth, urbanization, and
population ageing. Figure 10 shows results of the
decomposition analysis. Each of the parameters fnsc
is displayed for a range of countries and all scen-
arios. While the emission trends differ strongly across
scenarios and countries (panel a), the influence of
the demographic factors—urbanization, population
growth and population ageing—is almost independ-
ent of the emission scenario, as the scenario assump-
tions do not vary these parameters. Impacts of demo-
graphic factors (panels b–d), in particular popula-
tion ageing, are typically positive and show a strong
variability across countries. While population growth
in its own can be eliminated by analyzing trends in
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Figure 9. Population-weighted average PM2.5 concentrations, mortality rate due to air pollution per year and 10 000 population
(right axis), and premature deaths attributable to ambient PM2.5 (left axis), as estimated in GAINS for different countries in Asia
in 2015 and 2050 by scenario (MESSAGE model).

mortality rather than absolute deaths, it is remarkable
that in several countries the effect of population age-
ing on PM2.5-related mortality (panel d) is much lar-
ger than the combined effects of decarbonization and
emission control policies.

4. Discussion

In agreement with earlier scenario literature [56–58],
we project substantial co-benefits for abating air pol-
lution as a result of deep decarbonization transforma-
tions of the energy sector. However, our multi-model
assessment suggests that low carbon pathways alone
will not be sufficient to provide the majority of highly
impacted population—in particular in Asia—with
AQ complying with the WHO standards. As sugges-
ted by [27, 39, 41], to achieve this objective, a mix of

policies is needed which combines targeted end-of-
pipe controls, instruments for clean energy access, as
well as the whole range of carbon mitigation meas-
ures. At the same time, potential tradeoffs such as
reoccurrence of biomass use for cooking and heating
in households—as a result of higher prices for cleaner
combusting fuels [59]—should be avoided due to its
negative impacts on outdoor as well indoor AQ.

Our results emphasize the importance of strict
emission controls for reducing the health burden on
population. However, we note that even decreasing
emissions and associated PM2.5 concentrations can
be over-compensated by increasing vulnerability of
an ageing population. At the same time, while abso-
lute numbers of premature deaths may be a use-
ful indicator to compare health impacts between
emission scenarios at a given point in time, cau-
tion is needed when analyzing them over time, as
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Figure 10.Modelled changes from 2015 to 2050 in total annual premature deaths attributable to ambient PM2.5 (panel e) into
different factors: (a) emission changes, (b) urbanization, (c) population growth, (d) population ageing. The range between
different IAMs is shown as bars, different scenarios are indicated as colors.

demographic factors potentially play a strong (even
dominant) role. To further complicate the situation,
the calculation requires projected disease specific
baseline mortality rates which are inherently uncer-
tain and strongly dependent on assumptions. In our

calculations, we assume the relative contributions of
individual diseases to total deaths within each age
group to remain constant over time.

By this analysis, we intend to highlight the
sensitivity of the calculations to the demographic
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development, rather than generating a precise fore-
cast of numbers of premature death. Absolute
numbers of premature deaths are uncertain estimates
for several reasons—not least the exposure–response
relationships (ERRs) used, of which several versions
have been developed in recent years [13, 49, 60, 61].
For China, recent studies [62–64] report significant
uncertainties from PM2.5 exposure, ERR parameters
and baseline death rates (95% confidence interval
approx. ±40% in [63]), as well as large differences
in absolute premature deaths calculated with differ-
ent sets of ERRs. The IERs used in our study lead
to estimates of premature deaths at the lower end of
the range, while in particular the Global Exposure
Mortality Model [61] leads to systematically higher
numbers (+70% in China [63]). Here, we do not aim
to undertake a full uncertainty analysis but rather
quantify the importance of different factors for trends
projected over time.

The sensitivity to demographic factors induces
rather counter-intuitive trend results in several
regions: that decreasing emissions are still associ-
ated with increasing premature deaths. Few options
remain to circumvent it: Most straightforwardly, for-
going the premature death calculation altogether, the
analysis could stop at the quantification of popula-
tion weighted mean PM2.5 concentrations, or expos-
ure distribution. Though perhaps more robust, these
indicators may not be satisfactory for analyses tar-
geting human health. Secondly, we note that the
difficulties arise from analyzing time series. When
comparing emission scenarios at one given point in
time, this issue is avoided. Thirdly, if the evolution
over time should be analyzed, the attributable frac-
tion of total deaths seems a more suitable measure
than the absolute number of premature deaths.

5. Conclusions

This paper summarizes implications of low carbon
pathways consistent with objectives of Paris Agree-
ment for the air pollution and associated health
impacts from the multi-model perspective. Traject-
ories of key air pollutants derived from five IAMs
under the 1.5 ◦C and 2 ◦C climate targets show
strong declining trend relative to current emission
levels as well as in comparison to themoderate reduc-
tions achieved by the NDC mitigation policies. By
2050, primary PM2.5 and precursor emissions decline
by about a third in the low-carbon scenarios, com-
pared to 2015. These reductions more than double
when decarbonization policies are combined with
ambitious air pollution controls. Furthermore, in the
1.5 ◦C + MFR scenario, the total reductions in air
pollutants and CO2 are nearly proportional by 2040,
following structural changes in the global energy sys-
tem simulated by IAMs.

The contribution of air pollution emitting sec-
tors to the overall emission reductions is pollutant

specific. Power sector and industry are most import-
ant for the abatement of the sulfur emissions, while
the road-transport sector plays the key role in redu-
cing emissions of NOx. Biomass combustion in res-
idential sector is a major source of primary PM2.5

pollution, however, this source is less impacted by
climate strategies. The risk of tradeoffs in this sec-
tor needs to be addressed by a mix of measures
comprising clean energy access policies as well as
accelerated deployment of efficient cooking and heat-
ing devices. The scenario analysis indicates that the
emerging Asian countries, followed by Africa and
Middle East, might benefit the most from air pollu-
tion cuts brought about through GHGmitigation. At
the same time, the potential co-benefits depend on
the rate of implementation and enforcement of AQ
legislation and emission standards.

Implementation of add-on controls to curb air
pollutants at levels complying with the CLE will cost
global economy little <1 trillion Euros by 2050, which
corresponds to about 0.6%–0.8% of global GDP
(depending on model-specific assumptions). Decar-
bonization of the most polluting sectors invoke halv-
ing of these expenditures, nevertheless, the economic
co-benefits are less pronounced if the most efficient
(and costly) technologies are applied without any cost
considerations. Savings in pollution abatement cost
per carbon removal achieved by individual models
and scenarios in 2050 range between 5 and 12 €/tCO2,
and it is expected the co-benefit values would be even
higher if the gains from lower mortality are monet-
ized and accounted for [12, 30].

Emission changes affect concentrations of ambi-
ent PM2.5, which we analyze here for Asia. While
details differ across IAMs, the trends in different scen-
arios are robust. In most regions, NPi leads to a
stagnation or even increase of ambient PM2.5 con-
centrations, while the stronger mitigation scenarios
result in ever greater decreases of ambient PM2.5. The
1.5 ◦C + MFR scenario decreases premature deaths
by 40%–50% across Asia, compared to NPi. However,
absolute numbers of premature deaths are a difficult
indicator to interpret, particularly when compared
over time. Demographic factors and the assumptions
about disease-specific baseline mortality in the pro-
jections may well dominate changes of calculated
absolute premature deaths over time, resulting in
some cases in seemingly counter-intuitive increases
of premature deaths, despite decreasing ambient con-
centrations. These point to the higher vulnerability
of ageing populations and emphasize the need for
strong emission cuts if absolute numbers of prema-
ture deaths from PM2.5 exposure are to be decreased.

Future analysis will focus on quantification of
global co-benefits when climate mitigation and pol-
lution control are realized using the cost optimiza-
tion framework of the GAINS model, assessment of
the synergies achievable in non-energy sectors (i.e.
industrial processes, waste treatment, agriculture),
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impacts for indoor air pollution, and finally impacts
on other pollutants (e.g. O3, NH3) and related human
and environmental indicators.
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