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Abstract
Quantifying how climate change may impact precipitation extremes is a priority for informing
adaptation and policy planning. In this study, Coupled Model Intercomparison Project phase 6
global climate models are analyzed to identify robust signals of projected changes in summer and
winter precipitation extremes over the United States (US). Under a projected fossil-fuel based
economic (i.e. high greenhouse gas emissions) scenario, our results show consistent changes in the
seasonal patterns for many precipitation extremes by the end of the 21st century. We find a robust
projected increase in the intensity of winter precipitation across models, with less agreement
during the summer. Similarly, a robust projected amplification of heavy precipitation over the
northern US is evident in winter, while intermodel spread is prevalent in summer projections.
Specifically, the heavy and very heavy winter precipitation days (R10mm and R20mm) exhibit
larger increases compared to other aspects of precipitation. Additionally, changes in dry extremes
(e.g. consecutive dry days) are found to differ significantly across various subregions and seasons.
Overall, our results suggest that the US may suffer more natural disasters such as floods and
droughts in the future.

1. Introduction

The Intergovernmental Panel on Climate Change
Fifth Assessment Report (IPCC 2013) documents a
0.85 [0.65 to 1.06] ◦C increase in global mean tem-
perature between 1880 and 2012, which is likely to
increase by more than 2 ◦C further by the end of the
21st century under the two highest emissions scen-
arios (i.e. Representative Concentration Pathways 6
and 8.5). This global mean temperature change is
associated with an overall increase in atmospheric
water vapor content by approximately 6–7%/◦C (Pall
et al 2007, O’Gorman and Muller 2010), making
more low-level moisture available during convective
storm events. In particular, tropical and mid-latitude
land areas, including North America, have and are
likely to continue to experience a higher intensity
and frequency of heavy rainfall events (Dulière et al
2013, IPCC 2013, Thibeault and Seth 2014). Further
intensification of these extreme precipitation events

may exacerbate the impacts of flooding, puttingmore
people at risk for economic loss and mortality. For
effective adaptation to regional climate changes, the
demand for consistent and robust projections of
changes in climate extremes has rapidly increased
among policymakers and the public.

Global Climate Models (GCMs), despite lim-
itations in their representations of some physical
processes (even in the latest generation of models;
Knutti et al 2008, Stouffer et al 2017), are a crit-
ical tool for projecting changes in mean climate
and extreme events. However, it is important to
view these projections in light of their uncertain-
ties and assess the robustness of the climate change
signal across models. Uncertainties in future projec-
tions are in part due to model resolution and phys-
ics, such as an inability to explicitly resolve subgrid
convective processes (Foley 2010) or gravity-wave
drag and its interaction with large-scale dynamics
(Shepherd 2014), which are instead represented by
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idealized parameterizations. Uncertainties also res-
ult from unknown future changes in the influence
of humans on climate (e.g. land cover/land use evol-
ution, economic and technology development, and
socioeconomic changes such as population growth;
Nakicenovic et al 2000) and an incomplete theoret-
ical understanding of the climate system’s response on
long timescales (e.g. climate feedbacks) (Knutti et al
2008, Knutti and Sedláček 2013). In addition, the sig-
nal from natural variability can often be as large as
anthropogenic changes on region scales, which has a
significant contribution to uncertainty for near term
climate change (Hawkins and Sutton 2011, Deser
et al 2016). Nevertheless, the efforts of the Coupled
Model Inter-comparison Project Phase 3 (CMIP3;
Meehl et al 2007) and Phase 5 (CMIP5; Taylor et al
2012), which provide large-scale coordinated sim-
ulations from state-of-the-art GCMs, have been an
important contribution toward understanding pro-
jected changes in extreme events and their underlying
controllingmechanisms. In this studywe build on this
effort by assessing the new generation CMIP6models
(Eyring et al 2016), focusing specifically on seasonal
extreme precipitation changes over the United States
(US).

Previous results from CMIP5 GCMs project
an increase in global-scale extreme precipitation
events (Seneviratne et al 2012, Sillmann et al 2013b,
Wuebbles et al 2014). But, how extreme precipitation
will change over the US is still fraught with uncer-
tainties, partly because the previous GCMs fail to
accurately simulate the frequency and intensity of
regional precipitation events in the present climate
(Meehl et al 2005, Dai 2006, Allan and Soden 2008,
Harding et al 2013). For example, there is a docu-
mented inability to capture the drivers of summer-
time convective precipitation (Harding et al 2013)
resulting from coarse spatial resolution and convect-
ive parameterization (Duffy et al 2003,Moncrieff and
Liu 2006). Nevertheless, there have been import-
ant incremental improvements in the ability of cli-
mate models to represent the fundamental features
of the historical climate, evident in the CMIP3 to
CMIP5 transition (Sun et al 2015, Koutroulis et al
2016). Recently, the transition to CMIP6 (Erying
et al 2016) has also included some updates, includ-
ing increased representations of physical processes,
some increases in horizontal and vertical resolution,
and new emission scenarios for future projections
(i.e. shared socioeconomic pathways; SSP). These
CMIP6 experiments are now becoming available for
scientific use, and a recent assessment (Akinsanola
et al 2020b) has shown that the multimodel ensemble
mean captures present-day daily precipitation dis-
tributions and the spatial characteristics of many
extreme indices over the US reasonably well com-
pared to gauge-based observations, performing bet-
ter than most individual models. Furthermore, they
reported that many extreme precipitation indices are

better represented for the Western (Central-Eastern)
US in the summer (winter) than winter (summer),
and that higher horizontal-resolution does not neces-
sarily correlate with improved model performance.
Though many biases persist, a detailed assessment of
the projected changes in precipitation extremes over
the US based on the newly developed CMIP6 mod-
els is lacking. This study aims to address this gap by
assessing the temporal and spatial changes in precip-
itation extremes over the US and its subregions. We
evaluate these changes by examining derived precip-
itation extreme indices described by the Expert Team
on Climate Change Detection Indices (ETCCDI;
Klein Tank et al 2009, Zhang et al 2011), which is con-
sistent with and presented in the context of recent
present-day evaluations (e.g. Srivastava et al 2020,
Akinsanola et al 2020b).

2. Data andmethodology

In this study, simulated changes in the characterist-
ics of daily precipitation, including intensity distri-
butions and extreme indices, are analyzed from 12
CMIP6 climatemodels. Brief overviews of the CMIP6
simulations and analysis techniques are provided
below.

2.1. CMIP6 simulations
Output from 12 CMIP6 climate model simulations
(Eyring et al 2016; details in table 1) was available at
the time of this analysis and used in this study. For
each model, we used daily precipitation and monthly
temperature from the first realization (‘r1i1p1f1’)
for both the historical and the projected fossil-fuel
based economic (i.e. high greenhouse gas emissions)
scenario (Shared Socioeconomic Pathways; SSP5-8.5;
O’Neill et al 2016) experiments. Both experiments
included fully coupled simulations with interactive
atmosphere, land, ocean, and sea-ice components.
The SSP5-85 scenario is closely related to the CMIP5
RCP8.5 scenario, which produces a radiative forcing
of about 8.5 Wm−2 by the end of the 21st century.
The historical and projected future simulations cover
the periods of 1950–2014 and 2015–2100, respect-
ively. The capability of these 12 models to realistic-
ally reproduce the present-day seasonal precipitation
extreme characteristics over the continental US has
been evaluated in detail and documented in Akinsan-
ola et al (2020b). All the datasets were regridded to
a common grid of 2.81� × 2.81� (latitude × longit-
ude) using an area-conserving remapping procedure,
which is implemented in the Climate Data Operat-
ors (https://code.zmaw.de/projects/cdo) to produce
multi-model summary statistics based on the lowest
model resolution. The multi-model ensemble mean
of all the CMIP6 simulations used in this study,
referred to herein as ‘EnsMean’, is applied in this
study to reduce uncertainty. The indices (described
below) were first calculated for the individual models
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Table 1. Information for the 16 CMIP6 climate models used in this study.

S/N Model Institute
Resolution
(olon× olat) References

1 BCC-CSM2-MR Beijing Climate Center (BCC) and China
Meteorological Administration (CMA)

1.13× 1.13 Wu et al (2018)

2 CanESM5 Canadan Earth System Model 2.81× 2.81 Swart et al (2019)
3 CESM2 National Center for Atmospheric

Research
1.25× 0.94 Danabasoglu et al

(2019b)
4 CESM2-WACCM National Center for Atmospheric

Research
1.25× 0.94 Danabasoglu et al

(2019a)
5 CNRM-CM6-1 Centre National de Recherches

Mét́eorologiques (CNRM); Centre
Européen de Recherches et de Forma-
tion Avancéeen Calcul Scientifique

1.41× 1.41 Voldoire et al (2019)

6 EC-EARTH3 EC-EARTH consortium 0.70× 0.70 EC-Earth (2019a)
7 EC-EARTH3-Veg EC-EARTH consortium 0.70× 0.70 EC-Earth (2019b)
8 GFDL-CM4 Geophysical Fluid Dynamics Laboratory

(GFDL)
2.50× 2.00 Guo et al (2018)

9 GFDL-ESM4 Geophysical Fluid Dynamics Laboratory
(GFDL)

1.25× 1.00 Krasting et al (2018)

10 IPSL-CM6A-LR Institute Pierre-Simon Laplace (IPSL) 2.50× 1.26 Boucher et al (2018)
11 MRI-ESM2-0 Meteorological Research Institute (MRI) 1.13× 1.13 Yukimoto et al (2019)
12 UKESM1-0-LL Met Office Hadley Centre 1.88× 1.25 Tang et al (2019)

before averaging for the EnsMean; we use a simple
multi-model mean and model weighting is not con-
sidered at this time. All the analyses and calculations
presented herein are for two seasons: summer (June-
July-August, JJA) and winter (December-January-
February, DJF), and were integrated over the US
domain and further assessed over the seven subre-
gions defined in the National Climate Assessment
Report (https://nca2018.globalchange.gov/; see figure
S1 (available online at stacks.iop.org/ERL/15/104078/
mmedia) in the supplementary information). For
the analyses of spatial change in the indices, forty-
year time slices were used for the projections of
2061–2100 and the historical period of 1975–
2014, and the statistical significance was evalu-
ated using a t-test. Additionally, we assessed grid
points where at least 70% of the ensemble members
agree on the sign of change in the ensemble mean,
which provides further insight into the inter-model
agreement.

2.2. Rainfall distribution
The changes in simulated precipitation characterist-
ics are assessed using several statistics of the daily
precipitation frequency and amount distributions.
Together, these distributions reveal the precipita-
tion rates that occur most frequently and those that
contribute the most to total accumulated precipit-
ation. The distributions were created using histo-
grams with discrete logarithmically spaced precip-
itation rate bins as described by Pendergrass and
Hartmann (2014). The logarithmic approach is effi-
cient for assessing precipitation rates from drizzle to
extremes since the bin structure covers four orders
of magnitude (i.e. approximately one-hundred bins

spanning 0.1 to 1000 mm day−1). In this study, bin
widths and central values increase with higher pre-
cipitation rates by a fixed percentage of 10%, start-
ing from a dry threshold of 0.1 mm day−1. The dis-
tributions are constructed from accumulated daily
rainfall independently at each grid point before com-
puting an area-weighted average over the US. This
method is consistent with our present-day evaluation
in Akinsanola et al (2020b) and previous global-scale
studies (Kooperman et al 2016a, 2016b); the math-
ematical formulation is provided in the supporting
Information.

2.3. Extreme precipitation indices
Previous studies have investigated climate extremes
using either parametric extreme value theory to assess
rare events (Kharin et al 2007, 2013) or using non-
parametric indices of climate extremes based expli-
citly on empirical data (Zhang et al 2011, Sillmann
et al 2013b, Odoulami and Akinsanola 2018, Akin-
sanola and Zhou 2019). In this study, we applied the
non-parametric approach to the simulated precipit-
ation using nine set of extreme precipitation indices
(for descriptions see table S1) defined by the ETCCDI
(http://etccdi.pacificclimate.org/indices_def.shtml).
These indices include: simple daily intensity (SDII),
maximum consecutive dry days (CDD), maximum
consecutive wet days (CWD), total wet day pre-
cipitation (PRCPTOT), heavy precipitation days
(R10mm), very heavy precipitation days (R20mm),
maximum 5-day precipitation (RX5day), very wet
days (R95pTOT), and extreme wet days (R99pTOT).
These indices have been widely used to investigate
changes in extreme observations (Donat et al 2013,
Almazroui et al 2014, Sun et al 2016) and future
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Table 2. Area-weighted average projected (2061–2100) minus historical (1975–2014) differences in Summer (JJA) and Winter (DJF)
surface temperature (K) over the subregions and all of United States.

JJA DJF

S/N Model NW SW NGP SGP MW SE NE US NW SW NGP SGP MW NE SE US

1 BCC-CSM2-MR 5.85 5.04 6.66 5.69 6.34 5.15 5.52 5.58 4.87 4.13 5.68 3.13 6.05 6.08 3.16 4.80
2 CanESM5 8.04 6.92 8.46 6.45 7.74 5.29 6.99 7.25 7.01 7.63 8.88 5.68 8.35 8.35 4.67 7.60
3 CESM2 6.19 4.77 7.37 4.20 7.02 4.18 6.00 5.75 5.24 4.97 5.84 4.30 6.44 5.92 3.69 5.42
4 CESM2-WACCM 6.86 5.11 7.46 4.00 6.68 4.05 5.82 5.97 6.26 5.36 7.20 4.54 7.13 6.15 3.70 6.09
5 CNRM-CM6-1 6.15 6.69 6.98 5.88 6.31 4.68 5.85 6.33 4.50 5.61 6.39 5.17 6.66 5.60 4.14 5.65
6 EC-EARTH3 6.98 6.69 7.24 6.89 7.04 5.34 5.92 6.76 2.71 4.34 4.56 5.81 5.36 4.28 4.24 4.35
7 EC-EARTH3-Veg 5.96 5.88 6.46 5.92 6.35 4.93 5.34 5.96 2.46 4.01 3.87 5.10 4.67 3.88 3.86 3.90
8 GFDL-CM4 5.52 5.31 6.57 6.04 6.10 5.04 5.94 5.65 4.47 4.07 5.07 4.36 5.99 6.92 4.54 4.72
9 GFDL-ESM4 3.61 3.39 4.61 4.39 4.22 3.66 4.13 3.77 3.93 3.10 4.54 2.96 4.75 4.66 2.81 3.77
10 IPSL-CM6A-LR 7.94 6.42 9.18 5.29 7.71 5.11 6.97 7.09 4.06 3.91 5.68 4.23 6.36 5.83 4.51 4.75
11 MRI-ESM2-0 4.89 4.84 5.29 4.71 4.71 3.74 4.61 4.80 3.26 3.91 3.74 3.89 4.65 5.40 3.62 3.98
12 UKESM1-0-LL 9.72 6.29 10.05 6.06 9.33 6.81 9.35 7.91 7.08 7.49 7.81 5.92 8.85 8.50 5.18 7.52
13 EnsMean 6.48 5.61 7.19 5.46 6.63 4.83 6.04 6.07 4.65 4.88 5.77 4.59 6.27 5.96 4.01 5.21

projections (Kharin et al 2013, Sillman et al 2013b,
Zhou et al 2014, Wu et al 2016, Akinsanola and Zhou
2019, Akinsanola et al 2020a). The indices used herein
are related to precipitation occurrence and intens-
ity, and are thus useful to characterize droughts and
flooding indirectly, which is beneficial to a wide range
of sectors.

3. Results

3.1. Changes in seasonal surface temperature
First, we document the changes in seasonal surface
temperature over the entire US and its subregions
from the last 40 years in the 21st century projections
compared to 40 years of the historical simulations
(table 2). We found a statistically significant increase
in surface temperature across the entire US in both
seasons. The changes by the EnsMean over the US is
6.07 K for summer and 5.21 K for winter. The overall
changes by the ensemble members across all the sub-
regions are larger in summer thanwinter, andwe note
that UKESM1-0-LL, CanESM5, and IPSL-CM6A-LR
(UKESM1-0-LL and CanESM5) models exhibit the
largest change among the ensemblemembers in sum-
mer (winter) season. The projected changes in pre-
cipitation extremes under a changing climate are dis-
cussed in the next sections.

3.2. Changes in seasonal precipitation
distributions
The distributions of precipitation frequency and
amount, averaged over the US, are presented in fig-
ure 1 for present-day (1975–2014, blue) and projec-
ted (2061–2100, red) conditions in both summer and
winter seasons. The present-day EnsMean distribu-
tions have been evaluated in a previous study and
compare reasonably well to observations, but with
some persistent biases, including lower overall intens-
ity and higher light rain frequency (see Akinsanola
et al 2020b for a full evaluation against several satellite

and gauge-based precipitation products). The differ-
ences between present-day and future distributions
are also presented in figure 2 to further clarify the rain
rates with projected increases and decreases.

Under global warming, the EnsMean summer fre-
quency distribution (figures 1(a) and 2(a)) exhibits
a large decrease in light to moderate rain rates and
a slight increase in heavy rates. The largest decrease
occurs between 1 and 10 mm day−1 and the small
increase is centered around 45 to 55mmday−1 (figure
2(a)). Although there is considerable spread across
models for the quantitative change, there is fairly
strong qualitative agreement that light rates decrease
(i.e. the 95% confidence interval is largely below zero
for rates between 0.1 and 20mmday−1 in figure 2(a)).
On the other hand, the change in amount distribu-
tion exhibits a clearer signal. There is a reduction
(intensification) in the amount of accumulated pre-
cipitation from light-medium (heavy) rates, with the
change in sign of the response occurring between 30
and 40 mm day−1 (figure 2(b)). Despite the decrease
in light rates and increase in heavy rates, the rate
at which the peak in the summer amount distribu-
tion occurs does not change; both the present-day
and projected EnsMean amount distributions peak
at about 10 mm day−1 (figure 1(b)). One reason for
this might be limitations in convective parameter-
izations (Moncrieff and Liu 2006, Moncrieff 2019),
which often do not exhibit realistic variability in con-
vective intensity. The overall change in the distribu-
tion results instead from a decrease in the amount of
rain from the parameterized-convective component
and increase in the heavier resolved large-scale com-
ponent (Kooperman et al 2018).

There is also a projected decrease (increase) in
the frequency of light (medium-heavy) precipitation
rates over the US for the EnsMean during winter
(figures 1(c) and 2(c)). However, the change in
sign occurs at lighter rates than in summer (about
5 mm day−1 vs. 35 mm day−1), such that the
reduction in light rate frequency contributes little
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Figure 1. Summer (JJA) and winter (DJF) daily precipitation over the United States for (a), (c) precipitation frequency (%) and
(b), (d) precipitation amount (mm day−1) distributions in CMIP6 models. Small plots in figures 1(a), 1(c) are frequency
distributions shown on a linear axis. Shading is 95% confidence in the CMIP6 models.

to the change in the amount of accumulated pre-
cipitation. Rather, the projected amount distribution
exhibits a higher precipitation amount for all rates
above approximately 10 mm day−1 (figure 1(d)).
Furthermore, these changes are associated with an
increase in precipitation at rates between 10 and
100 mm day−1, shifting the amount distribution to
the right in the future (figure 2(d)). Unlike summer,
this shift includes an intensification of the ‘amount
mode’ (i.e. the precipitation rate at the peak of the
amount distribution), which could occur because
winter in the mid-latitudes has a greater contribu-
tion from large-scale resolved precipitation in con-
ventional GCMs or because of the thermodynamic
changes which project onto extratropical cyclones
(Yettella and Kay 2017). Compared to the summer
distributions, there is higher agreement among mod-
els in the projected changes in winter precipitation
over the US.

3.3. Temporal evolution of extreme indices for
precipitation
The JJA area-weighted temporal evolution of the pro-
jected changes in precipitation indices is presented

in figures 3(a)–(d) and S2–S10 in the supplement-
ary information. Relative to the reference period
1975–2014, the EnsMean projects a slight increase
(decrease) in CDD (CWD) in summer on average
over the US (figures 3(a) and (b). The projected
changes in both indices are evident towards the end
of the 21st century, though there are some mod-
els that do not follow the EnsMean trend (i.e. zero
falls within the 95% confidence interval). However,
more consistent and significant trends are evident for
some individual subregions, for example CDD in the
Northern Great Plains (NGP) and Midwest (MW)
(figures S2(b) and (c)). Projected increases between
about 2 and 40% are found for CDD in all the sub-
regions except the Southwest (SW) where a small
decrease occurs after 2060 (figure S2(e)). The pro-
jected decrease in CWD over the entire US is largely
contributed by the decrease over NGP, Northwest
(NW), and Southern Great Plains (SGP) subregions
while MW and SW exhibit very little change or small
increases (figure S3). For all subregions, the CWD
change varies significantly acrossmodels and the Ens-
Mean change is not distinguishable from zero.

A projected intensification of about 7% is evid-
ent in both RX5day and R95pTOT in summer over

5
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Figure 2. Projected (2061–2100) minus historical (1975–2014) differences in summer (JJA) and winter (DJF) daily precipitation
over the United States for (a), (c) precipitation frequency (%) and (b), (d) precipitation amount (mm day−1) distributions in
CMIP6 model simulations forced by the SSP5-8.5 scenario. Shading is 95% confidence across the CMIP6 models.

the entire US (figures 3(c) and (d)), with a gen-
eral EnsMean increase in all the subregions (figures
S4 and S5). At the subregion level, the 95% confid-
ence interval range is quite large for both of these
statistics; for the SGP region, the changes are only
marginally distinguishable from zero. In addition to
the marginal significance of the changes, accurately
simulating precipitation intensity and timing in the
SGP region during summer is particularly difficult
for conventional climate models due to prevalence
of organized mesoscale convective systems, which
these models do not capture (Kooperman et al 2014).
By the end of the 21st century, the most consistent
changes across models occur in the NE for RX5day
and the NW for R95pTOT. The spatial distributions
of these statistics are discussed in more detail below
(figure 4).

The JJA timeseries for the additional five indices
(i.e. SDII, R10mm, R20mm, R99pTOT, PRCPTOT)
are provided in the supporting information (figures
S6–S10), which support similar conclusions as those
discussed above, but are summarized here for com-
pleteness. Since an increase in the frequency and
amount of precipitation during summer only occurs
for rates greater than∼30mmday−1 (figures 1(a), (b)

and 2(a), (b)), statistics associated with more mod-
erate rates (e.g. R10mm and R20mm) tend to show
a decreasing trend over the US. Specifically, there is
a decreasing evolution of R10mm over the US on
average, largely due to the decrease over MW, NGP,
and SGP subregions (figure S7). Similarly, a slight
decrease over the US on average is seen for R20mm
(figure S8), though there is large spread across mod-
els for many subregions (e.g. NW, SGP, and SW),
since 20 mm day−1 is close to the transition point
from decreasing to increasing frequency, which var-
ies between models. SDII, which is a measure of the
rain rate during only days with rain (see Akinsan-
ola et al 2020b for details), also shows no signific-
ant changes over the entire US, but generally has a
slight increase of about 4% (figure S6), consistent
with an overall shift toward higher rates. Similar to
R95pTOT, an enhancement of extremewet day events
(R99pTOT) is evident over the US on average and
across all the subregions, with the largest increases
over NW and NE subregions (figure S9). The overall
evolution of precipitation includes a larger decrease
in the amount of precipitation from light rates than
the increase from heavy rates, such that total wet day
summer precipitation (PRCPTOT) declines over US

6



Environ. Res. Lett. 15 (2020) 104078 A A Akinsanola et al

Figure 3. Precipitation extreme indices changes (%) relative to the reference period (1975–2014) mean for the 21st century under
the SSP5-8.5 scenario averaged over the US. Solid lines indicate the EnsMean and the shadings show 95% confidence in the
CMIP6 ensemble members. Time series are smoothed with a 20-yr running mean filter. The figures are computed as % change in
regional weighted-average.

and its subregions (except the SW) by the end of the
21st century (figure S10).

The DJF area-weighted temporal evolution of the
projected changes in precipitation indices is presented
in figures 3(e)–(h) and S11–S19 in the supplement-
ary information. In winter, EnsMean CDD decreases
on average over the US (figure 3(e)), and most sig-
nificantly in the NGP by the end of the century.
The EnsMean CDD in most subregions shows a
small decrease (MW, NE, NGP, and NW) or no
change (SE and SW), with the exception of the SGP,
which depictsmore temporal variability and a general

increase over time (figures S11). Averaged over the
US, CWD shows no significant changes, but assess-
ment at the regional level suggests that the CWD
period is likely to marginally increase in the MW, NE,
andNGP (figures S12).Other regions showno change
or slight decreases, but with no significant difference
from zero.

Despite uncertainty and regional differences
regarding changes in the number of consecutive wet
days (e.g. CWD), there are robust and consistent
changes in the intensity of wintertime precipitation
events. A projected intensification in RX5day is found
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Figure 4. Projected changes in summer (JJA) precipitation extremes over the period 2061–2100 relative to the reference period
1975–2014 for (a)–(d) spatial changes, (e)–(h) area-weighted subregional changes (NW-Northwest, SW-Southwest,
NGP-Northern Great Plains, SGP-Southern Great Plains, MW-Midwest, SE-Southeast, NE-Northeast, US-all of US). Hatching in
(a)–(d) indicates grid points where at least 70% of the GCMs agree on the sign of the change in EnsMean, and areas with
statistically significance differences at 95% level are marked with black stippling. Gray bars in (e)–(h) are the EnsMean values.
Figures (e)–(h) are computed as % change in regional weighted-average.

over the entire US throughout the 21st century, with
a consistent increase across all the subregions with the
possible exception of SGP (figures 3(g) and S13). The
projected increase in maximum 5 day precipitation
across all the subregions and the average over the US
ranges from 3–58%. A similar increase is also seen
in R95pTOT across the US and the largest increases
are evident in the MW, NE, and NGP (figures 3(h)
and S14). These increases are evident and statistically
different from zero prior to 2040 for all subregions,
except for SGP. Additionally, other indices of mod-
erate (e.g. SDII, R10mm, R20mm) and extreme (e.g.
R99pTOT) winter precipitation also increase over
most US regions (figures S15–S18). The increases
in precipitation intensity in regions where maximum
wet period length increases andmaximumdry period

length decreases (e.g. MW, NE, and NGP), contrib-
ute to a significant increase in total regional wet day
winter precipitation (PRCPTOT), which leads to a
slight increase averaged over the entire US. However,
despite a clear increase in intensity, regions with
less obvious or opposite changes in CDD and CWD
(e.g. SE, SGP, and SW) show no change or declining
PRCPTOT (figure S19).

3.4. Spatial and subregional changes in
precipitation extremes
The projected changes in the extreme precipitation
indices under SSP5-8.5 for the end of the 21st cen-
tury are presented in figures 4 and 5 for JJA and
DJF, respectively. Maps of the indices are shown for
the EnsMean (figures 4(a)–(d) and 5(a)–(d)), and
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Figure 5. Same as figure 4 but for the winter (DJF) season.

area-weighted averages for the entire US and subre-
gions are shown for each individual model (figures
4(e)–(h) and 5(e)–(h)). For the spatial distributions,
grid points where changes are statistically significant
at the 95% significance level in the EnsMean are iden-
tified with stippling, while grid points where at least
70% of the ensemble members agree on the sign of
change in the EnsMean are hatched.

The projected changes for summer are presented
in figure 4. CDD (figure 4(a)) is intended to assess
the length of dry periods and is generally inversely
related to other precipitation indices (Akinsanola and
Zhou 2019). The EnsMean projects a statistically sig-
nificant increase in CDD over much of the northern
US, particularly the NGP and MW subregions. The
NE, MW, NGP, and NW subregions have the largest
projected increase in CDD, between 16 and 42%.
There is also strong intermodel agreement among
the ensemble members—at least 70% of the models

agree on the sign of change in the EnsMean in most
grid points for these regions. In particular, all models
agree on the overall sign of the change in the MW,
all but one agree for the NE and NGP, and all but
two agree for the NW (figure 4(e)). The SGP and
SE subregions are also projected to have increases in
summer CDD, but the increases in these regions are
smaller and exhibit less model agreement. In the SW
subregion there is a statistically significant decrease
centered on Northern California and Nevada (figure
4(a)). However, the overall decrease in the SW sub-
region is small and intermodel spread is large (fig-
ure 4(e)). Differences in the subregional changes and
the individual model response have a large influence
on the projected changes averaged over the entire
US, which has an increase of about 4%–22% in the
EnsMean.

The spatial distribution of the changes in CWD
is presented in figure 4(b). A statistically significant
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increase (decrease) is evident over much of the SE
(NW) US. The strongest intermodel agreement is
seen in the broad increase inNorthCarolina, Virginia,
Kentucky, and Tennessee (figure 4(b)), with the
majority of models agreeing on the sign of change
overall in the SE region (figure 4(f)). Less conspicu-
ous changes are found over the other major parts
of the domain as the projected changes are not only
small but also not statistically significant. Also, the
projected changes exhibit high inter-model spread
as fewer models agree on the sign of change in the
EnsMean. Specifically, the regional changes in CWD
averaged over the entire US and its subregions range
from −40% to + 70% for the ensemble members
and between −8% to + 4% for the EnsMean (fig-
ure 4(f)). The range of model projections for indi-
vidual subregions are consistently bracketed by large
decreases from GFDL-CM4 (which also consistently
has the largest CDD increases) and large increases
from CanESM5. The cause of consistent difference
across models such as this will be the subject of future
work. Overall, these results indicate that there are
large uncertainties in the projected changes in CWD
in CMIP6.

Generally, RX5day increases over most of the US
(figure 4(c)). The area-weighted projected changes
over the US and its subregions increase by about
6%–16% for the EnsMean, with the largest increases
over the NE, SE, and NW subregions (figure 4(g)).
However, few grid points are statistically signific-
ant at 95% level and have at least 70% of model
members agreeing on the sign of change in the Ens-
Mean. The NE is the only region with widespread
and consistent increases across models, with only
one (IPSL-CM6A-LR) disagreeing on the sign of the
change. Overall, the changes in individual models
range from −30% to + 55% (generally bracketed by
a decrease in IPSL-CM6A-LR and increase in GFDL-
CM4), implying large uncertainties in the projected
changes, aside from the NE. The projected changes
in R95pTOT presented in figures 4(d) and (h) are
similar to RX5day, but with more agreement among
models. R95pTOT is projected to increase over all of
the US, with several areas showing at least 70% of
the models agree on the sign of change in the Ens-
Mean. The projected increases have broad statistical
significance over the NE and NW, with a few sig-
nificant grid points in the SE, SW, and NGP sub-
regions. Overall increases range from 4%–13% for
the EnsMean, with the largest increase over the NW
subregion where only one model (IPSL-CM6A-LR)
disagrees on the sign (figure 4(h)). Similar to the
other indices, the largest changes across subregions
are consistently from GFDL-CM4. Overall, the sub-
region averages suggest fair intermodel agreement,
although a few models (i.e. CanESM5, IPSL-CM6A-
LR, and UKESM1-0-LL) project an opposing change.

The spatial pattern of changes in SDII, R99pTOT,
R10mm, R20mm, and PRCPTOT are presented in

figures S20(a)–(e), while the area-weighted regional
changes are presented in figures S20(f)–(j). Projec-
ted increases with agreement amongmodels are evid-
ent over much of the US (particularly the NE, NW,
and SE) for SDII and R99pTOT (figures S20(a) and
(b)). Fewer grid points, specifically over the NE and
NWsubregions, have changes that are also statistically
significant at 95% level. The subregional changes in
SDII (R99pTOT) range from2%–7% (3–11%) for the
EnsMean, with NE subregion exhibiting the largest
increase (figures S20(f) and (g)). The changes in the
ensemble members for SDII (R99pTOT) ranges from
−18% to + 30% (−29% to + 53%) across all the
subregions and the US as a whole. Both the R10mm
and R20mm (figures S20(c) and (d)) exhibit projec-
ted increases (decreases) over much of the SW, NW,
and SE (NGP and MW), although the magnitude
of the increase is greater for R20mm. The projected
changes for some grid points are statistically signi-
ficant at the 95% level with some intermodel agree-
ment, particularly for the SW and MW in R10mm.
The regional changes in both indices are also robust
in some subregions (e.g. MW for R10mm and NW
for R20mm), while significant intermodel spread is
present in other regions (figures S20(h) and (i)). The
EnsMean changes in PRCPTOT exhibit an increase
over the SW, and parts of the NW and SE subre-
gions while other subregions show a decrease (figure
S20(e)), generally reflecting the pattern of change in
moderate rates (e.g. R10mm). The projected changes
are significant (95% level) and robust (70% model
agreement) over much of the north central US. Based
on area-weighted changes (figure S20(j)), decreases
in the EnsMean dominate projections in most subre-
gions, with the exceptions of an increase in the SW
and no change in the SE. The changes in EnsMean
(individual models) range from−10% to 2% (−41%
to 64%).

The spatial and subregional distributions of the
changes in CDD, CWD, RX5day, and R95pTOT for
winter are shown in figure 5. There is a statistic-
ally significant decrease in CDD over the northern
US, and less significant increases along the southern
edges of the SW and SGP subregions (figure 5(a)).
There is high intermodel agreement in the projec-
ted changes as at least 70% of the ensemble members
agreed on the sign of change in the EnsMean to the
north and south of the transition region. The pro-
jected decreases in CDD by the EnsMean range from
−1% to −10% over the US as a whole and its subre-
gions, except for the SGP where an increase of 4% is
projected and SW where there is no regional average
change (figure 5(e)). The changes in individual mod-
els range from −23% to + 22% in all the subregions
and the US as a whole. Statistically significant projec-
ted intensification in CWD is evident over NGP,MW,
and NE subregions of the US, while a less significant
decrease is projected over SW, SGP, and SE subre-
gions (figure 5(b)). There is considerable agreement
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among models in the projected changes, particularly
for the NE (the subregion with the largest increase)
and NGP, where almost all models agree on the sign
of the change (figure 5(f)). The SGP subregion exhib-
its the largest decrease of any region, though three
models show an opposite sign of change. In general,
the pattern of CWD is consistent with CDD, except
for the NW, where no significant change is found and
models spread is relatively larger. Overall, the changes
range from−18% to+ 27% for the individualmodels
and EnsMean (figure 5(f)).

Intensification of both RX5day and R95pTOT
(figures 5(c) and (d)) in winter is projected over the
entire US, regardless of the CDD or CWD changes,
with high intermodel agreement to the EnsMean pro-
jected changes. Also, the changes at most grid points
are statistically significant at the 95%confidence level.
The subregional projected increases in both RX5day
and R95pTOT range from 2%–57% (figures 5(g) and
(h)), and all the ensemble members unanimously
project an increase over the entire US and its subre-
gions. As shown for the temporal evolution described
above, the increase in the intensity of heavy winter
precipitation events is the most robust and signific-
ant change in our CMIP6 analysis.

Furthermore, winter changes in SDII, R99pTOT,
R10mm, R20mm, and PRCPTOT (figure S21)
also show robust patterns. Similar to RX5day and
R95pTOT, we found statistically significant and
robust projected increases in both SDII andR99pTOT
over the entire US (figures S21(a) and (b)). The
increase in EnsMean ranges from 9%–33% across
all the subregions and the entire US, and the largest
increase is evident over the MW and NE subregions
(figures S21(f) and (g)). Additionally, we found a
robust increase in R10mm and R20mm over most
of the domain (figures 21(c) and (d)), although a
decrease is evident that is centered in Mexico. The
largest projected increase is found over the NGP
in both indices, and the largest intermodel spread
is evident over SGP (figures S21(h) and (i)). The
increases in both moderate and extreme intensity,
along with decreases in CDD, translate to a robust
projected increase in total wet day winter precipita-
tion over the northern US (figure S21(e)). The south-
ern US (i.e. SW, SGP, and SE subregions) encom-
passes the transition region for many indices (e.g.
decreases in CDD to the north and increases to the
south), such that changes are smaller, less significant
and include projected decreases in PRCPTOT overall.
Across the subregions, projected changes in indi-
vidual model members range from −28% to + 30%,
with the largest increase (decrease) over the NGP
(SGP) subregion (figure S21(j)).

4. Summary and discussion

Documenting the projections of changes in daily
precipitation characteristics, including the frequency

and intensity as well as extreme events, are critical
for long-term socioeconomic planning that minim-
izes damages to natural and human systems. The
spatial and temporal changes in daily precipitation
characteristics and associated extremes are investig-
ated over the US and its subregions in the most
recent GCMs (CMIP6). The present-day simulations
of the sets of CMIP6 models used herein were eval-
uated in our previous study (see Akinsanola et al
2020b), and results from this study suggested that
the EnsMean can reproduce the mean and extreme
precipitation relatively well. While CMIP6 models
exhibit slight improvements over previous versions,
the ‘drizzling’ bias, which has been a long-standing
problem of global climate models, has not been alle-
viated. Other biases in the present-day representa-
tion of these extreme indices have more seasonal and
regional dependence, including high biases for the
amount and frequency of precipitation in the west-
ern half of the US during winter and a low bias for
the intensity of heavy rainfall in the Central US dur-
ing summer. Overall, the EnsMean outperforms indi-
vidual models across all the extreme precipitation
indices, which is in line with previous multi-model
studies (Sillman et al 2013a, Zhou et al 2014, Akin-
sanola and Zhou 2019) and is the primary focus of
our analysis here.

In this study, we have focused on projected
changes simulated by the CMIP6 models. These
simulations project an increase (reduction) in the
amount of intense (medium) precipitation in sum-
mer under a high greenhouse gas emissions scenario
(SSP5-85). The CMIP6 models also project decreas-
ing frequencies for daily precipitation rates between
0.1 to 20 mm day−1, though the projected changes
in summer frequency distributions have consider-
able intermodel spread, which we interpret as an
indication of uncertainty. In contrast, a robust pro-
jected enhancement (reduction) of winter precipita-
tion frequency is evident for medium-heavy (light)
rates over the US. These changes are associated with
an increasing amount of precipitation from rates
between 10 to 100 mm day−1. Furthermore, the tem-
poral evolution of the projected extreme precipita-
tion indices indicates a significant increase in most of
the wet extremes (RX5day R95pTOT, and R99pTOT)
for summer and winter seasons over most US sub-
regions, with the highest intensification projected
to occur in the late 21st century. Also, the CDD
period and PRCPTOT are projected to have signi-
ficant decreases and increases, respectively, over the
northernUS inwinter, with a reversal evident in sum-
mer season. Overall, compared to the summer sea-
son, the winter exhibits more robust and consistent
changes in these indices over time, highlighting the
importance of seasonal-scale analysis. Our CMIP6
analysis for winter is consistent with earlier regional
models (Dominguez et al 2012), which also projec-
ted a robust increase in the intensity of precipitation
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extremes over the western U.S. toward the latter half
of the 21st century.

For a thorough analysis of spatial changes in pre-
cipitation extremes, we used two assessment statistics
(i.e. assessing (a) grid points where changes are
statistically significant at the 95% significance level
in the CMIP6 EnsMean and, (b) grid points where
at least 70% of the ensemble members agree on the
sign of change in the EnsMean) as indicators of the
robustness of the projected changes. Robust intensi-
fication dominates most of the projected winter pre-
cipitation extremes, particularly over the northern
parts of the US, despite pronounced uncertainty that
dominates the summer season (except an increase in
CDD in the Central US). We note that the percentage
changes in heavy and very heavy winter precipitation
days (R10mm and R20mm) are larger than for other
indices, indicating disproportionately larger increases
in heavy winter precipitation compared to other
aspects of precipitation. The 10–20 mm day−1 zero-
crossing is also evident in the precipitation amount
distributions, which show a significant increase in
amount for rates above these values. Reduced agree-
ment in summer is consistent with a previous study
(Harding and Snyder 2014), which reported signi-
ficant uncertainties in projected changes in warm-
season precipitation extremes over the US. They
attributed this uncertainty to the inadequacy of mod-
els to simulate hydrological extremes resulting from
convective precipitation. However overall, the intens-
ification of heavy precipitation over the US during
the 21st century is part of a broader response con-
sistently found in previous climate projection stud-
ies (e.g. Tebaldi et al 2006, Sun et al 2007, Giorgi et al
2011, Field et al 2012, Sigh et al 2013, Sillmann et al
2013b, Akinsanola and Zhou 2019).

Extreme precipitation events can have different
impacts in winter versus summer, which motiv-
ates our seasonal-scale analysis. Specifically, the sub-
stantial projected increase in winter precipitation
extremes has implications for flooding, transporta-
tion and energy-use during winter, but also water
availability from snowmelt throughout the year. In
summer, despite overall better present-day perform-
ance formany aspects of extreme precipitation (Akin-
sanola et al 2020b), we found significant uncertainties
in the projected precipitation characteristics, which
poses a challenge for adaptation planning. Never-
theless, focusing on the most robust features, such
as a potential increase in drought stress in the NGP
and MW (i.e. increases in CDD and decreases in
PRCPTOT), provides useful information for mitiga-
tion and adaptation applications. Further improve-
ments of the GCMs to realistically represent unre-
solved and poorly understood processes are cru-
cial to reducing the uncertainties reported in this
study. However, it is important to note that improve-
ments in present-day simulations do not necessary
imply a robust projected response across models. It

is thus critical to also improve understanding of the
dynamic and thermodynamic mechanisms respons-
ible for the projected future changes as represented
by the ensemble mean as well as individual models,
which will be the focus further investigation.
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