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Corrigendum: Simplicity on the far side of complexity: optimizing
nitrogen for wheat in increasingly variable rainfall environments
(2020 Environ. Res. Lett. 15 114060)

Z Hochman™ @ and F Waldner
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Author to whom any correspondence should be addressed.

E-mail: zvi.hochman@csiro.au

We made errors in transcribing the formulae and the figures were generated. Hence, the originally
provided in the titles of figures 4 and 5. These errors  published figures and statistical values (R?, RMSE
were made after the statistical analysis was complete and P values) are correct.
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Figure 4. Wheat grain yield as a function of available N at various levels of evapotranspiration for (a), observed and (b),
simulated data. For the observed data set grain yield was expressed Y = —1523 +9 x N — 0.029 x N? + 16 x ET — 0.023 X
ET? +0.03 X ET x N; (R? = 0.47; P value < 0.001; N = 960). For the simulated data grain yield was similarly expressed as
Y =—116143 x N —0.05 x N> 4+ 14 x ET — 0.02 x ET? 4 0.09 x ET x N; (R? = 0.73; P value < 0.001; N = 1814). Linear
regression of model performance against observed yields ((c) RMSE = 986 kg ha™!; R? = 0.47), and simulated yields
((d) RMSE = 681 kg ha=!; R = 0.73).
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Figure 5. Wheat grain yield as a boundary function of available N at various levels of evapotranspiration for (a), observed
and (b), simulated data. For the observed data set grain yield was expressed as Y = —590 + 18 X N — 0.04 X N? + 14 x
ET — 0.02 X ET? 4 0.03 X ET x N. For the simulated data grain yield was similarly expressed as Y = —785 + 21 x N — 0.10 x
N2 410 X ET — 0.03 x ET? + 0.11 X ET x N. A graphic illustration of the rate of N required to achieve water-limited yield
(100%) as well as 90% and 80% of water-limited yield for (c), the observed data set and for (d), the simulated data set.
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Abstract

The increasingly chaotic nature of rainfall in semi-arid climates challenges crop growers to balance
nitrogen fertiliser inputs for both food security and environmental imperatives. Too little nitrogen
restricts yields and runs down soil organic carbon, while too much nitrogen is economically
wasteful and environmentally harmful. The degree to which crop-water and crop-nitrogen
processes combine to drive yields of rainfed wheat crops is not well understood or quantified. Here
we investigate two comprehensive Australia-wide data sets, one from commercial wheat growers’
fields and the other from systematic simulation of 50 sites by 15 years using a comprehensive
mechanistic cropping system model. From these data, we derived a simple model combining water
use with available nitrogen and their interaction. The model accounted for 73% of the variation in
the simulated yield data and 46% of the variation in the growers’ yield data. We demonstrate how
the simple model developed here can be deployed as a tool to aid growers’ in-crop nitrogen

application decisions.

1. Introduction

The rise in the world’s population and per capita
food consumption challenges agricultural science to
rapidly increase food production. The most limiting
factors affecting cereal production in rainfed envir-
onments are the amount of water (expressed as sea-
sonal evapotranspiration; ET) and nitrogen (N) avail-
able to these crops (Fischer 1981, Smith and Harris
1981, Sinclair and Horie 1989, Grindlay 1997, Pas-
sioura 2002, Sadras et al 2016). Knowledge of the
factors governing supply and demand of N is essen-
tial to predict the needs of crops under a wide range
of field situations so that growers can be given more
reliable fertilizer recommendations. This is import-
ant as risks to the environment can arise from the
over-application of N fertilizers resulting in nitrate
leaching, nitrous oxide (N,O and NOy) emissions
and soil acidification (Addiscott et al 1991, Galloway
et al 2003, Vitousek et al, Sutton et al 2013, Car-
berry et al 2013) where less than half of the react-
ive N added to croplands is converted into har-
vested products (Lassaletta et al 2014). Yet, under-
fertilization causes soil degradation, low yields and
poverty (Sutton et al 2013, Tittonell and Giller 2013)

© 2020 The Author(s). Published by IOP Publishing Ltd

in smallholder agriculture and is the most important
single factor explaining large yield gaps in Australia
(Hochman and Horan 2018). These considerations
highlight the need for quantitative models to reliably
predict N-yield interactions for a wide variety of crop-
climate situations.

Studies of ET and N effects on wheat yields have
been conducted with regularity (Sharma et al 1990,
Latiri-Souki et al 1998, Karam et al 2009). However,
these have usually produced N response functions at
specific levels of ET supply, or ET response functions
at specific levels of N, for a single or a few seasons
and/or locations with limited applicability to other
environments. The current generation of crop sim-
ulation models (e.g. van Keulen and Seligman 1987,
Brisson et al 1998, Jones et al 2003, Holzworth et al
2014) can simulate crop growth and yield in response
to limited ET and available N and may be used to sim-
ulate yield under a wide range of N and water supply
conditions. APSIM and similar process-based mod-
els capture key aspects of the interactions between
water and N. Available mineral N in soil is updated
daily by the soil N module, which simulates soil
N processes including mineralisation, immobilisa-
tion, nitrification, denitrification, movement in soil


https://doi.org/10.1088/1748-9326/abc3ef
https://crossmark.crossref.org/dialog/?doi=10.1088/1748-9326/abc3ef&domain=pdf&date_stamp=2020-11-24
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-6217-5231
https://orcid.org/0000-0002-5599-7456
mailto:zvi.hochman@csiro.au
http://doi.org.10.1088/1748-9326/abc3ef

10P Publishing

Environ. Res. Lett. 15 (2020) 114060

and leaching (Probert et al 1998). Suboptimal water
and N in soils lead to an imbalance between crop
demand and the soil’s ability to meet this demand.
The shortfall is expressed as stress functions and these
are updated daily. These stress functions are then
used to reduce the environmentally determined rate
of leaf area expansion, root front exploration, bio-
mass growth and other processes. Where water limits
growth, reduced biomass reduces demand for N. Sim-
ilarly, N stress reduces leaf area and hence crop evap-
orative demand. Reduced leaf area also affects the par-
titioning of daily water use between transpiration and
soil evaporation. Water and N interactions are also
captured in the water-driven uptake of N by mass flow
and diffusion and in the water-driven fate of soil N
processes such as mineralisation and leaching (Sadras
etal 2016).

The APSIM wheat model has been evaluated
in numerous publications, especially its grain yield
response to a wide range of N fertiliser applications
and water supply conditions (11 relevant reports were
cited by Keating et al 2003). In the most comprehens-
ive such study, the APSIM Nwheat model was incor-
porated into the DSSAT modelling platform and was
evaluated using more than 1000 observations from
field experiments of 65 treatments, which included
a wide range of N fertilizer applications in diverse
climatic regions that represented the main wheat-
growing areas of the world. The study found that
model reproduced the observed grain yields well with
an overall root mean square deviation (RMSD) of
0.89 tha™! (13%). N applications, water supply, and
planting dates had large effects on observed biomass
and grain yields, and the authors found that the
model reproduced these crop responses well (Kassie
etal 2016).

However, these models require a significant
amount of parameterization, especially of soil water
holding characteristics, soil organic mater, plant
available soil water and mineral N status of the whole
profile to the depth of maximum root penetration.
This requirement puts the practical application of
these models beyond the reach of most grain growers
and their advisors.

At the opposite end of the complexity scale, there
are rules of thumb, whereby target yields are mul-
tiplied by a constant value to determine a crop’s N
requirement. For example, in Yield Prophet Lite a tar-
get yield is determined using a simple water use effi-
ciency formula (Sadras and Angus 2006; see equa-
tion (1) section 2.3) and this target yield (in t ha™!)
is then multiplied by 40 to determine the rate of
available N (kgN ha™!) required to achieve the tar-
get yield (www.yieldprophet.com.au/yplite/). There
do not seem to be any intermediate tools to assist
farmers decisions on matching N fertiliser application
to seasonal conditions.

To empower farmers to make informed decisions
about N fertilization we require a simple, yet not
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simplistic, model of how crop yields respond to N
fertilizer in a variable rainfall environment. Remark-
ably, we were unable to find any published attempts
to use these comprehensive crop models to general-
ize the relationship between the limitations imposed
by various combinations of ET by N availability and
yield for a wide range of environments. Such a situ-
ation is reminiscent of a quote attributed to Oliver
Wendell Holmes

‘T would not give a fig for simplicity this
side of complexity, but I would give my
life for simplicity the other side of com-
plexity.

The aim of this research was to establish the optimal
rate of N fertilizer to be applied to rainfed crops across
a wide range of available soil N and seasonal ET con-
ditions by an investigation of two independent data
sets from Australia’s cropping zone. The first analysis
involves a comprehensive data set of wheat growers’
commercial fields, distributed throughout the Aus-
tralian grain zone over 11 seasons. The second data set
consists of simulated yields from 50 sites over 15 years.
For each data set, we derived an equation of the com-
bined effects of ET and Available N and their interac-
tion (ET x Available N) on wheat grain yield. We also
re-purposed this combined equation to calculate the
Available N values required to achieve a crops’ water-
limited yield (Yw), as well as 90% and 80% of Yw
for any amount of ET, thus proposing a new decision
tool to guide growers on crop N requirements in vari-
able rainfall environments. These models should have
wide relevance to dryland cropping globally as Aus-
tralia’s cropping zone shares agroclimatc zones with
cropping regions in southern Africa, South America,
southeastern USA, Mexico, Middle and Near Eastern
as well as southern European countries (van Wart et al
2013).

2. Methods

The data analyzed included observed and simulated
data sets. Both data sets were geographically well dis-
tributed throughout the Australian cropping zone
(figure 1) across 11 agroclimatic zones (van Wart et al
2013) which together cover 90% of the winter cer-
eals cropping areas (ABARE-BRS 2010). In an earlier
study (Hochman et al 2017) we showed that the
number of sites per zone correlates strongly with the
proportion of national winter cereals cropping area
within the agro-ecological zones (R*> = 0.92) show-
ing that the 50 sites capture a representative range
of cropping environments across the Australian con-
tinent. The major soil types (Isbell 1996) on which
winter grain crops are grown (Hochman et al 2016)
were also well represented.
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Figure 1. Location of weather stations used in the observed (light blue circles; N = 960) and simulated (dark blue circles) sites.
Red circles represent weather station that were used by both observed and simulated fields. The dark grey area denotes statistical

local areas (SA2s) where wheat is grown.

2.1. Observed data

The observed data were sourced from the Yield
Prophet” (Hochman et al 2009b) data base. It
contains grower supplied field level data on grain
yield (kg ha™!), soil characterization data (includ-
ing crop lower limit, drained upper limit, bulk dens-
ity and soil organic carbon) pre-sowing soil mineral
N, pre-sowing soil water content, weather data recor-
ded on farm or from the nearest weather station as
well as management information including N fertil-
izer input, time of sowing, crop type and crop variety.
The data analyzed include 960 fields from the years
2005-2015. Recorded yields averaged 2667 kg ha=!
with a range of 140-7910 kg ha~!.

ET was calculated as the sum of in-crop rainfall
plus the difference between soil water measured pre-
sowing and soil water at harvest (simulated in Yield
Prophet”). The mean ET across all sites and years was
229 mm with a range from 80 to 526 mm. Available
N was calculated as the sum of mineral N measured
pre-sowing and fertilizer N applied to the crop. This
simplified calculation of available N does not take
into account in-crop N cycling processes such as min-
eralisation, immobilisation, leaching and denitrifica-
tion. While these processes contribute to available N,
significant losses of N from Australian cropping sys-
tems are infrequent and at low intensities (Carberry
et al 2013) and they cannot be measured by growers
or their consultants and are therefore excluded. The
mean Available N measured across all sites and years
was 160 kgN ha~! with a range of 25-346 kgN ha™!.

2.2. Simulated data

The simulation data used in this analysis are a subset
of the simulations produced to investigate the causes
of wheat yield gaps in Australia (Hochman and Horan

2018). The Agricultural Production Systems Simu-
lator (APSIM v.7.8; Holzworth et al 2014) was used
to model water and N-limited wheat grain yield over
the 2001-2015 growing seasons using the climate files
of 50 sites and soil characterization data representat-
ive of the dominant soil type in winter cropping land
use within a 20 km radius of the weather station. This
spread of sites and years was chosen to ensure that
the range of seasonal conditions encountered over
the Australian cropping zone is more than adequately
captured.

In this research we used the same APSIM man-
agement rules as those used to simulate water-limited
yields except that annual fertilizer N applications were
limited to 22.5, 30, 45, and 90 kgN ha=! in various
sites and treatments in order to create a highly diverse
set of ET and N-limited situations.

2.2.1. Water-limited yield (Yw)

Yw represents the yield that can be achieved by rain-
fed crops when grown with best management prac-
tices under current technology, with nutrients non-
limiting and biotic stress effectively controlled. Under
conditions that can achieve Yw, crop growth rate is
determined only by available water, solar radiation,
temperature, atmospheric CO, and genetic traits that
govern the length of the growing period and light
interception by the crop canopy. Yw is location-
specific because of the climate and soil properties that
govern soil water availability based on available water
storage capacity, rooting depth and soil constraints
such as salinity or physical barriers to root prolifer-
ation (van Ittersum et al 2013). All simulations in the
current research were based on Yw practices but were
also potentially limited by Available N via the variable
N fertilizer treatments.
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2.2.2. Sowing rules

All sites north of latitude —32.244 (Dubbo, NSW)
were classed as northern sites and used the northern
sowing rule; all other sites used the southern sowing
rule:

e Northern sowing rule: sowif rain >>15 mm over 3 d
and PAW >30 mm from 26 April-15 July.

e Southern sowing rule: sow if rain >>15 mm over 3 d
regardless of soil moisture from 26 April-15 July.

In both cases, the crop is sown on 15 July if cri-
teria are not met during the sowing window. Other
key sowing rules include: sowing density = 150
plants m~2, row spacing = 250 mm, and sowing
depth = 30 mm.

2.2.3. Soil initialization and annual parameter reset
rules

Because initial soil moisture is an important but
unmeasured parameter at the start of the simulation
period of interest, initial soil water was arbitrarily set
to 10% PAWC 15 years before the start date of the
simulation in order to allow soil water to find its cor-
rect level at the start of the simulation period (the first
15 years of data are then discarded). Soil organic car-
bon is initiated as per soil profile data. Initial soil NO;
is set to 25 kgN ha~! for each metre depth of soil,
initial soil ammonium (NH,) is set to 5 kg ha™! for
each metre depth of soil. Initial surface organic mat-
ter is set to 100 kg ha™! with the C:N ratio set at 80.
Surface organic matter; soil organic matter; soil water;
soil NO; and NH, are not reset at any time.

2.2.4. N fertilizer treatments

The N fertilizer treatments are set at 22.5, 30, 45
and 90 kgN ha~! and were applied to each of the 50
sites x 15 years. For each treatment, the set rate of N
is added annually at sowing. While the N45 and N90
treatments were added to all sites and years, the N22.5
and N30 treatments were applied only to the 15 sites
with the lowest average annual yields to reflect grower
practices in the lower yielding areas. Additionally, as
the soil parameters NO; and NH, are not reset at crop
maturity, the effects of over or under fertilization in
one season are carried over to the next.

2.3. Statistical analysis
The wheat yield response to seasonal ET and Available
N was analyzed using linear and quadratic regression
models, respectively. Individual models were fitted
for the observed and simulated data sets. The signi-
ficance of model parameters was assessed with t tests
and their associated P values and the goodness of fit
of these models was evaluated with the adjusted coef-
ficient of determination (R?), which corrects for the
degrees of freedom.

Maximum boundary functions were historically
established by drawing arbitrary lines along the upper
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boundary of data to manually parametrize equations
in light of known biophysical principles. The equa-
tions take the general form

Yield = a + b (Water Use) (1)

where the x—intercept (a) represents water lost to
soil evaporation, and the slope (b) represents a
crop’s maximum transpiration efficiency (French and
Schultz 1984, Sadras and Angus 2006, Hochman et al
2009a). Recently, more objective, i.e. data-driven,
methods such as quantile regression (Cade and Noon
2003) or production frontiers (Aigner et al 1977) have
been applied to derive the maximum bound for yield
(Phillips et al 2006, Grassini et al 2009, Muller et al
2014, Long et al 2017). Here, boundary functions at
the 95th percentile were fitted to identify the max-
imum vyield values attainable for given values of ET
and Available N for both the observed and simulated
data sets. Logistic and quadratic functions were fit-
ted to model the maximum yield response for ET and
Available N, respectively. Boundary functions had
the same form for the observed and simulated data
sets. A response surface methodology was followed to
identify the appropriate model form of the median
yield response to ET and to Available N. Based on
the analysis of variance, second-order models with
an interaction term were selected because these terms
contributed significantly to the model. To minim-
ize bias, median models were calibrated to maximize
Lin’s concordance correlation coefficient (Lin 1989),
which measures the relationship between two vari-
ables in terms of their deviation from a 1:1 ratio.
The significance of each term was assessed using P
values for the t test statistic. The prediction accur-
acy was assessed by computing the R* and the root
mean square error (RMSE) between the modelled
yields and the observed and simulated yields using
a five-fold cross-validation approach (Hastie et al
2001). Multivariate yield frontier models were then
developed with Available N and ET as predictor vari-
ables. The models had the same functional form as
the average models (second order with an interac-
tion term) and were fitted on the 95th percentile of
the observed and simulated data sets. All analyses
were performed in R (R Development Core Team
2009) with the following packages: quantreg (Koen-
ker 2019), rsm (Lenth 2009), epiR (Stevenson et al
2020) and caret (Kuhn 2008).

3. Results

3.1.Yield as a function of ET

A significant linear correlation of Yield and ET was
obtained for both the observed and simulated data
sets (figure 2). The average yield response to total in-
crop ET of the observed data was 12 kg grain mm ™!
ET ha=! with a threshold (x—intercept value) of
16 mm while the simulated average yield response to
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Figure 2. Wheat grain yield as a function of evapotranspiration (ET) for (a), observed evapotranspiration and yield

(Y = —199.05 + 12.47 x ET; R? = 0.401; P value < 0.001; N = 960), and (b), for simulated evapotranspiration and simulated
yield (Y = —1702 + 21 X ET; R? = 0.65; P value < 0.001; N = 1814). The yield boundary as a function of ET of the observed
data was: Y = —13 331 + 3320 x log (ET). The yield boundary as a function of ET of the simulated data set was:

Y = —16406 + 3898 X log (ET). Solid lines represent the median regression while the dashed lines represent the yield frontiers
fitted with a logarithmic boundary function at the 95th percentile. Previously determined boundary lines (French and Schultz
1984, Sadras and Angus 2006, Sadras and Lawson 2013) are provided for comparison.

ET was 21 kg grainmm ™! ET ha~! with a threshold of
81 mm. The relationship between grain yield and ET
is commonly described as a boundary function where
the boundary is postulated to represent the physiolo-
gical limit of water use efficiency and water productiv-
ity (French and Schultz 1984, Sadras and Angus 2006,
Grassini et al 2009, Hochman et al 2009a). The best
boundary model for both the observed (figure 2(a))
and simulated (figure 2(b)) data sets was found to be
a logarithmic function.

Both observed and simulated ET—Yield slope
values are within the range of previously observed
boundary functions for wheat crops (French and
Schultz 1984, Sadras and Angus 2006, Hochman
et al 2009a). The predictive power of the linear
regressions (R = 0.4) for the observed data set
is moderate and lower than for the simulated data
set (R? = 0.65). In contrast with the simple lin-
ear (Yield = (ET)) boundary models described by
previous research, the boundary functions derived
in this study are best described by logistic func-
tions. This implies that maximum ET efficiency is
higher than previously calculated in dry seasons and
lower for higher seasonal ET values. It is possible
that, for both data sets, the logistic function may
reflect that factors such as Available N become more
limiting as ET becomes less limiting. The consider-
ably lower average water productivity calculated of
observed data relative to the simulated data reflects
the 50% yield gap calculated for wheat in Australia
(Hochman et al 2016). The similarity between the
boundary functions of the observed and simulated
data sets demonstrates that, while a large yield gap
exists on average, some wheat growers do achieve
yields that are at or near their water-limited yield at
least in some seasons (van Rees et al 2014, Lollato
etal 2019).

A comparison between the boundary functions
derived in this research and previously defined
boundary functions for wheat crops (figure 2)
demonstrates that two of the earlier defined func-
tions (French and Schultz 1984, Sadras and Angus
2006), are too conservative when compared to more
contemporary data and simulation results. The more
recent study (Sadras and Lawson 2013) matches more
closely the results presented here but the linear form
of its boundary function is too optimistic at both low
and high ET values.

3.2.Yield as a function of available N
In summary, the simulation treatments provided data
from 50 sites x 15 years x various N treatment com-
binations or a total of 1814 yield, ET and Available N
data sets. Simulated yields averaged 2725 kg ha ™! with
a range of 200-7197 kg ha~!. The mean simulated
ET across all treatments, sites and years was 212 mm
with a range from 59 to 390 mm. The mean simulated
Available N across all treatments, sites and years was
139 kgN ha~! with a range of 44-349 kgN ha™~'.
Grain yields in both the observed and simulated
data sets were significantly correlated with Available
N (figure 3). As with water productivity, the limits of
N use efficiency can be described as boundary func-
tions (Cassman et al 2002, Grassini et al 2009, Grass-
ini and Cassman 2012, Hochman et al 2013). The
average response of wheat grain yield to Available N
(Yield = f (Available N)) was described as a quad-
ratic function for both the observed and simulated
data. The simulated average response curve peaked
at 225 kgN ha~! with a grain yield of 3818 kg ha™".
The observed response curve was not as steep and
peaked at 335 kgN ha~! with a similar grain yield of
3801 kg ha™'. The different average responses suggest
that, especially with high N supply, observed fields
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Figure 3. Wheat grain yield as a function of available N for (a), the observed data set and (b), the simulated data set. Yield was a
quadratic function of available N For the observed data set, (Y = —137 + 25 x N —0.04 x N2; R? = 0.243; P value < 0.001;

N = 960) and for the simulated data set (Y = —886 + 42 x N —0.01 x N2; R* = 0.295; P value < 0.001; N = 1814). For the
observed data set the N productivity boundary, using a quantile regression on the 95th percentile, was:

Y = 1069 + 30 x N —0.046 x N2. For the simulated data set the boundary function was: Y = —397 4+ 47 x N —0.08 x N2.
Solid lines represent the median yield response while the dashed lines represent the yield frontiers.

were less responsive to available N than simulated
fields.

The N productivity boundaries, using a quantile
regression on the 95th percentile, of both the
observed (figure 3(a)) and the simulated (figure 3(b))
data sets were also best described as quadratic func-
tions. As with the average function the observed
N response function was not as steep as the simu-
lated function and did not peak within the range
of observed data (the yield boundary was 6121 kg
ha—! at 350 kgN ha—!) while the simulated boundary
function peaked at about 280 kgN ha~! with a yield
of 7330 kg ha™!. The average and boundary func-
tions derived from the observed data in this research
are similar if somewhat more conservative than those
previously estimated from an earlier subset of these
data (Hochman et al 2009a). They are also much
lower than the 57 kg grain ha™! achieved per applied
kgN ha~! for irrigated maize in the USA (Grassini
et al 2009).

In the absence of a clear calculation method to
determine the marginal value of applying N fertiliser
to rainfed wheat crops, agronomic advisers and grow-
ers tend to apply rules of thumb. In Yield Prophet Lite
(www.yieldprophet.com.au/yplite/), for example, a
Water Use Efficiency formula is used to convert likely
ET into yield potential (in t ha=!) and this value is
multiplied by 40 to determine the rate of available N
(kgN ha~!) required to achieve that yield. This rule
of thumb is represented by a linear function (figure 3)
that closely matches the boundary functions derived
from this research for available N values up to about
100 kgN ha~! but over-estimates the yield response
where available N exceeds 100 kgN ha™!.

3.3. Yield as a function of ET and available N
Grain yields in both the observed and simulated
data sets were expressed as polynomial functions

with respect to the Available N, ET and an Available
N x ET interaction term (figure 4). All terms of the
model were statistically significant (P value < 0.05)
in both the observed (figure 4(a)) and simulated
(figure 4(b)) data sets. This combined ET-Available N
model accounted for more of the yield variability than
either ET or Available N alone for both the observed
and simulated data sets.

A cross-validation of modelled predictions for
observed or simulated yield data provides an assess-
ment of the remaining uncertainty of yield predic-
tions using the combined models. With the observed
data, there is considerable uncertainty and a satura-
tion effect for yields >4500 kg ha™! (figure 4(c)). A
better fit is observed for the simulated data set which
has less uncertainty around predicted yields and does
not saturate at higher yields (figure 4(d)). The com-
bined (Yield = f (ET, Available N, ET x Available N))
model accounted for 47% of the yield variance in the
observed data and 73% of the yield variance in the
simulated data. With both the observed and simu-
lated data models, all parameters, including the inter-
action term, were statistically significant.

We further developed yield frontier models
based on ET and Available N by fitting quadratic
models with interaction terms to the 95th per-
centile of the observed and simulated data sets
(figures 5(a) and (b)). All terms were significant
(P values < 0.05) for the simulated data. However,
in the model obtained with the observed data set
the intercept (P value =0.528), the second-order
term for ET (P value = 0.063), and the interaction
(P value = 0.154) terms were not significant. These
combined models may be regarded as a first step to
develop a simple tool to aid commercial wheat grow-
ers’ decisions about in-season N fertiliser application
rates (figures 5(c) and (d)) in response to likely sea-
sonal ET.
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Figure 4. Wheat grain yield as a function of available N at various levels of evapotranspiration for (a), observed and (b), simulated
data. For the observed data set grain yield was expressed Y = —1523-9 x N —0.029 x N2 + 16 x ET —0.023 x ET2 +
0.03 x ET x N; (R?> = 0.47; P value < 0.001; N = 960). For the simulated data grain yield was similarly expressed as
Y = —1161-3 x N —5 x N2 + 14 x ET —0.02 x ET2 4 0.09 x ET x N; (R?> = 0.73; P value < 0.001; N = 1814). Linear
regression of model performance against observed yields ((c); RMSE = 986 kg ha=!; R? = 0.47), and simulated yields ((d);
RMSE = 681 kg ha=!; R? = 0.73).

4. Discussion

The empirical model developed here, using just two
variables, ET and Available N, accounts for 46%
of the variability in wheat growers’ yields across
highly variable environments throughout the Aus-
tralian grain zone. This is remarkable, considering the
multitude of other factors that can influence grain
yield such as solar radiation, temperature, soil prop-
erties, extreme climate events, agronomic practices,
wheat cultivars and biotic stresses.

In the combined yield response model both ET
and Available N are described as quadratic functions
with additive effects and a positive interaction term.
This differs from all previous characterisations of the
combined impacts of ET and Available N limitations
on yield (Bloom et al 1985, Grimm et al 1987, Sin-
clair and Park 1993, Sadras 2005, Cossani et al 2010).
The combined response function shows that both
factors are simultaneously limiting and hence rejects
the application of von Liebig’s law of the minimum
(Grimm et al 1987) to this situation. The interaction
term supports the co-limitation hypothesis (Sadras

2005, Cossani et al 2010) since it indicates that, as ET
and Available N increase, they augment the effective-
ness of each factor acting independently. However,
this is not a large overall influence on yield, espe-
cially under less favourable conditions. More influ-
ential in describing the impact of the yield response
is the diminishing returns to added ET and Avail-
able N implied by the quadratic functions used to
describe their impacts on yield. Hence, the assump-
tions that are built into current rules of thumb for
N recommendation, i.e. of von Liebig’s Law, and lin-
ear response functions to ET and Available N, are not
supported by this analysis.

4.1. Application of the yield function to support N
application decisions

Growers need to identify the minimum rate of N
required to maximise profit for a given season (or
expected ET). Given that the ideal time for in-crop
N application is about 3 months before crop matur-
ity, ET can only be estimated with considerable
uncertainty. With such uncertainty on top of model
uncertainty, risk averse growers may choose to aim for
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Figure 5. Wheat grain yield as a boundary function of available N at various levels of evapotranspiration for (a), observed and
(b), simulated data. For the observed data set grain yield was expressed as Y = —787-18 X N —0.05 x N2 4 15 x ET —0.02 X
ET2 + 0.03 x ET x N. For the simulated data grain yield was similarly expressed as Y = —785-21 x N —0.10 x N2 4 10 x ET
—0.03 x ET2 4 0.11 x ET X N. A graphic illustration of the rate of N required to achieve water-limited yield (100%) as well as
90% and 80% of water-limited yield for (c), the observed data set and for (d), the simulated data set.

90% or 80% of the expected water-limited yield (Yw).
If, for example, a grower is expecting in-crop ET to
reach 200 mm, then according to the model obtained
with observed data (figure 5(a)), achieving Yw would
require 278 kgN ha~!, while 90% Yw would require
181 kgN ha~! and achieving 80% Yw would only
require 138 kgN ha~! (figure 5(c)). Similar calcula-
tions can be made with the simulated data (e.g. for
200 mm ET the Available N targets are 213, 147 and
120 kgN ha~! for 100%, 90% and 80% of Yw respect-
ively (figure 5(d)).

The practical implication for wheat growers and
their agronomic advisers is that the combined for-
mula could be developed as a decision tool that
can be used to fine-tune their in-crop N applica-
tion decisions. We propose that they first estimate
the likely ET for their crop, based on ET to date
plus an estimate of ET derived from either historic
records or from seasonal climate forecasts, and then
choose the level (%) of Yw that they intend to pur-
sue. With these two numbers, they can apply the rela-
tionships obtained in figure 5(d) to determine their
N rate.

Matching the right amount of N fertiliser to the
water-limited yield is critical for farmers’ income and
for the environment. Too little fertiliser results in
yield losses, too much fertiliser results in economic
waste and environmental harm. It is thus instruct-
ive to compare the outcome of results of applying
the model expressed in figure 5(b) against the cur-
rent rules of thumb as this would impact on the
yield potential expected for any ET forecast and
on the amount of mineral N recommended. Here
we present a comparison of the current model out-
puts against the Yield Prophet Lite rule of thumb
for three alternative wheat water-use efficiency
(WUE) boundary functions (French and Schultz
1984, Sadras and Angus 2006, Sadras and Lawson
2013) when aiming for either 100% of Yw, or a
more risk averse 80% (figure 6; methodological
details on how to construct this figure are presented
in the supplemental information (available online
at https://stacks.iop.org/ERL/15/114060/mmedia)).
Growers aiming for the water-limited yield (the top
three panels of figure 6) and using the French and
Schultz (1984) WUE frontier to estimate it, will
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Figure 6. Yield penalty and excess N applied as a result of using current N application rules of thumb rather than the combined
available N, ET function developed in this study. Comparisons are based on three versions of the rule of thumb based on
alternative formulae of the water use efficiency frontier: French & Schultz, Sadras & Angus, and Sadras & Lawson. These
comparisons are made for growers aiming for the water limited yield (100% relative yield) and for growers aiming for 80%
relative yields.

underestimate their Yw by 2.2-3.0 t ha™! as ET rises
from 150 to 350 mm. This will potentially lead grow-
ers to apply 110-150 less kgN ha~! than required to
achieve Yw. A similar, though less dramatic, result
was observed for growers using the Sadras and Angus
(2006) WUE frontier formula. Here Yw is under-
estimated by 1.1-1.4 tha=! as ET rises from 150 to
350 mm, potentially leading growers to apply 40-130
less kgN ha~! than required to achieve Yw. Con-
versely, using the Sadras and Lawson (2013) frontier
to estimate Yw would lead to an overestimate of 0.4—
1.0 tha—! as ET rises from 150 to 350 mm, potentially
leading growers to apply a deficit of 70 to an excess
of 50 kgN ha~! relative to the amount of N required
to achieve Yw. A qualitatively similar set of results
was observed when aiming for 80% of Yw, though
in this case, excessive N application rates were more
common.

4.2. Reflection on the similarities and differences in
analysis of the observed and simulated data

With the three yield models explored (ET, Available
N and combined) the same functions emerged for
both the observed and the simulated data sets albeit
with differences in parameter values. In all cases, the
average functions fitted to the observed data were less
responsive to Available N and ET than the corres-
ponding functions fitted to the simulated data. With
the boundary functions, the yield response to lower

input levels was steeper for the simulated data but as
ET and Available N increased, the boundary functions
were more inclined to peak at lower input levels than
for the observed data.

The higher predictive power of the model derived
for simulated data is not surprising given that the
main determinants of the simulated results are those
that affect Available N and ET. Other yield determ-
ining factors that vary by year and location and may
influence the simulated yields are temperature and
solar radiation, as well as the daily distribution (not
just the in-crop totals) of Available N and ET through-
out the season. Observed yields are also subject to
the abovementioned factors but may be further con-
strained by factors that are not accounted for in
the simulations. For example, a multitude of sug-
gested yield-limiting factors including: extremes of
temperature, weeds, pests and diseases, agronomic
deficiencies, tillage practices, late sowing, seeding
density, nutrients other than N, subsoil chemical con-
straints, and other soil chemical and physical proper-
ties including soil organic carbon and plant-available
water capacity (Hochman et al 2009a). Hence, with
the important exception of Available N, the factors
that account for the wheat yield gap are the factors
that contribute to lower predictive power and the
less responsive ET and Available N parameters of the
observed data model.
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5. Conclusions

Addressing the need for crop growers to match
the amount of N fertiliser applied to achieve a
crop’s water-limited yield in the face of increasingly
chaotic rainfall in semi-arid environments is import-
ant because while too little fertiliser restricts yields
and runs down soil organic carbon, too much fer-
tiliser is economically wasteful and environment-
ally harmful. Complex simulation models can relate
wheat grain yield to available water and available
N. Yet, their detailed data input requirements make
them inaccessible to most growers who instead rely
on simplistic rules of thumb. This is the first paper
to develop a simple quantitative model that relates
wheat grain yield to available water and available N.
The model was developed from analysis of two inde-
pendent and comprehensive data sets: measured data
from growers’ fields and data simulated by a well-
validated crop simulation model. Both data sets cover
the full range of environments and seasonal con-
ditions likely to be encountered in the highly vari-
able Australian grain zone. This simple model dif-
fers from other published models and from currently
adopted rules of thumb that rely on a linear WUE
function in combination with a constant NUE value
and the assumption, in accordance with von Liebig’s
law of the minimum, that either ET or available N
limit yield. The models developed here predicts yield
in response to both ET and Available N which are
described as quadratic functions with additive effects
and a positive interaction term. They account for 73%
of the variation in the simulated yield data and 46% of
the variation in the growers’ yield data. Thus, we have
used a complex model to derive a relatively simple one
that is more sophisticated than the current rules of
thumb. The proposed model is simple to use, requir-
ing only readily available input data—simplicity on
the far side of complexity.

We propose to incorporate the model developed
here into the Yield Prophet Lite decision support tool
by replacing its current algorithm without requiring
any additional inputs. We expect that this more reli-
able yet simple decision support tool, when compared
to currently used rules of thumb, will lead to fertil-
izer recommendations that can support better man-
agement of the competing food security and environ-
mental imperatives.
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