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Abstract
Water scarcity threatens people in various regions, and has predominantly been studied from a
water quantity perspective only. Here we show that global water scarcity is driven by both water
quantity and water quality issues, and quantify expansions in clean water technologies (i.e.
desalination and treated wastewater reuse) to ‘reduce the number of people suffering from water
scarcity’ as urgently required by UN’s Sustainable Development Goal 6. Including water quality
(i.e. water temperature, salinity, organic pollution and nutrients) contributes to an increase in
percentage of world’s population currently suffering from severe water scarcity from an annual
average of 30% (22%–35% monthly range; water quantity only) to 40% (31%–46%; both water
quantity and quality). Water quality impacts are in particular high in severe water scarcity regions,
such as in eastern China and India. In these regions, excessive sectoral water withdrawals do not
only contribute to water scarcity from a water quantity perspective, but polluted return flows
degrade water quality, exacerbating water scarcity. We show that expanding desalination (from 2.9
to 13.6 billion m3month−1) and treated wastewater uses (from 1.6 to 4.0 billion m3month−1) can
strongly reduce water scarcity levels and the number of people affected, especially in Asia, although
the side effects (e.g. brine, energy demand, economic costs) must be considered. The presented
results have potential for follow-up integrated analyses accounting for technical and economic
constraints of expanding desalination and treated wastewater reuse across the world.

1. Introduction

A growing worldwide population strongly increases
the demands for clean water for different sectoral
water uses (e.g. irrigation, domestic, energy, man-
ufacturing uses) (Biswas and Tortajada 2018). Cli-
mate change induced increases in the frequency and
intensity of hydro-climatic extremes (e.g. droughts,
floods) (Dankers et al 2014, Prudhomme et al 2014,
Trenberth et al 2014), combined with increasing
intensification of agriculture, industrialisation, urb-
anisation, and water extractions and uses, aggravate
water quality deterioration, particularly in developing
countries (Macdonald et al 2016, UNEP 2016, Sinha

et al 2017). These changes will challenge sustainable
management of ‘clean accessible water for all’, one of
the UN Sustainable Development Goals (SDGs) for
2030 (UN 2015).

So far, water scarcity assessments have focussed
mainly on water quantity (Schewe et al 2014, Liu et al
2017, Cui et al 2018). A widely used index of water
scarcity orwater stress considers the proportion of the
freshwater use (withdrawal) relative to the available
freshwater resources (Liu et al 2017). This indicator
has been used for several scientific studies (Kummu
et al 2016, Liu et al 2017, Vanham et al 2018) and
is also presented as SDG-indicator 6.4.2 for estimat-
ing levels of water stress (UN 2015). Previous work
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by Vanham et al (2018) evaluated the shortcomings
of this water scarcity indicator, including the absence
of water quality, the lack of consideration of uncon-
ventional water resources, and the weak temporal
(annual) and spatial (country) resolutions used in
most water scarcity assessments (Vanham et al 2018).

It is imperative that we understand regional hot-
spots of water scarcity in terms of both water quant-
ity and quality, as the usability of water for human
purposes and ecosystem health depends on both
sufficient water quantity and suitable water quality
(van Vliet et al 2017). Earlier studies used the water
poverty index combining water quantity and quality
data (Sullivan et al 2003) or included water pollu-
tion drivers in calculations of threat indices to human
water security and biodiversity (Vörösmarty et al
2010). For Chinese cities and river basins (Zhao et al
2016, Liu et al 2017), the ratio of total water demands
to freshwater availability has been combined with the
grey water footprint (Hoekstra and Mekonnen 2012)
(i.e. the amount of water required to dilute pollut-
ants in wastewater to sufficiently meet environmental
water quality standards). Following on this concept,
an indicator of water scarcity has been developed
including water quality requirements for different
sectoral water uses (van Vliet et al 2017). However,
an assessment of water scarcity accounting for water
quality and clean water technologies is still lacking, in
particular at the large scale.

Typically, water scarcity solutions focus on
decreasing sectoral water uses (e.g. improved water
use efficiencies) or by increasing water availability
(e.g. increasing reservoir storage capacity). These
solution options have been included in earlier water
scarcity assessments (e.g. Ward et al 2010, Wada
et al 2014a, Jägermeyr et al 2015). Clean water
technologies suiting both the water quantity and
water quality demands, such as desalinated water
use and treated wastewater reuse, are fast-growing
(Elimelech and Phillip 2011, Gude 2017, Jones et al
2019). Both options are considered as a key com-
ponent to reduce water pollution and freshwater
scarcity globally (SDG targets 6.3 and 6.4) (UN
2015). While some first steps have been made to
implement seawater desalination in water scarcity
quantifications (Oki and Kanae 2006, Hanasaki et al
2016), these assessments have ignored desalination
of inland (brackish, river) waters and other sources
(e.g. wastewater, brine), which together contribute
to almost 40% of the desalination water use world-
wide (Jones et al 2019). Furthermore, the desalination
data used in previous studies did not consider sector-
specific uses of desalinated water. Another previous
study of Parkinson et al (2019) focused on improved
water access, treatment and efficiencies towards the
SDG6 targets using an integrated assessment mod-
elling approach, but water quality conditions were
disregarded.

Here we fill in the knowledge gap by present-
ing global hotspots of water scarcity driven by both
surface water quantity and water quality issues,
and quantify expansions in desalination and treated
wastewater reuse to reduce the number of people suf-
fering from water scarcity as required by UN’s SDG6.

2. Methods

2.1. Water scarcity indicators and framework
We developed new indicators and a globally applic-
able model framework of water scarcity including a
water demand versus supply dimension from both
a surface water quantity and water quality perspect-
ive (figure 1). Our framework includes global gridded
simulations at 0.5◦× 0.5◦ spatial resolution of surface
water availability and sectoral water use (section 2.2),
surface water quality and sector water quality require-
ments (section 2.3) and spatially-explicit data of
desalination and treated wastewater reuse capacit-
ies (section 2.4). We focus on these two water tech-
nologies, because they are fast-growing technologies
suiting both water quantity and quality demands
(Elimelech and Phillip 2011, Gude 2017) and because
they are considered as a key component to reduce
freshwater scarcity globally (UN 2015). Next to this,
wastewater treatment impacts are also included in the
modelling of pollutant loadings and hence in surface
water quality concentrations. The focus of this water
scarcity assessment is on surface water resources, and
with particular focus on impacts of surface water
quality, desalination and treated wastewater reuse on
water scarcity levels. We do not include groundwa-
ter resources in our study, given the current lack of
a globally-applicable groundwater model accounting
for both water quality and quantity.

Water scarcity was quantified using three dif-
ferent water scarcity indicators: 1) water scarcity
based on only surface water quantity (WS); 2) water
scarcity including both surface water quantity and
water quality for different sectoral uses (WSq); and
3) water scarcity based on both surface water quant-
ity and quality, and including desalination of vari-
ous sources (sea water, inland resources) and treated
wastewater reuses per sector (WSq_desal+wwr). These
three indicators are briefly discussed below and in
more detail (including their equations) in the sup-
plementary section 1 (available online at stacks.iop.
org/ERL/16/024020/mmedia).

Water scarcity based only on quantity (WS) is cal-
culated as the ratio of water withdrawals for all sec-
tors to surface water availability (‘criticality ratio’),
accounting also for environmental flow requirements
(EFRs). The ‘criticality ratio’ is a widely use approach
(Alcamo et al 2003b, Raskin et al 1997, Liu et al 2017,
Vanham et al 2018), which has also been adopted by
the UN SDG-indicator 6.4.2. (for details see supple-
mentary section 1.1 and supplementary equation 1).
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Figure 1.Water scarcity framework and three water scarcity indicators: 1. water scarcity based on only quantity (WS), 2. water
scarcity including both water quantity and water quality (WSq); and 3. water scarcity based on both water quantity and quality,
and including desalination and treated wastewater reuse (WSq_desal+ wwr).

Water scarcity including both water quantity and
water quality (WSq) is estimated by using the ratio
of the sectoral water withdrawals of acceptable qual-
ity to the water availability. Under conditions that a
water quality constituent i does not meet the sector
water quality requirements for sector j (Ci > Cmaxi,j)
we quantify the additional water needed to obtain
acceptable water quality by dilution (dqi,j). For this,
we estimate for each water use sector the most crit-
ical water quality constituent resulting in the highest
dilution water demands (dqmax j). Here we follow on
from the concepts of grey water footprint and previ-
ous work (Hoekstra and Mekonnen 2012, van Vliet
et al 2017, Ma et al 2020), but focussing on dilu-
tion ofwaterwithdrawn for specific-sector uses rather
than total water availability. For thermoelectric water
withdrawals, which largely depend on water tem-
perature as the critical water quality constituent, we
used spatially-explicit values of maximum permitted
water temperature for cooling water use (see supple-
mentary section 3.5, supplementary table 1). Where
the water temperature exceeds permissible levels, we
calculate the extra surface water withdrawal needed
to dilute thermal effluents from power plants (i.e.
dissipate the same waste heat). This is in line with
the increase in water demands for power plant cool-
ing under higher water temperatures as quantified in
earlier work (Koch and Vögele 2009, van Vliet et al
2012). Additional dilution water demands can also be

estimated to obtain acceptable salinity, for instance,
for irrigation uses. This dilution water suiting water

quality for sectoral use can in principle originate from
various sources (e.g. treated (waste) water or ground-
water). In our global assessment we do however not
specify the origin of these alternative water resource,
but we quantify the potential dilution water require-
ment needed to obtain acceptable quality. This res-
ults in a calculated additional ‘pressure’ on the water
system (higher water scarcity levels) in case water
quality does not meet certain sectoral water quality
requirements. Our water scarcity approach explicitly
accounts for different quality requirements by dif-
ferent intended uses (for details see supplementary
section 1.2 and supplementary equation 2).

We further developed this water scarcity indicator
to account for spatially-explicit desalination uses and
treated wastewater reuses. We distinguish between
desalinated water from ‘new’ sources (i.e. beyond
what is available from inland waters, e.g. seawater)
and ‘existing’ (inland) sources (brackish water, river
waters) perwater use sector (see equation 1; for details
see supplementary section 1.3). Both desalination
and treated wastewater are subtracted from the sec-
toral water demand and hence also cause a reduction
in the volume of water required for dilution of water
to obtain an acceptable quality (dq).

WSqdesal + wwr =
Σn

j=1(Dj + dqmaxj −Nj − Ej −Wj)

Q− EFR−Σn
j=1Ej

(1a)

dqmaxj =max(dqi,j) (1b)
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dqi,j =


0, Ci ≤ Cmaxi,j((

(Dj−Nj−Ej−Wj) ·Ci

Cmaxi,j

)
− (Dj − Nj − Ej

−Wj)

)
, Ci > Cmaxi,j

(1c)

Where WSqdesal+wwr = water scarcity including
water quality, desalination and treated wastewater
reuse [−];D=water withdrawal for sector j [m3 s−1];
Q = water availability [m3 s−1]; EFR = environ-
mental flow requirements [m3 s−1]; dqi,j = extra
water withdrawals for dilution to obtain acceptable
quality for sector j and water quality constituent i
[m3 s−1]; dqmax j = maximum required water with-
drawals for dilution to obtain acceptable quality for
sector j based on the most critical water quality con-
stituent [m3 s−1]; Nj = desalinated water of ‘new’
sources (e.g. seawater, brine) for sector j [m3 s−1];
Ej = desalinated water of ‘existing’ sources (inland
brackish, river water resources) used for sector j
[m3 s−1]; Wj = treated wastewater reuse for sector j
[m3 s−1];Ci= actual water quality level of water qual-
ity constituent i [unit depends on water quality con-
stituent considered, e.g. mg l−1 for concentrations,
◦C for water temperature];Cmax i,j =maximumwater
quality threshold for water quality constituent i for
water use sector j [e.g. mg l−1,◦C].

All water scarcity calculations are at 0.5◦ × 0.5◦

spatial resolution globally and with a monthly
timestep, focussing on the period of 2000–2010.
We identified water scarcity levels higher than 0.4
as ‘severe water scarcity’ in line with previous work
(Liu et al 2017, Hanasaki et al 2018), facilitat-
ing comparisons with previous studies. The aver-
age population under ‘severe’ water scarcity was
quantified by combing our monthly water scarcity
calculations with gridded (0.5◦) population data
(Goldewijk et al 2005, 2010).

2.2. Global water resources and sectoral water use
modelling
For the water quantity component of our water
scarcity framework we used global gridded simula-
tions of surface water availability (i.e. discharge), sec-
toral water use (i.e. withdrawal and consumption)
at 0.5◦ × 0.5◦ spatial resolution and on a monthly
time step for 1979–2010 from four global hydrolo-
gical models: PCR-GLOBWB (van Beek et al 2011,
Wada et al 2011, 2014b, Sutanudjaja et al 2018), H08
(Hanasaki et al 2008), WaterGAP2 (Döll et al 2003,
Alcamo et al 2003a, Flörke et al 2013,Müller Schmied
et al 2016) and VIC (Liang et al 1994, Lohmann
et al 1998, Hamman et al 2018, Droppers et al 2019).
We used simulated actual water withdrawal and con-
sumption for the main water use sectors irrigation,
domestic, manufacturing and thermoelectric water
uses. These global hydrological models were selec-
ted because of their ability to simulate both water
availability and sectoral water use on a global scale.

Multi-model mean results were calculated to account
for uncertainties in water availability and sectoral
water use (withdrawal and consumption) simula-
tions. EFRs were calculated using the monthly vari-
able flow method (Pastor et al 2014), on the multi-
model average discharge. For further details and
results on the global water resource and water use
modelling we refer to supplementary section 2.

2.3. Global water quality modelling and sector
water quality requirements
The water quality component of our water scarcity
framework accounts for surface water temperature,
salinity (total dissolved solids; TDS), organic pollu-
tion (biochemical oxygen demand; BOD) concentra-
tions), total nitrogen (TN) and total phosphorous
(TP) concentrations. These water quality constitu-
ents are selected because they are key in constrain-
ing different sector water uses and ecosystem health
(Scheffer et al 2001, von der Ohe and Liess 2004,
Dumont et al 2012, Herbert et al 2015). In addition,
most of these water quality constituents are also part
of SDG indicator 6.3.2 (‘Proportion of bodies of water
with good ambient water quality’).

We developed a process-based global gridded
surface water quality model to simulate surface
water temperature, salinity (TDS concentrations),
and organic pollution (BOD concentrations) using
the approaches described in supplementary section 3.
This water quality model was applied on 0.5◦ × 0.5◦

spatial resolution globally and monthly timestep for
the period 1979–2010. Simulated return flows from
the global hydrological models per water use sector
(supplementary section 2, supplementary figure 3)
were calculated and used as input to estimate pol-
lutant loadings for the surface water quality model-
ling. Thermoelectric return flows were used to sim-
ulate impacts of heat effluents from power plants
on surface water temperature. For calculating TDS
loadings, irrigation and manufacturing return flows,
together with population numbers and TDS excre-
tion rates were used. For organic pollution (BOD)
loadings, we used manufacturing return flows, pop-
ulation and livestock numbers, and excretion rates
per capita and livestock type (cattle, chickens, ducks,
goats, pigs and sheep). Next to this, pollutant loadings
were calculated including the country-based fractions
of wastewater treatment types (primary, secondary,
tertiary and advanced treatment) and removal effi-
ciencies per pollutant and treatment level (for details
see supplementary section 3). In addition, global
grid-based (0.5◦ × 0.5◦) simulations of in-stream
concentrations of TN and TP were produced with
the IMAGE-GNM model (Beusen et al 2015, 2016)
(supplementary section 3).

Model validation against observed surface water
quality records show that the observed water qual-
ity conditions are represented realistically by the
global surface water quality model (supplementary
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figures 5–10 and supplementary section 3 for more
details). However, the station density and number
of water quality measurements for model validation
is low particularly in the relatively dry regions of
the world (e.g. parts of Africa, Australia, Asia and
Middle East). This limits analyses of the water quality
model performances in those regions.Next to this, the
uncertainties in the simulated water availability are
also highest in particular in these dry regions (supple-
mentary figure 4), which likely also results in higher
uncertainties in simulated in-stream concentrations
and water scarcity levels. The results of simulated
water availability, water quality and water scarcity are
therefore masked in the global maps for the very dry
regions of the world (with surface water availability
less than 1 m3 s−1). These very dry regions contrib-
ute to less than 1.6% of the global population.

Water quality requirements for irrigation,
domestic, manufacturing and thermoelectric water
uses and for ecosystem health used in our water
scarcity framework are derived per sector from inter-
national standards (supplementary section 3.5). The
exception is water temperature for which standards
were considered only for energy (thermoelectric) uses
and ecosystem health. An overview of the selected
water quality thresholds for all water use sectors and
selected water quality constituents, as well as the cor-
responding sources is presented in supplementary
table 1.

2.4. Desalination and treated wastewater reuse
globally
Desalination capacity was derived from a global
spatially-explicit desalination plant database (GWI
2019a) including results of 15 906 operational desal-
ination plants (supplementary section 4.1). This data-
base accounts for desalinated water use per main
water use sector (domestic, manufacturing, energy,
irrigation) individually (supplementary figure 12).
Our approach thus accounts for sector-specific desal-
ination uses and considering different sources: sea-
water, inland (brackish, river) sources, brine and
wastewater.

A global spatially-explicit dataset of wastewater
reuse was developed on 0.5◦ × 0.5◦ spatial resolution
by downscaling of country data of existing sources
(AQUASTAT 2019, GWI 2019b) with total gridded
population numbers (Klein Goldewijk 2005, Klein
Goldewijk et al 2010) as described in more detail in
supplementary section 4.2 (supplementary figure 13).

2.5. Expansion in desalination and treated
wastewater reuse towards water scarcity mitigation
We quantify how much expansion in desalination
and treated wastewater reuse would potentially be
required compared to current capacities to ’substan-
tially reduce the number of people suffering from
water scarcity’ in line with SDG target 6.4. For this
final part of the analyses, we focus on water scarcity

levels below 0.2 as target towards water scarcity
mitigation, because a water scarcity threshold of
0.2 has typically been set as a limit towards ‘mod-
erate water scarcity’ in contrast to 0.4 represent-
ing ‘severe water scarcity’ (Liu et al 2017, Hanasaki
et al 2018). For the analyses of potential expan-
sion in desalination and treated wastewater reuse
towards water scarcity mitigation (in line SDG tar-
get 6.4) we therefore consider technological expan-
sions aiming at water scarcity levels below 0.2 as
an appropriate target. We calculated the required
expansion in desalination capacity of both seawater
and inland water resources and treated wastewater
reuse volume needed under the present (2000–2010)
levels to obtain water scarcity levels below 0.2
(WSq_desal+wwr ≤ 0.2). We consider an increase in
desalination capacity (from both sea water and inland
surface water resources) required to fulfil sector
demands for the domestic,manufacturing and energy
sectors, which are the dominant users of desalinated
water, accounting for 97% of the world’s desalination
capacity (Jones et al 2019). Expansion in sea water for
desalination are constrained to locations proximate to
the coastline (<100 km) where increases in seawater
desalination are economically feasible and technically
viable (Zhou 2005). In locations without ready access
to seawater, expansions in desalination are assumed
to be covered by existing inland water resources (e.g.
river water, brackish water), and are constrained by
available water resources in contrast to desalination
expansion of seawater, which was considered as an
‘unlimited source’. Expansion in treated wastewater
reuse towards water scarcity reduction is used for the
irrigation sector only, which is the dominant user in
terms of treated wastewater (Qadir et al 2007,WWAP
2017, Zhang and Shen 2017). Expansion in treated
wastewater reuse capacity were constrained by the
available total wastewater produced per gridcell (for
details see supplementary section 4.3, supplementary
table 3).

3. Results

3.1. Water scarcity hotspots driven by water
quantity and water quality
Our results show that including water quality con-
tributes to an increase in the percentage of the global
population currently suffering from severe water
scarcity from an annual average of 30% (22%–35%
monthly range; only quantity) to 40% (31%–46%;
including water quality) for 2000–2010. We focus
here on water scarcity levels equal or higher than
0.4, which has typically been set as a limit towards
‘severe water scarcity’ (Liu et al 2017, Hanasaki et al
2018). Water scarcity levels and hence the num-
ber of people affected differ per month, with the
largest inter-annual variability in Australia and low-
est in North America (figure 2(a)). Water scarcity
intensification by accounting for water quality occurs
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Figure 2.Water scarcity driven by water quantity and water quality issues for 2000–2010. Impacts of water quality on global water
scarcity levels including both water quantity and various water quality constituents (water temperature, salinity (TDS), organic
pollution (BOD), total nitrogen and total phosphorous concentrations) and bar plots with percentage of population affected by
severe water scarcity (a), percentage increase in water scarcity levels by including water quality compared to the approach
focussing solely on water quantity (b) and identification of main drivers of water scarcity (water quantity, water quality or
combined) (c). Regions with water availability less than 1 m3 s−1 are masked (white).

Figure 3. Global surface water quality hotspots. Average simulated in-stream concentrations presented for simulated organic
pollution as indicated by biochemical oxygen demand (BOD) (a), salinity as indicated by total dissolved solids (TDS) (b), total
nitrogen (TN) (c) and total phosphorous (TP) (d) concentrations. Regions with water availability less than 1 m3 s−1 are masked
(white). For details of water quality modelling and validation results see supplementary section 3, and supplementary figures 5–10.

in South America and Africa, but also in particu-
lar in the severe water scarcity regions, such as in
South and East Asia (India and China), Middle East,
Southern Europe and Mexico (figures 2(a) and (b)).

In most of these water scarcity hotspots we find that
water scarcity is driven by a combination of water
quantity and water quality issues (figure 2(c)). Here,
excessive sectoral water withdrawals result in high
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Figure 4.Main critical water quality constituents contributing to water scarcity for human uses and freshwater ecosystems in
water scarcity regions. Maps presenting the water quality constituents that contributed strongest to increases in water scarcity for
energy (a), irrigation (b), manufacturing (c), domestic uses (d), and freshwater ecosystems (e).

Figure 5. Impacts of expanding desalination and treated wastewater reuse and required capacity increase towards water scarcity
mitigation. Reduction in population under severe water scarcity (a) and required mean expansion in treated wastewater reuse
capacity (b) and desalination (c) towards water scarcity mitigation. Circular barplots (b), (c) show results for a selection of 30
countries with highest increase in required total expansion of desalination and treated wastewater capacity towards water scarcity
mitigation (in million m3 month−1) and situated in different world regions (NA= North America, SA= South America,
EU= Europe, AF= Africa, AS= Asia and Russia, AU= Australia and Oceania).

water quantity-driven water scarcity, but polluted
return flows degrade water quality, depending also on
wastewater treatment efficiencies and capacities.

While different water quality constituents (pol-
lutants) may have different impacts in terms of
constraints for sectoral uses, overall consistent water
quality hotspots are identified for organic pollution,

salinity and nutrients (figure 3). This is due to com-
mon pollution sources and contributing sectors, and
is in line with previous large-scale water quality
assessments covering multiple water quality constitu-
ents (Kroeze et al 2016, UNEP 2016, Strokal et al
2019, van Vliet et al 2019). In particular in north-
eastern China, but also in other parts of central Asia,
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Figure 6. Required potential expansion (absolute and relative increase) in treated wastewater reuse (a), (c) and desalination (b),
(d) towards water scarcity mitigation.

and parts of theMediterranean, westernUS andMex-
ico, are identified as water quality hotspots regions
in terms of high salinity (TDS), organic pollution
(BOD) and nutrients (TN, TP) concentrations.

Degraded water quality may result in unsuitabil-
ity for sectoral water uses, exacerbating water scarcity
levels. For the most severe water scarcity hotspots in
the world, including eastern China and parts of cent-
ral Asia, water scarcity is stronglywater quality-driven
(figure 2(c)). Here, we see that water scarcity levels
increase by an order of magnitude compared to water
scarcity based on only water quantity. Exacerbation
of water scarcity due to water pollution in China is
in line with previous water scarcity studies for this
region (Zhao et al 2016, Ma et al 2020). In contrast,
in regions with low sectoral water uses and pollution
levels and with high water availability (e.g. tropical
regions and high latitudes) we find that water scarcity
levels, while being low, are mainly water-quantity
driven (figure 2(c)).

We identify for eachwater use sector and for fresh-
water ecosystems the main critical water quality con-
stituent that has the strongest contribution in water
scarcity intensification. This shows that increases in
water scarcity for the energy (thermoelectric) sector
are in particular driven by high water temperatures
(figure 4(a)), with higher water scarcity particularly
in eastern China, India, US, Europe, and parts of
Australia. High salinity (TDS) levels mainly con-
strain irrigation and manufacturing uses in most
regions (figures 4(b) and (c); for 72% and 77% of
area for irrigation and manufacturing, respectively).
Domestic water scarcity levels increase due to various
critical water quality constituents; high organic pol-
lution (BOD concentrations) in particular in eastern
Asia, high TN mainly in Europe, and high salinity

(TDS) levels mainly in arid regions (e.g. western US)
(figure 4(d)). Surfacewater quality thresholds for eco-
system health are exceeded in particular for BOD
(45%) and phosphorous (42%) (figure 4(e)).

3.2. Reducing (clean) water scarcity
In a next step, the newly developed water scarcity
indicator (WSq_desal+wwr) was used to calculate
the potential expansion in desalination and treated
wastewater reuse towards water scarcity alleviation.
From a water resource perspective, the population
under severe water scarcity (water scarcity levels equal
or higher than 0.4) could potentially be reduced from
40% (31%–46%) to 14% (7.0%–16%) under max-
imum expansions (figure 5(a)). This would require a
worldwide increase in desalination capacity from 2.9
to 13.6 billion m3month−1 and an increase in treated
wastewater reuse from 1.6 to 4.0 billion m3 month−1.
In terms of treated wastewater reuse, the strongest
increases are calculated for China and India, which
together contribute to 60% of the required expansion
in treated wastewater reuse worldwide (figures 5(b)
and 6(a), (c)). In these densely populated regions,
large amounts of wastewater is produced that could
potentially be treated and reused to fulfil the high
irrigation water demands in these regions. The
highest potential expansion in desalination capacity
towards water scarcity mitigation is quantified for the
USA,China and India and several European countries
contributing to water scarcity reduction for domestic
and industrial uses (figures 5(c) and 6(b), (d)). In
some regions, such as India, eastern Asia (China),
but also parts of the USA, Europe and other regions,
these calculated potential expansions in desalination
and treated wastewater reuse are still insufficient to
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meet the sectoral water demands. This is due to lim-
ited available wastewater resources that can be treated
and reused, a lack of close access to seawater or
limited availability of inland surface resources for
desalination. While saline or brackish groundwater
desalination could potentially be used in some of
these regions, it should be noted that this has been
disregarded in our analyses.

4. Discussion and conclusions

We developed a new global water scarcity frame-
work including a water quality dimension and the
use of fast-growing clean water technologies suiting
both water quantity and quality aspects (i.e. desal-
ination and treated wastewater re-use). Our global
study shows that water scarcity levels and percentage
of people affected by severewater scarcity are substan-
tially higher when we account also for water quality
(on average 40%) rather than solely water quantity
(30%).Moreover, we show that water scarcity inmost
hotspots regions (India, China, Middle East, Medi-
terranean and Mexico) is driven by a combination of
water quantity and water quality issues (figure 2). We
show that desalinated water use and treated wastewa-
ter reuse can potentially strongly reduce the num-
ber of people affected by water scarcity (SDG target
6.4), especially in Asia (figures 5 and 6). These res-
ults are relevant in terms of defining water investment
strategies and water resources exploitation potentials
on a longer term (Cobbing and Hiller 2019, Dam-
ania et al 2019). For instance, in regions where water
scarcity is also strongly driven bywater quality, invest-
ments in clean water technologies or pollution pre-
vention measures (Damania et al 2019) would be
recommended in addition to traditional measures
focusing on water supply management (e.g. reservoir
construction).

While our global assessment has been limited to a
selection of water quality constituents (i.e. water tem-
perature, salinity, organic pollution, total nitrogen
and total phosphorous) relevant for various sectoral
uses and ecosystem health, our water scarcity frame-
work could potentially be used to add also other water
quality constituents (e.g. pathogens, heavy metals,
pesticides, pharmaceuticals and other emerging pol-
lutants). This would require to expand the model-
ling of pollutant loadings and in-stream concentra-
tions as well as the determination of suitable sectoral
water quality standards for additional water quality
constituents. The presented estimates of water qual-
ity impacts on water scarcity levels and number of
people under severe water scarcity could then poten-
tially increase, depending on whether sectoral water
quality standards for those water quality constituents
are exceeded.

It is important to note that our current water
scarcity assessment is limited by the lack of global
data for groundwater resources availability and water

quality. Previous studies have highlighted amajor role
of groundwater resources availability and changes
on water scarcity levels (Döll 2009, Foster and
Macdonald 2014, Richey et al 2015, Damkjaer and
Taylor 2017). While the focus of our water scarcity
assessment is on surface waters and the impacts of
surface water quality and water technologies, the
water scarcity concept developed in our study has
the potential to include groundwater resources. This
will provide a more comprehensive understanding
of water scarcity, accounting for both surface and
groundwater resources from both a water quantity
and water quality perspective across different scales.
Inclusion of groundwater resources would in par-
ticular be important in regions with a relative high
contribution of water withdrawals from groundwa-
ter resources, such as India (Döll et al 2012, Wada
et al 2014b), regions where the quality of groundwa-
ter resources is deteriorating (Macdonald et al 2016,
Burri et al 2019, Gleeson et al 2020) or where there
is a potential for increased sustainable groundwater
exploitation, such as in Sub-Saharan Africa (Cobbing
and Hiller 2019).

Our estimates of expansion in desalination poten-
tial towards water scarcity alleviation should be con-
sidered as lower bound estimates, as these do not
consider potential increases in desalination from
brackish groundwater resources.Our study thus iden-
tifies the physical boundaries towards water scarcity
mitigation from a surface water resources perspect-
ive. Next to this, the technical, socio-economic and
environmental constraints (Kümmerer et al 2018)
and side-effects of these technologies must also be
considered. Desalination and wastewater treatment
are both energy intensive technologies, aggravating
greenhouse gas emissions if provisioned from fossil
fuels (Martin-Gorriz et al 2014), and associated with
high economic costs (Parkinson et al 2019). The
production of by-products also poses problems. For
example, the 15 906 desalination plants considered in
our study produce at present 4.3 billion m3month−1

of brine (i.e. hypersaline concentrate), in addition to
the 2.9 billion m3 month−1 of freshwater for water
scarcity alleviation (Jones et al 2019). Few economic-
ally feasible and environmentally soundmanagement
strategies exist for the safe disposal of brine. When
disposed back to the source (e.g. seawater), increased
salinity and toxicity levels in the receiving body can
pose major risks to aquatic ecosystems (Gacia et al
2007, Palomar and Losada 2011). Disposal of brine to
inland water resources can also paradoxically increase
local water scarcity driven by salinity issues, con-
straining other sectoral water uses and aquatic eco-
systems (Meneses et al 2010). Brine production is
mainly driven by desalination technology and salinity
of feedwater type used, and volumetrically is typically
smaller for inland water resources than for desalina-
tion of seawater (Jones et al 2019). However, suitable
and economically viable brine disposal management
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options are highly important for expanding desalin-
ation of inland water resources (Morillo et al 2014).
For wastewater re-use, health concerns and public
perceptions are also potential constraints, particularly
for the domestic and irrigation sectors (WWAP2017).
Improvements in treatment technologies, coupling
with renewable energy sources and resource recovery
of ‘waste’ products provide opportunities for redu-
cing the costs and environmental concerns associated
with these technologies.

Achieving ‘clean water for all’ and ‘reducing the
number of people suffering from water scarcity’,
as advocated by SDG6, requires that we expand
our focus from solely water quantity solutions (e.g.
increasing water use efficiencies and reservoir stor-
age), tomeasures that contribute to bothwater quant-
ity and water quality improvements. Moreover, water
quality improvements and water scarcity reduction
should be sustainable without compromising envir-
onmental objectives. In addition to the ‘hard infra-
structure’ clean water technologies, a strong focus on
reducing the pollutant emissions (Kümmerer et al
2018) is also paramount in meeting the sustainable
management of clean and sufficient water for all.
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