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Abstract
Wildland fires exert substantial impacts on tundra ecosystems of the high northern latitudes
(HNL), ranging from biogeochemical impact on climate system to habitat suitability for various
species. Cloud-to-ground (CG) lightning is the primary ignition source of wildfires. It is critical to
understand mechanisms and factors driving lightning strikes in this cold, treeless environment to
support operational modeling and forecasting of fire activity. Existing studies on lightning strikes
primarily focus on Alaskan and Canadian boreal forests where land-atmospheric interactions are
different and, thus, not likely to represent tundra conditions. In this study, we designed an
empirical-dynamical method integrating Weather Research and Forecast (WRF) simulation and
machine learning algorithm to model the probability of lightning strikes across Alaskan tundra
between 2001 and 2017. We recommended using Thompson 2-moment and Mellor–Yamada–
Janjic schemes as microphysics and planetary boundary layer parameterizations for WRF
simulations in the tundra. Our modeling and forecasting test results have shown a strong capability
to predict CG lightning probability in Alaskan tundra, with the values of area under the receiver
operator characteristics curves above 0.9. We found that parcel lifted index and vertical profiles of
atmospheric variables, including geopotential height, dew point temperature, relative humidity,
and velocity speed, important in predicting lightning occurrence, suggesting the key role of
convection in lightning formation in the tundra. Our method can be applied to data-scarce regions
and support future studies of fire potential in the HNL.

1. Introduction

Wildland fire is a dominant disturbance across boreal
forest and tundra ecosystems in the high northern
latitudes (HNL;Goetz et al 2005, Bond-Lamberty et al
2007, French et al 2015). Tundra fires can alter ecosys-
tem functioning and drive environmental changes in
carbon cycling and energy budget (Mack et al 2011,
Bret-Harte et al 2013, Pearson et al 2013, Jones et al
2015, French et al 2016). Specifically, they can release
large stores of carbon locked in organic soil and per-
mafrost. For example, the 2007 Anaktuvuk River fire
in Alaska burned 1039 km2 and released∼2.1 Tg car-
bon into the atmosphere (Mack et al 2011). Although
much rarer and generally less severe than boreal fires,

they are common, particularly in Alaska. Between
2001 and 2015, Alaskan tundra has burnt about 54%
of 10 260 km2 burned area in the tundra worldwide
(He et al 2019). Additionally, post-fire recovery for
critical components of the tundra ecosystem can last
for several decades, which is comparable to that of the
boreal forests (Racine et al 1987, Jandt et al 2008).
Thus, tundra fires can impact long-term winter for-
age availability, particularly lichen, for caribou, which
will subsequently influence the subsistence resources
of local human communities (Gustine et al 2014, Bliss
and Hu 2020).

Fires in the remote and generally inaccessible
HNL are primarily ignited by cloud-to-ground (CG)
lightning flashes (French et al 2015, Veraverbeke et al
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2017), also known as lightning strikes. Future pro-
jections indicate potential increase of lightning under
climate warming (Price and Rind 1994a, Romps et al
2014), which will subsequently lead to more fire
occurrences and larger burned areas in the HNL
(Wotton et al 2010, Krause et al 2014, French et al
2015, Veraverbeke et al 2017). Numerous studies have
explored the driving factors of lightning strikes and
developed predictive models (Burrows et al 2005,
Blouin et al 2016) for Alaskan and Canadian boreal
forests. However, considerably less is known about
factors driving CG lightning for the treeless tun-
dra. The substantial differences in surface condi-
tions between tree-dominated and treeless landscapes
(Dissing and Verbyla 2003, Beringer et al 2005, Van
Heerwaarden and Teuling 2014, Rivas Soriano et al
2019) imply that understanding lightning processes
in the boreal forests is not necessarily readily transfer-
able to the tundra. Therefore, tundra-focused stud-
ies are critical for enhancing the modeling capability
of lightning and fire potential, and assisting wildfire
management efforts in the future.

Typically, lightning formation is associated with
atmospheric convection in cumulonimbus clouds
(Anderson 1992). Lightning flashes are generated
through buildup, separation, and transfer procedures
of electric charges between cloud particles (Saunders
2008, Yair 2008). The occurrence and intensity of
lightning are generally related to factors such as
convective cloud development, cloud structure, and
hydrometeor attributes (Price and Rind 1994b, Baker
et al 1999, Buiat et al 2017). However, explicit simu-
lation and prediction of the electrification processes
can be computationally expensive (Zepka et al 2014).
Further efforts are also required to comprehens-
ively understand the detailed microphysical proced-
ures contributing to the charge accumulation (Rakov
and Uman 2003, Saunders 2008). Efforts on mod-
eling lightning activity thus primarily rely on devel-
oping relationships with observed or model-resolved
parameters related to convective activities and cloud
microphysical properties.

Classificatory schemes or regression methods
developed with convective indices or weather con-
ditions were among the earliest lightning model-
ing attempts (Anderson 1991, Sly 1965, Reap and
Foster 1979, Fuquay 1980, Reap and Macgorman
1989). With the development of numerical weather
prediction (NWP) models, lightning schemes based
on microphysics principles have been parameterized
within models from regional to global scales (Price
and Rind 1994b, Barthe et al 2010, Yair et al 2010,
Lynn et al 2012, Wong et al 2013). Simple strategies
were also designed with Weather Research and Fore-
cast (WRF) simulations (Zepka et al 2014, Giannaros
et al 2015). In addition to physical parameterizations,
empirical-based methods such as logistic regression
(Shafer and Fuelberg 2006, Bates et al 2018) and
random forest (RF; Blouin et al 2016, Schön et al

2018) were adopted tomodel lightning based onmet-
eorological conditions and thunderstorm character-
istics. Opportunities for integrating dynamic NWP
and statistical models have been explored to improve
the modeling capability of lightning potential. Bur-
rows et al (2005) trained tree-structured regression
models to forecast lightning probability based on
the Global Environmental Multiscale (GEM) model.
Sousa et al (2013) and Gijben et al (2017) also com-
bined WRF with logistic regression to develop a
statistical-dynamical method for CG lightning pre-
diction in different regions.

Due to the remoteness of tundra, meteorological
observations are very sparsely distributed and thus
unsuitable for describing the spatial variation of tun-
dra conditions. Although reanalysis products ensure
spatial-temporal consistency, their performances are
limited by the coarse resolution, limited availability
of observations, and uncertainty of diagnostic vari-
ables (Dee et al 2016). Therefore, purely empirical
models trained with these data are inappropriate for
lightning modeling in data-scarce regions like tun-
dra. Although NWP has not been specifically adop-
ted in tundra studies, existing research has demon-
strated its suitability and effectiveness for modeling
lightning potential (Reap 1991, Burrows et al 2005)
and fire danger (Mölders 2010, Di Giuseppe et al
2016) in boreal forests. In this study, we aim to under-
stand what atmospheric factors affect the CG light-
ning probability in Alaskan tundra from 2001 to 2017
and to model the probability by integrating WRF
and RF.

2. Study area

We defined Alaskan tundra using the Circumpolar
Arctic Vegetation Map (CAVM; figure 1(a); Walker
et al 2005). Fire regimes vary by year and across dif-
ferent tundra regions (figure 2). In Alaska, more than
99%of the lightning strikes occur fromMay toAugust
(Reap 1991, Mcguiney et al 2005). Lightning activ-
ity shows a typical diurnal pattern from noon until
midnight with a peak between 4 pm and 8 pm. Elev-
ation and forest cover can affect the spatial variation
of lightning strikes in Alaska by altering the convect-
ive activity (Dissing and Verbyla 2003). In particular,
large-scale atmospheric instability and local conver-
gence are the primary contributors to the formation
thunderstorm of lightning (Reap 1991).

3. Materials andmethods

We designed an empirical-dynamical method
using WRF-simulated atmospheric variables to
model CG lightning probability and understand
its driving factors in Alaskan tundra. We first con-
ducted a sensitivity analysis to identify optimal
WRF parameterizations that best describes tundra
meteorological conditions. We then ran WRF and
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Figure 1. Study area: (a) Alaskan tundra defined by CAVM; (b) domain configuration for two-way nested WRF simulation.

Figure 2. Fire count in different regions of Alaskan tundra and total burned area for each year from 2001 to 2017 according to
Alaska Large Fire Database (ALFD).

developed RF models for predicting CG lightning
probability.

3.1. CG lighting observations
Weobtained lightning data from theAlaska Lightning
Detection Network (ALDN; Fronterhouse 2012),
with a detection efficiency better than 5 km and pos-
itional accuracy higher than 70% (Reap 1991, Diss-
ing and Verbyla 2003). The system has been updated
to improve detection performance (Fronterhouse
2012). Devices employed before 2012, developed by

Vaisala, Inc., recorded lightning flash with multipli-
city (i.e., lightning strikes per flash). The new sys-
tem, provided by TOA Systems, Inc., records light-
ning strikes instead (Fronterhouse 2012). To ensure
data consistency between systems, we adopted light-
ning strikes rather than flashes in this study.

3.2. WRF setup and sensitivity analysis
We adopted the Advanced Research WRF version 4.0
(Skamarock et al 2019) for simulation. The National
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Table 1.WRF parameterization schemes used for the pan-Arctic region in existing literature.

Components Schemes References

Morrison 2-moment (Bieniek et al 2016)
Thompson 2-moment (Kim et al 2014; Mölders 2010, Mölders

2008)
WRF single-moment 6-class (Hines and Bromwich 2008)

Microphysics

Goddard Cumulus Ensemble
Model

(Cassano et al 2011; Glisan et al 2013)

Rapid Radiative Transfer Model
(RRTM) Longwave

(Bieniek et al 2016; Cai et al 2018; Glisan
et al 2013; Hines et al 2011; Kim et al
2014; Mölders 2010, Mölders 2008)

Longwave radiation
Community Atmospheric Model
(CAM) Longwave

(Cassano et al 2011; Glisan et al 2013)

RRTM Shortwave (Bieniek et al 2016; Glisan et al 2013;
Kim et al 2014)

Dubhia Shortwave (Cai et al 2018; Mölders 2010, Mölders
2008)

Goddard Shortwave (Hines et al 2011)
Shortwave radiation

CAM Shortwave (Cassano et al 2011; Glisan et al 2013)
Grell-Devenyi ensemble (Bieniek et al 2016; Cassano et al 2011;

Glisan et al 2013)
Cumulus

Kain-Fritsch (Cai et al 2018 )
Mellor-Yamada-Janjic
(MYJ)/Monin-Obukhov Eta
(Eta)

(Bieniek et al 2016; Cassano et al 2011;
Glisan et al 2013; Hines et al 2011)

PBL/ Surface layer
Yonsei University (YSU)/
Monin-Obukhov MM5 (MM5)

(Cai et al 2018; Kim et al 2014; Mölders
2010, Mölders 2008)

Noah (Bieniek et al 2016; Cai et al 2018;
Cassano et al 2011; Glisan et al 2013;
Hines et al 2011)

Land surface model
Rapid Update Cycle (Mölders 2010, Mölders 2008)

Table 2. Six candidates of parameterization combinations for sensitivity analysis.

Combination notation Microphysics PBL+ surface layer

Morrison_MYJ Morrison 2-moment MYJ+ Eta
Thompson_MYJ Thompson 2-moment MYJ+ Eta
WRF6_MYJ WRF6 MYJ+ Eta
Morrison_YSU Morrison 2-moment YSU+MM5
Thompson_YSU Thompson 2-moment YSU+MM5
WRF6_YSU WRF6 YSU+MM5

Centers for Environmental Prediction Final Oper-
ational Model Global Tropospheric Analysis data
(NCEP FNL) at 1◦ × 1◦ resolution and 6-h interval
were used for model initialization (NCEP 2000). We
defined two domains with 25 km (Domain 1) and
5 km (Domain 2) grid spacings for two-way nested
simulation (figure 1(b)). The vertical dimension was
configured with 33 unevenly spaced full sigma levels
with the model top defined at 50 hPa.

WRF provides multiple parameterization
schemes for major physics components (table 1),
which can affect simulation results for a specific
region given various assumptions and mechan-
isms. Since existing WRF applications in the HNL
primarily focus on the boreal forests or the pan-
Arctic region, their schemes may not be suit-
able for the tundra. Therefore, we conducted a
sensitivity analysis to determine WRF settings

that most closely match tundra meteorological
observations.

We first identified a list of candidate schemes
through literature review, the majority of which
utilized the Noah, Rapid Radiative Transfer Model
(RRTM), andGrell–Devenyi schemes for land surface
model, radiation, and cumulus components, respect-
ively (table 1). We adopted their updated versions
in WRF version 4.0. Mixed-phased microphysics
schemes are typically recommended for simulating
icing or convective conditions at a horizontal resolu-
tion finer than 10 km (Skamarock et al 2019).We thus
selected 2-moment schemes ofMorrison, Thompson,
and WRF 6-class (WRF6) for microphysics, and con-
sidered both Mellor–Yamada–Janjic (MYJ) and Yon-
sei University (YSU) schemes for planetary boundary
layer (PBL) representation in our sensitivity analysis
(table 2).
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Table 3. Summary of case studies for sensitivity analysis.

Year Number of RAWS stations Simulation period (UTC time)

2006 8 08/16 00:00–08/17 00:00
2007 9 05/01 00:00–05/02 00:00
2010 12 07/01 00:00–07/02 00:00
2015 29 06/18 00:00–06/19 00:00

Figure 3. Illustration of the ‘24 h model’ and ‘48 h model’ components.

Remote Automated Weather Stations (RAWS;
https://raws.nifc.gov) provide the densest network
of near-surface weather observations across Alaska
to date. Four variables, including air temperature
(T), dew point temperature (Td), relative humidity
(RH), and solar radiation, were utilized as ‘ground
truth’ for sensitivity analysis. To consider different fire
regimes (figure 2), we selected four cases for 24 h
simulations in years of varying fire season intens-
ity (2006—low, 2007—moderate, 2010 and 2015—
intense, figure 2; table 3). We calculated three statist-
ical metrics for each variable, including root-mean-
square error (RMSE), mean absolute error (MAE)
and Pearson’s r correlation, and ranked them of
all candidates for each year from 1 (lowest) to 6
(highest). For each metric, the yearly rankings were
summed up to create a single rank sum (ranging from
4 to 24), with the larger value representing better
overall performance.

3.3. Random forest modeling of CG lightning
probability
We used the RF classification algorithm (Breiman
2001) to model CG lightning probability with WRF-
simulated atmospheric variables as predictors. As an
ensemble method, RF generates a large number of
decision trees through permutation and integrates
their results for a more stable modeling perform-
ance. Two separate modeling experiments referred to
as ‘24 hr model’ and ‘48 hr model’ were designed to
compare the consistency of modeling performance
and variable importance with different simulation
periods (0–24 h and 0–48 h, respectively; figure 3).

For each experiment, atmospheric variables were
extracted from WRF outputs (Domain 2) simulated

at 24 h or 48 h after initialization, respectively. Four
groups of variables were summarized from literature
(Reap 1991, Burrows et al 2005, Sousa et al 2013,
Blouin et al 2016), including stability indices, cloud
properties, weather conditions at multiple pressure
levels (500 hPa, 700 hPa, 850 hPa, and 1000 hPa), and
two lightning parameterizations fromWRF (table 4).
Then we used these predictors to model the pres-
ence and absence of lightning strikes during the fol-
lowing 24 h after the timing of variable extraction
(figure 3). Lightning points from the ALDN data-
set were labeled as presence, while random sample
points within tundra with no lightning occurred were
labeled as absence.

To ensure the representativeness of our models in
describing tundra lightning, three lightning severity
levels were identified based on the total number of
daily lightning strikes for model training, following a
similar method by Farukh et al (2011): >2000 strikes
per day as severe, 500–2000 strikes per day as moder-
ate, and 0–500 strikes per day as low. For each level,
five cases were selected for WRF simulation using
a stratified random sampling strategy (table 5). We
then randomly selected 70% of presence and absence
points for model training and reserved the rest 30%
for validation. Training and testing points from all
levels were combined for model development and
accuracy assessment, respectively. We set the number
of trees to 500 and the number of variables at each
split as 8 in the RF algorithm.

We reported the out-of-bag (OOB) error rate to
evaluate the overall accuracy of model training. For
validation, we calculated statistical criteria based on
the reserved dataset (tables 6 and 7), and generated
receiver operating characteristics (ROC) curves and

5
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Table 4. List of independent variables retrieved fromWRF simulation output for RF modeling.

Categories Abbreviation Description

CAPE Convective Available Potential Energy
CIN Convective Inhibition
LCL Lifted Condensation Level
LFC Level of Free Convection
TT Total Totals
KI K Index
PLI Parcel Lifted Index (to 500 hPa)
BI Boyden Index

Atmospheric stability indices

SHOW Showalter Index
CFtotal Total cloud cover fraction
CFhigh High-level cloud cover fraction
CFmid Mid-level cloud cover fraction
CF low Low-level cloud cover fraction
CTT Cloud top temperature
CTH Cloud top height
CTP Cloud top pressure
IWP Ice water path
LWP Liquid water path
ERIce Effective radius of cloud ice
ERWater Effective radius of cloud water
QCloud Cloud water mixing ratio
QIce Ice mixing ratio
QRain Rain mixing ratio

Cloud properties

BT Brightness temperature
T Air temperature at surface and multiple pressure levels
Td Dewpoint temperature at surface and multiple pressure levels
T.Td Temperature-dewpoint spread at multiple pressure levels
RH Relative humidity at surface and multiple pressure levels
GPZ Geopotential height at multiple pressure levels
DZ Thickness between any two pressure layers
W Vertical velocity at multiple pressure levels
Helicity Helicity
UH Updraft helicity
Rain Total precipitation
PW Precipitable water

Weather variables

SLP Sea level pressure
PR92 Flash distribution of CG lightning with PR92 scheme

Lightning parameterizations
LPI Lightning probability index

Table 5. Cases studies of WRF simulations for CG lightning modeling.

Initialization of Total CG lightning strokes Total CG lightning strokes
simulation (UTC) during 0∼ 24 h during 24∼ 48 h

2003/06/23 00:00 1305 1560
2005/06/11 00:00 732 1027
2005/06/29 00:00 3449 2151
2005/08/16 00:00 5 15
2007/07/04 00:00 4280 479
2007/07/11 00:00 2321 2247
2008/06/25 00:00 2030 295
2009/06/09 00:00 335 64
2010/07/01 00:00 1015 1991
2013/06/20 00:00 3073 3641
2013/08/16 00:00 60 10
2015/07/14 00:00 847 4320
2015/06/21 00:00 974 905
2015/07/23 00:00 175 80
2016/07/11 00:00 93 109

area under the curve (AUC). Moreover, we examined
the contribution of predictors in modeling tundra

lightning potential with variable importance quanti-
fied by mean decrease in accuracy (MDA).
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Table 6. Contingency matrix of variables used to calculate
statistical scores.

Observed

CG lightning event Presence Absence

Presence a (hit) b (false alarm)
Predicted

Absence c (miss) d (correct non-event)

Table 7. Statistical criteria used for assessing modeling
performance.

Statistical scores Abbreviation Formula

Probability of Detection POD a/(a+ c)
Critical Success Index CSI a/(a+ b+ c)
False Alarm Ratio FAR b/(a+ c)
False Alarm Rate F b/(b+ d)

3.4. Forecasting capability assessment
In addition to empirical modeling, we tested the cap-
ability of our empirical-dynamicalmethod in forward
forecasting of CG lightning probability at a future
timing by applying the RF model developed for a
previous period. Here we utilized the ‘24 hr model’
to forecast the CG lightning probability with atmo-
spheric conditions simulated 48 h after initialization.
Statistical criteria listed in table 7 and ROC curves
were also generated to quantify the forecasting cap-
ability.

4. Results

4.1. Sensitivity analysis ofWRF simulation
The results of sensitivity analysis indicate vari-
ability in the performance of different WRF
schemes by meteorological variables and across
cases (figure 4; Tables S1–S4 (available online at
https://stacks.iop.org/ERL/15/115009/mmedia)).
The combined statistical ranking for each variable
can range between 4 (the lowest rank across all four
sensitivity cases, see table 3) and 24 (the highest
rank). Based on the results, Thompson_MYJ and
Morrison_MYJ emerged as the strongest performing
settings for tundra meteorology simulations (figure
4). Although the majority of the correlation values
for all metrological variables are around 0.7 ∼ 0.8,
the overall simulation results with all six candidates
for T and Td outperform those for RH and solar radi-
ation according to RMSE and MAE (tables S1–S4).
Specifically, Thompson_MYJ shows the best results
compared to other schemes for T and Td (figure
4(a)–(b); Tables S1–S2). For RH, MYJ for the PBL
scheme delivers superior results compared to YSU,
particularly when combined with the Morrison and
Thompson schemes (figure 3(c)). While for solar
radiation, the Morrison scheme outperforms other
microphysics schemes, followed by Thompson.

Since lightning activity is largely related to con-
vection, we further compared the Thompson_MYJ
andMorrison_MYJ schemes by examining the spatial

distribution of convective available potential energy
(CAPE) as a representative. Considering that the
atmospheric soundings were very sparse in the tun-
dra, and the spatial distribution of CAPE from
the two schemes was fairly close, we chose the
Thompson_MYJ scheme for further simulation, since
it shows a more detailed distribution of CAPE val-
ues for describing convective activities (figure 5). The
optimizedWRF schemes were summarized in table 8.

4.2. Accuracy assessment of RFmodels
The overall OOB error rate and the class errors sug-
gest high accuracy in predicting CG lightning strikes
in Alaskan tundra. The ‘24 hr model’ has an over-
all error rate of 4.64% and an accuracy of 95.36%.
Specifically, the absence of CG lightning has a class
error of 7.26%, while that of the presence is only
2.54% (table 9(a)). The overall error rate of the ‘48-
hr model’ is 6.81% and the accuracy reaches 93.19%.
The class errors of the absence and presence of
lightning events are 11.15% and 3.43%, respectively
(table 9(b)).

Our validation results against the reserved dataset
showhigh overall accuracy in predictingCG lightning
strikes in bothmodels by assessing the statistical met-
rics (table 10) and the ROC curves (figure 6). We also
found a notably stronger performance during severe
and moderate lightning days than the low severity
level in both models. The ‘24 hr model’ shows an
overall probability of detection (POD) of 0.96 and
a critical success index (CSI) of 0.91, while the false
alarm ratio (FAR) and false alarm rate (F) are below
0.1. The AUC values are above 0.95 across lightning
days of all severity levels. The ‘48 hr model’ shows an
overall POD value of 0.97 and a CSI of 0.88, while the
FAR and Fmetrics are around 0.1. However, the POD
andCSI values are below 0.5 for the low severity cases,
much lower than those from the ‘24 hr model’. The
AUC values reported from validation data are higher
than 0.95 during severe and moderate lightning days
while dropping to 0.87 for the low severity level days
(table 10).

In addition to the purely statistical accuracy
assessment, we generated CG lightning probability
maps across the entire Alaskan tundra to visually
compare the predicted spatial patterns to observed
lightning strike distribution (see an example for a
severe lightning day in figure 7).

4.3. Forecasting performance
The forecasting test using the ‘24 hr model’ for the
48-h simulation demonstrates promising forecasting
results with our method, with POD and CSI around
0.7 and two false ratios FAR and F below 0.08 (table
11). When separated by different severity levels of
lightning days, the forecasting performance is con-
sistent with previously reported results: the accur-
acy appears to be substantially higher for severe and
moderate lightning conditions than low severity days.

7
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Figure 4. Bar plots summarizing the ranks of six candidate schemes based on Pearson’s r correlation, MAE and RMSE for: (a) T,
(b) Td, (c) RH, and (d) solar radiation. The largest rank sum value represents the best overall performance.

Table 8. Optimized combination of physical parameterizations for WRF.

Physical component Parameterization scheme Setting option in WRF

Microphysics Thompson 2-moment mp_physics= 8
Cumulus Grell-Freitas ensemble cu_physics= 3
PBL MYJ bl_pbl_physics= 2
Surface layer Eta sf_sfclay_physics= 2
Land surface model Noah sf_surface_physics= 2
Longwave radiation RRTMG ra_lw_physics= 4
Shortwave radiation RRTMG ra_sw_physics= 4

Similar patterns can be found from the ROC curves
(figure 8), with the AUC values around 0.9 for the
entire data and those from the moderate level cases
(table 11).

4.4. Evaluation of variable importance
To understand the predictors’ roles in determining
the CG lightning potential in the tundra, we
examined the top 20 important variables ranked

according to MDA from both the ‘24 hr model’
and the ‘48 hr model’ for comparison (figure 9).
According to both models, the parcel lifted index
(PLI) is found to be the most important variable
in determining the accumulated lightning strikes
among all the predictors. For the ‘24 hr model’,
weather variables at multiple pressure levels, includ-
ing geopotential height (GPZ), Td, RH, and velo-
city speed, are also shown as highly important in
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Figure 5. Comparison of CAPE simulation in Domain 2 between (a) Morrison_MYJ and (b) Thompson_MYJ for the 2010 case as
an example.

Table 9. Confusion matrices for (a) ‘24 hr model’ and (b) ‘48 hr model’.

(a) 24 h model

CG lightning predictions

Confusion matrix Absence Presence Class error

Absence 7013 549 0.0726
CG lightning observations

Presence 241 9239 0.0254

(b) 48 h model

CG lightning predictions

Confusion matrix Absence Presence Class error

Absence 4872 612 0.1115
CG lightning observations

Presence 243 6837 0.0343

Table 10. Statistical criteria calculated using the validation data for: (a) 24 h model; (b) 48 h model.

Models Metrics All Severe level Moderate level Low level

POD 0.9628 0.9821 0.9456 0.7885
CSI 0.9065 0.9365 0.8569 0.7454
FAR 0.0606 0.0472 0.0987 0.0682
F 0.0858 0.1167 0.0794 0.0277

24 h model

AUC 0.9869 0.9898 0.9818 0.9743
POD 0.9668 0.9701 0.9643 0.2273
CSI 0.8815 0.8808 0.8833 0.1829
FAR 0.0909 0.0946 0.0868 0.5161
F 0.1247 0.1291 0.1196 0.0366

48 h model

AUC 0.9810 0.9810 0.9809 0.8751

determining CG lightning occurrence in the tundra
(figure 9(a)). Also, cloud fraction, sea level pressure,
helicity, lifted condensation level, and atmospheric
stability indices, such as the Total Totals and the
Showalter Index (SHOW), are among the top 20

important predictors. Although the variable rank-
ing order of the ‘48 hr model’ differs from that
of the ‘24 hr model’, the majority of the top 20
important variables remain the same. Only layer
thickness between 700 hPa and 850 hPa levels

9
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Figure 6. ROC curves of validation results on lightning days with different severity levels: (a) 24 h model, (b) 48 h model.

Figure 7. (a) Observed CG lightning strikes during 2010/07/02 00:00 and 2010/07/03 00:00 UTC and (b) modeled CG lightning
probability during the same period with the ‘24 hr model’ in Alaskan tundra.

(DZ700–850) and brightness temperature appear to
play an important role in determining the lightning
potential for the ‘48 hr model’ but not in the ‘24 hr
model’.

5. Discussions

In general, this study successfully demon-
strates the strong capability of the empirical-
dynamicalframework in representing meteorological
conditions that support CG lightning well in Alaskan
tundra. By integrating WRF and RF algorithm, our
method shows excellent performance in both mod-
eling CG lightning strikes with 24 h and 48 h WRF

simulations, and forward forecasting of lightning
probability. This supports the effectiveness of the
framework in accurate prediction of future CG light-
ning potential in data-scarce regions like the HNL.

Our results identify the PLI to 500 hPa as
the most important factor in modeling lightning
in Alaskan tundra. Similarly, Farukh et al (2011)
endorsed the lifted index for characterizing light-
ning in Alaska because of its sensitivity to eval-
uate upper air instability. This highlights the key
role of the lift potential in providing sufficient con-
vection to support lightning formation in the tun-
dra, consistent with the results of Burrows et al
(2005) in the far west and north region of North
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Figure 8. ROC curves of forecasting test on lightning days with different severity levels.

America dominated by tundra. While for boreal
forests, SHOW and CAPE were typically recognized
as the top-ranking indicators of lightning poten-
tial (Burrows et al 2005, Blouin et al 2016). Com-
pared to static indices like SHOW, PLI can improve
forecasting capability, especially during the after-
noon (Galway 1956). Though commonly considered
a superior measure of instability, CAPE was not
found to be very important here. Unlike CAPE
that represents integrated parcel buoyancy of the
troposphere, PLI is more of a measure of actual
‘instability’ since it represents the potential buoy-
ancy of a parcel at a certain level (Blanchard 1998).

The various index performance in these studies may
reflect different land-atmosphere energy exchange
and convection between tundra and boreal forests,
which also affect the boundary conditions in these
ecosystems (Thompson et al 2004, Beringer et al
2005).

Additionally, GPZ at 500 hPa ranks top in determ-
ining CG lightning distribution, indicating potential
connections between this pressure level and lightning
activity in Alaskan tundra.While Burrows et al (2005)

suggested that the occurrence of lightning was influ-
enced by the interaction between strong convection
and precipitable water (PW) in the cloud, here we
found much lower rankings of PW than instability
indices like PLI and SHOW in both models. This
suggests that convection plays a more critical role
than PW in determining the lightning potential in
the tundra, which is consistent with the findings of
Reap (1991). We also found that the vertical profiles
of variables like GPZ, RH, Td, and layer thickness
are highly important in modeling lightning activ-
ity in the tundra (figure 9). However, neither of the
two internal WRF lighting parameterizations (PR92
and LPI) appears to represent lightning potential in

Table 11. Statistical criteria calculated for the forecasting test.

Metrics All Severe level Moderate level Low level

POD 0.7063 0.6372 0.7707 0.1515
CSI 0.6660 0.5898 0.7397 0.1397
FAR 0.0788 0.1119 0.0516 0.2
F 0.0780 0.1024 0.0547 0.0132
AUC 0.9203 0.8766 0.9519 0.769

the tundra at the regional scale well. This is not
surprising as these parameterizations were not spe-
cifically developed for the HNL.

Our selection of Thompson 2-moment and MYJ
schemes for WRF simulation in the tundra is con-
sistent with the existing findings of WRF applica-
tions in lightning modeling. With a more detailed
distribution of CAPE values for describing convect-
ive activities (figure 4), the Thompson scheme is also
recommended by other studies given its detailed rep-
resentation of ice-phase processes and improved sim-
ulation performance for convection related events
like precipitation (Zepka et al 2014, Giannaros et al
2015). For lightning modeling purposes, the MYJ
scheme is suitable for describing PBL conditions con-
sidering its optimal description of atmospheric con-
ditions for triggering convection activities (Sousa et al
2013, Giannaros et al 2015).

Despite WRF’s strong capabilities in regional
modeling and dynamic downscaling of atmospheric
conditions, its performance is affected by the para-
meterization schemes’ assumptions and mechanisms
for describing physical processes. Polar WRF is now
under development to improve the representation of
near-surface and atmospheric conditions for the Arc-
tic regions, which can support lightningmodeling for
Alaska in the future (Hines et al 2011, Wilson et al
2011, Cai et al 2018).
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Figure 9. Top 20 important variables ranked by MDA in (a) ‘24 hr model’ and (b) ‘48 hr model’.

Although our modeling results show very
impressive prediction capabilities, they are subject to
uncertainties inherent in CG lightning observations
detected from either the ground-based networks.
Although satellite-based sensors such as Lightning
Imaging Sensor or Geostationary Lightning Map-
per monitor lightning at a large spatial scale, their
datasets are not available for the HNL due to the lim-
ited spatial coverage and resolution (Nag et al 2014,
Matsangouras et al 2016). Separating the CG and
cloud-to-cloud lightning flashes from satellite obser-
vations can introduce errors as well (Nag et al 2014).
Although ground-based systems are constrained by
position accuracy and detection efficiency, we found
reporting probability a more effective way to describe
CG lightning activity.

In addition to atmospheric factors that function
as the key predictors for lightning, synoptic-scale
dynamic forcings control meteorological mechan-
isms driving lightning and fire weather (Reap 1994,
Flannigan and Wotton 2001, Santos et al 2013). For
example, Kochtubajda et al (2019) found more fre-
quent ridging and ridge displacements during the
2014 wildfire season in the Northwest Territories
of Canada. Synoptic weather conditions should be
explored and incorporated in future modeling efforts
to improve our understanding of lightning and fire
regimes in the tundra.

Since CG lightning is the primary ignition source
of wildfire in boreal forests and tundra (French et al
2015, Veraverbeke et al 2017), our integration of
NWP and machine learning is easily transferable to
monitor and predict fire potential in other data-
scarce regions. This provides opportunities for fire
management efforts by enhancing our capability to
assess future fire impacts on ecosystems and climate

and improving fire prevention and suppression prac-
tices. Also, fire prediction can ultimately improve
the safety and health of the human communities
as an important tool in public health applications.
Wildfires in the HNL frequently occur in remote
and sparsely populated areas and thus pose little
direct threat to life and property. However, emis-
sions can be transported hundreds to thousands of
kilometers away, exerting considerable impacts on
local and regional air quality and leading to vari-
ous health outcomes (Morris et al 2006, Reisen
et al 2015).

6. Conclusions

This study makes the first effort in examining the
factors driving lightning activity in Alaska tundra
with our statistical-dynamical modeling method. We
demonstrated the effectiveness of integrating WRF
and machine learning for lightning modeling in
Alaskan tundra at 5 km spatial resolution. Our res-
ults provide insights into understanding the mechan-
isms of lightning-ignited fires in the tundra.We found
PLI and weather variables at multiple pressure levels
the most important predictors for modeling light-
ning potential in the tundra, indicating the primary
role of convection in the formation of thunderstorms
andCG lightning.Moreover, applicable to other data-
scarce regions, our method can further support light-
ning and fire prediction as well as fire management
efforts in the HNL.
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