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Abstract
The City of Cedar Rapids was significantly affected by the June 2008 flood. However, little is known
about the role anthropogenic warming during this event, not only in terms of hydrologic response
but also of impacts. Here we use a continuous distributed hydrologic model forced with
precipitation with and without external forcing and show that the impacts of this flood were likely
magnified because of increased anthropogenic warming; compared to the baseline scenario with
the external forcing removed, this event was∼1.28-fold larger in flood extent, an approximate
3.4-time larger in the number of affected buildings, and an estimated 5.8- and 7.1-time larger in
structural and content damage, respectively. While much of the effort up to this point has focused
on the attribution of the physical hazard, our results highlight the cascading increase of the
contribution of the external forcing (mainly from anthropogenic forcing) moving from hazard to
human impacts.

1. Introduction

The U.S. Midwest is no stranger to flooding: this
is an area of the country that has been plagued by
large floods, with their frequency increasing over
the recent decades (e.g. Mallakpour and Villarini
2015, Neri et al 2019). Specific flood events can
leave long-lasting impacts on the well-being of those
affected, especially when these events are experi-
enced multiple times over the years: floods like those
that occurred in 1993, 2008, 2011, 2017 and, more
recently in 2019, have been responsible for sev-
eral fatalities and many billion dollars in economic
damage.

It has nowbeen over 12 years since the 2008 flood-
ing event (e.g. NWS 2009, Mutel 2010, Zogg 2014,
Cedar Rapids 2020), which was characterized by dis-
charge values much larger than those recorded in
1993 across large areas of Iowa (Smith et al 2013). This
event remains by far the largest one in the 117-year
record. To put it in context, with a peak discharge of
140 000 ft3 s−1, it was twice as large as the 1993 peak
(71 000 ft3 s−1) and almost twice as large as the second
largest value (81 600 ft3 s−1; September 2016). The

City of Cedar Rapids was significantly impacted by
this event, with over 10 000 (of ∼127 000) residents
estimated to have been displaced because of the flood
and 14% of the city area impacted by floodwaters,
but fortunately not in terms of fatalities. The event
replaced the 1993 flood as a reference for ‘before’
and ‘after’ in many aspects of life for the residents
of Eastern Iowa. Despite a decade of significant pro-
gress in flood mitigation preparedness (Krajewski
et al 2017), several questions still remain unanswered
regarding the potential role external forcingmay have
played in the rainfall during the 2008 event. Was this
event altered by themulti-decadal climate response to
these external forcing? This type of attribution ques-
tion has received substantial attention in the literat-
ure, with most of the hydroclimatological focus on
rainfall amounts (e.g. Risser and Wehner 2017, Van
Oldenborgh et al 2017, Wiel et al 2017, Otto et al
2018, Philip et al 2019), with fewer studies assessing
the role of external forcing to specific flood events
(e.g. Pall et al 2011, Schaller et al 2016). Even less
is known about the contribution of global warm-
ing to impacts. In this study we seek to quantify the
role that anthropogenic warming effects played not
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only in terms of hazard (i.e. heavy precipitation and
flooding), but also regarding impacts, intended here
to include flood extent and inundated areas, num-
ber of affected buildings, and structural and content
damage.

2. Data andmethods

The observed rainfall data are obtained from the
Stage IV quantitative precipitation estimates (QPEs)
products over the continental United State (CONUS)
(Lin andMitchell 2005) released by theNational Cen-
ters for Environmental Prediction (NCEP). Stage IV
has been shown to have low bias when compared to
rain gauge measurements in the state of Iowa (Seo
et al 2018). The discharge data are obtained from the
United States Geological Survey (USGS).

The six-hour initial and boundary condi-
tions used to simulate the extreme event that
occurred during June 6–12 2008 are obtained from
the ERA-Interim reanalysis data released by the
European Centre for Medium-Range Weather Fore-
casts (ECMWF), at a spatial resolution of∼0.7 degree
(Dee et al 2011). In addition to ERA-Interim, we per-
formed dynamical downscaling using other reana-
lysis data including the North American Regional
Reanalysis (NARR), the Japanese 55-year Reana-
lysis (JRA-55), and the NCEP Climate Forecast
System Version 2 (CFSv2) 6-hourly products. The
ERA-Interim data performed the best in repro-
ducing the observed precipitation with respect to
Stage IV.

The Weather Research and Forecasting (WRF)
model is used to perform the dynamical downscal-
ing of the extreme precipitation event responsible
for the flooding during June 2008. We used the
Advanced Research WRF (WRF-ARW) for the sim-
ulations, and performed the experiments in two
domains with two-way nesting with 12 km and
4 km for the outer and inner domain, respect-
ively (supplementary figure 1 (available online at
https://stacks.iop.org/ERL/15/114057/mmedia)).
Themain parameterization schemes are listed in sup-
plementary table 1. The setting of parameterization
schemes forWRF ARW in this study has been used in
previous studies (e.g. Talbot et al 2012, Li et al 2013,
El-Samra et al 2017, Zhang et al 2018). In particular,
the previous WRF tests for this setting can be found
in Li et al (2013) and Talbot et al (2012). Although
there is still uncertainty in the simulation of WRF
experiments due to parameterization schemes, the
current setting is expected to be suitable for the sim-
ulation of heavy precipitation processes. The WRF
simulation is integrated from June 6th 00:00:00 to
June 13th 00:00:00, 2008.

We follow the ‘pseudo global warming’ method
used in the literature to examine the role of global
warming in shaping weather events (e.g. Schär et al

1996, Rasmussen et al 2011). This approach applies a
change associated with global warming to the input
variables of the original initial and boundary condi-
tions (e.g. winds, humidity and temperature) based
on reanalysis data. The ‘global warming’ change
can be obtained by subtracting the input variables
in the historical experiments from future projec-
tions. Regional model experiments have indicated
that the removal of the historical trend based on
the Coupled Model Intercomparison Project Phase 5
(CMIP5) models in the forcing data can cause sub-
stantially reduced precipitation during a flood event
that affected India during June 2013 (Cho et al 2016).
Here we use a strategy similar to that used in Cho et al
(2016), with the forcing variables’ trends computed
from the large initial condition ensemble experi-
ments performed with the Community Earth System
Model developed byNational Center for Atmospheric
Research (NCAR CESM) (Kay et al 2015). Cho et al
(2016) performedControl andNo-trend experiments
to assess the impacts of global warming (i.e. Control
minus No-trend). The Control experiment is forced
by the initial and boundary conditions from reana-
lysis data, and the linear climate trends in all ini-
tial and boundary condition variables are removed in
the No-trend experiment. More specifically, we run
two sets of experiments: the ‘Original’ and ‘Detrend’
experiments during the time period of interest and
based on the average of 42 members. In the ‘Original’
experiment, we feed the initial and boundary con-
ditions from ERA-Interim data directly into WRF-
ARW. In contrast, the ‘Detrend’ experiments use the
initial and boundary conditions of ERA-Interim but
detrend the three-dimensional zonal and meridional
wind, geopotential height, and temperature based on
the trends computed from the CESM large-ensemble
experiments to quantify the impacts of external for-
cing. The trends are computed using linear regres-
sion for the month of June over the base period
1979–2005. We did not remove the trend in relat-
ive humidity to avoid the risk of having values lar-
ger than 100%. Although removing trend in the tem-
perature field plays a major role in driving changes
in precipitation in the study area, we cannot exclude
potential impacts of external forcing on other vari-
ables (e.g. zonal and meridional winds). Therefore,
we also remove the trends in the three-dimension-
al zonal and meridional wind, and geopotential
height.

The three-dimension trends (e.g. degree/year
for temperature) of the four variables are vertic-
ally and horizontally interpolated into the levels
and grids of ERA-Interim before we subtract the
trends from the initial and boundary conditions
fromERA-Interim. Supplementary figure 2 shows the
trends of the bottom-level temperature based on the
42-member large-ensemble CESM experiments and
the associated signal-to-noise ratio. The subtraction
of the ‘Detrend’ experiment from the ‘Original’ one
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represents the impacts of externally-forced trends on
this weather event. The trends based on the large
ensemble experiments can quantify the trends due
to external forcing because natural variability in dif-
ferent ensembles can cancel each other off (e.g. Cho
et al 2016). The trends in the four variables from
CESM are subtracted from the four variables from
ERA-Interim reanalysis data, which provide initial
and boundary conditions for the WRF model. The
uncertainties associated with the externally-forced
signal are computed using the 95% confidence inter-
vals on the estimated trend coefficients. The 95% con-
fidence intervals on the estimated trend coefficients
are defined based on the linear regression model:

Yi=β0+β1Xi+εi (1)

whereYi is the dependent variable,Xi is the independ-
ent variable (i.e. time), β0 is the intercept, β1 is the
slope/trend and εi is the random error.

The 95% CI is calculated based on the equation
below:

β̂1 − tα/2,n−2

√
σ̂2

Sxx
⩽ β1 ⩽ β̂1 + tα/2,n−2

√
σ̂2

Sxx
(2)

where β̂1 is the estimated trend, tα/2, n−2 is the t value
for the significance level (here 0.05) with n being the
sample size, and Sxx and σ̂2 are defined as:

Sxx =
n∑

i=1

(xi − x)2. (3)

σ̂2 =

∑n
i−1 (yi − ŷi)

2

n− 2
. (4)

For the hydrologic simulations, we used the model
developed by the Iowa Flood Center (IFC), which
produces real-time streamflow predictions for all the
communities in the state of Iowa using a continu-
ous distributed hydrologicmodel known asHillslope-
Link Model (Quintero et al 2016, Krajewski et al
2017). The model is calibration-free i.e. a com-
mon configuration of parameters determined a priori
applies for all the model inputs, and no adjustments
are made for particular basins. The model uses hill-
slopes and channel links as the primary units for land-
scape decomposition where the hydrologic processes
aremodeled. Rainfall conversion to runoff ismodeled
through accounting for soil moisture changes at the
hillslopes. Channel routing is based on a non-linear
representation ofwater velocity that considers the dis-
charge amount as well as the upstream drainage area
(Gupta et al 2010, Ghimire et al 2018). Mathematic-
ally, the model represents a large system of ordinary
differential equations organized following river net-
work topology. The IFC also developed an efficient

numerical solver suitable forHighPerformanceCom-
puting architecture (Small et al 2013). The hydrolo-
gic simulations obtainedwith the configuration of the
Hillslope-Link Model were extensively validated over
a period of seven years and showed good performance
when using Stage IV data as rainfall forcing (Quintero
et al 2020). We initialized the states of the hydrolo-
gicmodel using the conditions observed for discharge
and soil moisture for June 6th 2008.

For the estimation of economic losses due to flood
we used several sources of data. Inundation maps
were developed by the IFC for the city of Cedar
Rapids using HEC-RAS to estimate water surface
elevations in the river channels and floodplain that
results from discharge estimates of different return
periods; water surface data were intersected with a
1-m DEM to calculate the flood extents. The inund-
ation maps contain detailed urban flooding analysis
that takes into account location and heights of the
buildings (Gilles et al 2012). Depth-damage functions
and detailed building data are available from U.S.
Army Corps of Engineers (USACE), Federal Emer-
gencyManagement Agency (FEMA) and property tax
assessors (e.g. Scawthorn et al 2006, Yildirim and
Demir 2019). These datasets were used to calculate
the dollar amount losses based on the content and
structural value of individual properties.

3. Results

This attribution study involves a combination of
observations, and hydrologic, atmospheric and cli-
mate modeling. Although flooding and extreme rain-
fall are not the same thing (e.g. Ivancic and Shaw
2015), heavy rainfall represents the basic ingredi-
ent for this flood event; the soil was already sat-
urated because of extensive precipitation earlier in
the spring. As discussed in Krajewski and Mantilla
(2010), this region experienced one of the snowiest
winters; even though the heavy snow was not dir-
ectly responsible to this event, it left the ground sat-
urated. In late May, a number of storms trailed over
Iowa, with rainfall falling on the already saturated
ground (e.g. Coleman and Budikova 2010, Krajewski
and Mantilla 2010). The conditions were primed for
the heavy rainfall across the Cedar River during 6–12
June (figure 1). During 6–8 June, the rainfall was con-
centrated in the upper part of the basin; as the water
flowed downstream and the peak propagated down-
stream towards the City of Cedar Rapids, the areas
with heavy rainfall seemed to follow the crest, with
much of the rainfall concentrated in the middle and
lower parts of the basin. The amount and timing of
the precipitation translated to the observed discharge
time series (figure 2), which is well reproduced both
in terms of timing andmagnitude by the IFC hydrolo-
gic model forced with radar-based rainfall estimates,
and initialized with soil saturated conditions. For this

3



Environ. Res. Lett. 15 (2020) 114057 G Villarini et al

Figure 1. Comparison between observed and modeled
precipitation. Daily rainfall maps for 6–12 June 2018 as
well as their accumulation in (left column)
observations, and based on the atmospheric model
before (middle column) and after (right column)
removing the externally-forced climatic effects. The
black polygon in each map represents the Cedar River at
Cedar Rapids. The red square in the bottom right map
indicates the location of the city of Cedar Rapids.

event the IFC hydrologic model is able to reproduce
well the observations.

Before quantifying the role of external forcing on
this flood event, we examined whether the hydrologic
response forced by the dynamically downscaled out-
puts was similar to the observed one (figure 1 and
supplementary figure 3). Although not ‘perfect’ in
terms of precipitation, the atmospheric model can
reproduce the overall daily rainfall amounts, with
good agreement with observed the basin-averaged
total rainfall (supplementary figure 3). A notable
difference is related to the timing and the detailed
regional distribution of the precipitation, with large
amounts concentrated in the upper part of the basin.
Therefore, from a hydrologic perspective we would
expect that the agreement in total rainfall would drive
total discharge volumes comparable to observations,
while the delay and geographic shift to the upper
part of the basin would delay the flood peak by few
days. As shown in figure 2, the overall magnitude
of the modeled peak is very similar to the observed
one (whether when compared against gauge meas-
ured discharge or from that estimated by forcing the
hydrologic model with radar-rainfall estimates), with
the main difference being that the modeled peak is
delayed by approximately four days. The focus here is
on damages arising from the large flood peak in this
event, and not the details in the timing of that peak.

The results in figures 1–2 indicate that the
combined reanalysis-hydrologic model system can
simulate the rainfall and hydrologic response to
this rainfall event in a satisfactory manner, encour-
aging us to move towards quantifying the associated
external component. In our perturbation experi-
ments which focused on the thermal-dynamic effects,
we did not find evidence that anthropogenic warming
led to a marked change in where and when the higher
rainfall occurred (comparing the middle and right
panels in figure 1) but had mostly an effect on the
magnitude, leading to larger amounts (supplement-
ary figure S3). These impacts are then expected to
manifest themselves in a hydrograph that mimics one
forced with the raw model outputs, even though the
peaks have smaller magnitudes (i.e. the largest peak
is lower by 2 m). Mounting evidence has shown that
the multi-decadal increase in surface temperature
can be mainly attributed to anthropogenic forcing,
rather than natural forcing (e.g. volcanic eruption
and solar irradiance) and internal variability (Flato
et al 2014). The increasing atmospheric temperature
plays an important role in driving changes in extreme
precipitation events, in part due to increasing atmo-
spheric moisture following the Clausius-Clapeyron
(C-C) relation (e.g. Held and Soden 2006, Donat
et al 2016). We find that the flood peak at Cedar
Rapids was approximately 2 m higher because of
anthropogenicwarming, an amount that leads to stat-
istically different results at the 5% significance level
(figure 2).

Having assessed that anthropogenic warming
mainly enhanced the magnitude (or equivalently the
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Figure 2. Time series of the observed and modeled discharge. The black line represents the observations, with the gaps in the time
series due to the stream gage not functioning. The magenta line shows the time series obtained forcing the hydrologic model with
radar-based rainfall; the blue and green lines show the modeled discharge when forced with downscaled precipitation before and
after removing (together with the 95%-confidence intervals) the effects of the external forcing, respectively. The horizontal lines
represent the minor (orange), moderate (red) and major (purple) flood levels established by the National Weather Service.

Table 1. Summary of the impacts of external forcing on flood extent, number of affected buildings, and economic losses. The results for
‘Original’ are based on the initial and boundary conditions from ERA-Interim, which are fed directly into WRF-ARW. In contrast, the
results for ‘Detrend’ are based on the initial and boundary conditions of ERA-Interim but detrended based on the trends computed
from the CESM large-ensemble experiments. In both cases, the WRF-ARW outputs are used as inputs for the hydrologic model. The
column ‘Ratio’ shows the ratio between the ‘Original’ and ‘Detrend’ scenarios. The results in the square brackets represent the
95%-confidence limits.

Original (9 m) Detrend (7 m) Ratio

Area (km2) 51.2 39.9 [36.5; 43.5] 1.28 [1.18; 1.40]
Affected Buildings (#) 3703 1089 [677; 2068] 3.40 [1.79; 5.47]
Structure Damage (USD) 35 977 020 6 169 376 [4 299 928; 10 864 656] 5.83 [3.31; 8.37]
Content Damage (USD) 83 675 455 11 851 114 [8 331 197; 21 932 535] 7.07 [3.82; 10.04]

probability) of the meteorological hazard, we now
seek to propagate this information through to evalu-
ate the major role of this warming from discharge, to
flood extent, to economic impacts (table 1). Figure 3
shows the flood extent in Cedar Rapids at 7 and
9 m, and the difference in flooding that can be
mainly attributed to anthropogenic warming. Based
on our results, the extent of the inundated areas is
1.28 times larger (compare 51.2 km2 to 39.9 km2;
table 1), with large areas of Cedar Rapids that would
not have been inundated. Because housing andwealth
are not distributed uniformly across the affected area,

the impacts are not going to be necessarily of the
same order of magnitude. As shown in table 1, the
number of affected building increased from an expec-
ted ∼1100 to ∼3700, a 3.4-fold increase. Neverthe-
less, given the type of buildings and their expected
content, we can attribute mainly to anthropogenic
warming an estimated 5.8-fold and 7.1-fold increase
in the structural and content damage, respectively.
These non-linear effects are associated with the non-
linear relationships that characterize vulnerability
curves, which relate water depth to economic damage
(Scawthorn et al 2006).
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Figure 3. Comparison of the flood extent including or not the role of anthropogenic warming. The blue (green) areas represent
the flood inundation extent for a stage equal to 9 (7) m, with the visible blue areas reflecting the inundation extent that can be
attributed to external forcing. The top panel shows the Cedar River at Cedar Rapids, while the bottom panel focuses on
downtown Cedar Rapids.

4. Conclusions

This study presents a novel framework to quantitat-
ively assess the role of anthropogenic forcing in the

context of the socio-economic impacts of the 2008
flooding in Cedar Rapids. We find that the anthro-
pogenic warming-driven changes in water level led
to a cascade of increasing impacts when one moves
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from hydrological to societal and economic impacts.
More specifically, a 2-m difference in peak stream-
flow (1.28-fold increase from 7 m to 9 m) led to an
approximately 1.28-fold increase in inundated areas;
however, when one considers economic losses, the
impact grows to 7 times. These numbers should not
be interpreted in an absolute sense, but rather relative
to the flood peak and the topography of the affected
area: a difference of 2 m resulting in water still being
within the banks would have not led to any dam-
age; moreover, the impacts would have been differ-
ent in areas characterized by higher elevation on the
river banks (i.e. compare the flood inundation extent
differences close to the urban core of Cedar Rapids
and more downstream; figure 3). Studies of this kind
will allow us to move away from just the hazard attri-
bution to their impacts, providing basic information
that could inform policy changes in light of the eco-
nomic impacts of climate change.

It is essential to note that this flood event and
its impacts are not solely attributable to anthropo-
genic warming, but rather that this warming mod-
ified the amplitude and probability of this event.
As shown by the flood inundation map, most of
Cedar Rapids would have been flooded even after we
removed the radiatively-forced anthropogenic warm-
ing. Our findings are based on assumptions related
to the way that external drivers (mainly the anthro-
pogenic component) affected the climate system, and
the numbers could be slightly different depending
on uncertainties in the trend estimation, hence they
should be considered as estimates. We also quanti-
fied different sources of uncertainties associated with
our approach. On the one hand, we found that the
uncertainties due to the anthropogenic forcing are
relatively small (table 1, figure 2 and supplementary
figure 3) compared to its signal (results are significant
at the 5% level). On the other hand, the noise associ-
ated with internal variability is large (supplementary
figure 3). Using the large ensemble runs by the CESM
we are able to isolate the externally forced signal, and
our study highlights the importance of this type of
simulations in making statements about the major
role of anthropogenic warming.
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