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Abstract
The frequency of coastal floods around the United States has risen sharply over the last few
decades, and rising seas point to further future acceleration. Residents of low-lying affordable
housing, who tend to be low-income persons living in old and poor quality structures, are
especially vulnerable. To elucidate the equity implications of sea level rise (SLR), we provide the
first nationwide assessment of recent and future risks to affordable housing from SLR and coastal
flooding in the United States. By using high-resolution building footprints and probability
distributions for both local flood heights and SLR, we identify the coastal states and cities where
affordable housing—both subsidized and market-driven—is most at risk of flooding. We provide
estimates of both the expected number of affordable housing units exposed to extreme coastal
water levels and of how often those units may be at risk of flooding. The number of affordable
units exposed in the United States is projected to more than triple by 2050. New Jersey, New York,
and Massachusetts have the largest number of units exposed to extreme water levels both in
absolute terms and as a share of their affordable housing stock. Some top-ranked cities could
experience numerous coastal floods reaching higher than affordable housing sites each year. As the
top 20 cities account for 75% of overall exposure, limited, strategic and city-level efforts may be
able to address most of the challenge of preserving coastal-area affordable housing stock.

1. Introduction

The frequency of coastal floods around the United
States has risen sharply in recent decades, and rising
seas point to further acceleration in both tidal (or
‘nuisance’) and extreme floods in the years ahead
(Sweet et al 2017a, Sweet et al 2017b, Buchanan et al
2017, Vitousek et al 2017). For example, by 2050,
with continued high carbon emissions, the flood level
currently expected to occur approximately every 100
years (with an annual 1% chance of occurrence)
could occur ~ 40 times more often on average at tide
gauges along the contiguous United States (Buchanan
et al 2017). By the same time, the frequency of tidal
flooding, which generally occurs at least once a year,

may occur on a weekly basis in some places (Sweet
and Park 2014, Sweet et al 2018). Together, these
results indicate that more frequent flooding events
will become a major concern for many U.S. coastal
communities in the coming decades.

While people and assets in virtually all coastal
areas face some degree of risk from coastal flooding,
the exposure of low-lying affordable housing is of par-
ticular concern.Housing is conventionally considered
affordable to low-income households if it costs no
more than 30%of their gross household income (U.S.
Census 2018b). Nationwide, affordable housing is an
increasingly scarce resource. Median rents in the U.S.
have increased by over 25% over the last decade while
wages have remained largely stagnant (US Census
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2007, Stone et al 2011). Unlike previous periods of
price inflation, this rise in rents is not the result
of increased incomes or improvements in housing
quality (Desmond and Bell 2015). Nationwide, there
are only an estimated 35 affordable rental units avail-
able for every 100 extremely low-income renters
(those living in households with incomes ≤ 30% of
the median income of their metropolitan area)—a
national shortfall of over 7 million units that impacts
all 50 largest metropolitan areas (NLIHC 2019). The
result is that the majority of poor renting families
today devote over half of their income to housing,
and almost a quarter dedicatemore than 70%, leaving
little left over for basic needs such as food and health
care and resulting in housing insecurity, including
homelessness, multiple moves, or ‘doubling up’ with
others (Desmond 2015). Moreover, affordable hous-
ing (the vast majority of which is in privately-owned
buildings, even among subsidized units) tends to be
older and of poorer quality than other housing (Vale
et al 2014). Often built to older housing codes and
prone to deferred maintenance, affordable housing
tends to be far less structurally sound than general
housing (Keenan et al 2018). Because of this, afford-
able housing structures are more physically vulner-
able than the general housing stock to damage from
flooding.

Residents of affordable housing also face high
socioeconomic vulnerability due to the fact that they
are predominately low-income and more likely to be
disabled, single parents, seniors, minorities, and/or
lacking stable employment than the general popula-
tion (e.g. Brennan et al 2011, Desmond and Gershen-
son 2016, NLIHC 2019). Socially disadvantaged com-
munities are more likely to be adversely impacted by
natural hazards such as flooding because they have
fewer financial resources, less political influence, and
receive less information about financial aid to support
recovery (Cutter et al 2009, Fussell et al 2010).

The combination of physical vulnerability of
affordable housing infrastructure, socioeconomic
vulnerability, and more frequent flooding due to sea
level rise (SLR) presents a triple threat to residents
of the country’s already scarce affordable housing. To
help quantify these intersecting challenges and elu-
cidate the equity implications of SLR, we provide the
first nationwide assessment of the coastal flood risks
facing affordable housing. To the best of our know-
ledge, this research advances upon previous methods
for characterizing the impacts of coastal flooding and
SLR in four important ways.

First, while past studies have used low-resolution
data on the locations and numbers of people and
structures, we base our analysis on a comprehens-
ive geolocated inventory of individual building foot-
prints across the United States. Prior studies have
typically relied on density data at the relatively
coarse scale of census tracts (e.g. Kirshen et al 2008,
Clark et al 1998, Rygel et al 2006, Martinich et al

2013). Averaging ~ 4 000 inhabitants (1 200−8 000;
US Census 2010), tract sizes vary widely depend-
ing on the density of settlement, and are often
large enough to include substantial variation in both
flood risk and socioeconomic conditions. Neumann
et al (2015) used comparatively finer spatial data
(150 m by 150 m, about the area of a New York
City block); however, this scale still exceeds that of
individual buildings. Others have used address-based
points, which approximate the location of a house or
building, but could misplace a structure in a nearby
stream or on land with a different elevation (e.g.
Torgersen et al 2017). Using building footprint data
offers the advantage of being able to precisely loc-
ate the lowest ground elevation across a building’s
footprint—a critical attribute for calculating flood
risk. We combine this data with a comprehensive
inventory of U.S. affordable housing buildings and
units therein (both subsidized and market-driven).

Second, flood risk assessments have traditionally
focused on a few particular storm surge water levels
(e.g. Cooper et al 2008, San Francisco Bay Conserva-
tion and Development Commission 2011, Neumann
et al 2015, Hallegatte et al 2013, Hinkel et al 2014,
Diaz 2016). For example, San Francisco Bay Con-
servation and Development Commission (2011) and
Houser et al (2015) showed the number of build-
ings and amount of land exposed to SLR plus the
100 yr flood. Here, we follow the approach of Kulp
and Strauss (2017) using the full annual probabil-
ity distribution of water levels above high tide, from
minor to extreme flooding. This probability-weighted
approach provides a more complete picture of flood
hazard and could have a strong quantitative effect in
calculating the threat posed by SLR.

Third, previous studies have estimated future
flood risk by using a few particular projected amounts
of SLR, either reflecting a scenario-based estimate of
SLR (typically by 2100; e.g. Cooper et al 2008, Hal-
legatte et al 2013, Neumann et al 2015) or slices of
a SLR probability distribution for a future year (e.g.
the 50th or 95th percentiles; Diaz 2016, Houser et al
2015, Kulp and Strauss 2017). These approaches only
provide a snapshot of potential future flood hazard,
given the wide range of possible SLR values. Here,
we integrate over the entire SLR distribution condi-
tional on a selected greenhouse gas emissions scen-
ario, extending the approach of Buchanan et al (2016)
to incorporate the uncertainty in the SLR distribution
into the calculation of future flood risk.

Finally, past studies have tended to focus on either
the number of people and/or structures exposed or
on average annual economic losses. Although a use-
ful metric, calculation of average annual losses can
be computationally intensive and thus is often done
at relatively coarse scales (Hallegatte et al 2013, Neu-
mann et al 2015) or with proprietary (Houser et al
2015) and limited information about the relationship
between flood height and damage (Merz et al 2004).
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We focus on exposure to projected extreme coastal
water levels (driven by tides, storm surges, and SLR;
Gregory et al 2019), or ‘flood-risk events’. Using a
‘bathtub’ model, a building is considered exposed if
its ground elevation lies below projected water levels,
accounting for hydrological connectivity. Accord-
ingly, the probability of a structure being exposed in
a given year is dependent on three factors: its eleva-
tion (adjusted to account for coastal defenses), local
SLR projections by the year of interest, and local flood
height exceedance probabilities.We note that bathtub
models are generally known to overestimate coastal
vulnerability to extreme flood levels, as they cannot
capture water height attenuation over land with dis-
tance from the ocean (Vafeidis et al 2019). Hydro-
dynamic models do incorporate these physical inter-
actions, but are computationally infeasible for the
wide spatial scale we consider here.

We estimate expected annual flood-risk events, the
number of times that a particular building may be
exposed in a given year, as well as expected annual
exposure, the average number of affordable housing
buildings and units exposed in a typical year, which
can be aggregated for an administrative region of
interest (e.g. for a particular municipality, county,
or state). Together, this information can provide an
indication of not only how many buildings or units
are at risk, but also of how often they are at risk.
This provides counts of the number of times a place
could potentially flood based on water and land elev-
ations, not predictions of how many times a place
will actually flood, dependent on floodplain features
and on the nature of storms (Vafeidis et al 2019). This
approach works best for milder (and thus more fre-
quent) events and serves as an indicator of risk (Orton
et al 2015, Seenath et al 2016).

By using high-resolution building footprints and
integrating across both local flood and SLR distribu-
tions to calculate exposure, as described above, we
aim to identify the coastal states and cities where
affordable housing—both subsidized and market-
driven—is most at risk. We also evaluate exposure
of the general housing stock and identify the coastal
states and cities where affordable housing is dispro-
portionately exposed in comparison. This informa-
tion may be particularly relevant for preserving the
affordable housing stock, especially in places with
strained public finance and dwindling affordable
housing inventory.

2. Methods

To assess the exposure of affordable housing (and
of general housing for comparison), we use the
core methodology of Kulp and Strauss (2017), who
defined expected annual exposure—the quantity of
some variable (such as housing stock) expected to be
exposed to at least one coastal flood-risk event in a
given year.

In this paper, we assess vulnerability of indi-
vidual buildings and their contained housing units
by computing their expected annual exposure. We
introduce a new metric, expected annual flood-risk
events, the total expected number of flood-risk events
each building/unit could experience. Both of these
quantities can bemade unconditional to SLR sensitiv-
ity to emissions by integrating across the distribution
of potential SLR, given an emissions scenario.

This analysis is performed by refining a digital
elevation model (DEM) to reference local high tide
and enforce hydrological connectivity given anywater
height threshold; integrating SLR projections and
flood height exceedance probabilities to generate a
function estimating the annual and daily probabilities
of at least one coastal flood above a height threshold
in a given year; and applying this function to each
building and year of interest, from which expected
annual exposure and flood-risk events can be com-
puted and aggregated within any administrative area.
The inputs, models, and outputs of the analysis are
illustrated in figure 1 and described in detail below.

2.1. Digital ElevationModels
To assess topography, we employ lidar-derived DEMs
compiled and distributed by NOAA (NOAA 2015),
supplemented with the USGS Northern Gulf of Mex-
ico Topobathymetric DEM (USGS 2014) in Louisi-
ana, and the USGSNational ElevationDataset (Gesch
et al 2002) in the small fraction of land not covered
by the preceding DEMs. These data have a continu-
ous vertical resolution, and a horizontal resolution
of about 5 m, except in parts of LA (3 m) and Nor-
folk, VA (1 m).We then recompute elevations relative
to local mean higher high water (MHHW) levels at
nearest neighbors in NOAA’s VDatum grid (version
2.3.5; Parker et al 2003), measured in the National
Tidal Datum Epoch (1983−2001).

Topography or levees isolate some low-lying areas
from the ocean. To account for known protective fea-
tures and to facilitate downstream computations, the
DEM is further refined by raising individual grid cell
heights in identified isolated regions.Designated pixel
elevations are raised until theymatch the lowest water
level connecting each cell to the ocean despite protect-
ive features. We use the following procedure.

We consider flood heights between 0–10 m above
MHHW at quarter-meter intervals, denoting the i’th
such height in this sequence by hi. For each i, we gen-
erate a binary inundation surface Si(lat, lon), equal to
onewhere theDEM’s elevation is less than hi, and zero
otherwise. For each grid cell below 10 m, we note the
minimum value of i for which Si(lat, lon)= 1, denot-
ing this index by I(lat, lon).

We then incorporate levee data and use connected
components analysis to remove isolated areas within
each inundation surface, which produces new, con-
nected binary surfaces denoted by S̃i(lat, lon). Data
from the Mid-term Levee Inventory (FEMA/USACE,
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Figure 1. Flowchart of affordable housing exposure analysis.

acquired September 2013) is used to identify levees
and other flood control structures. In Louisiana,
we supplement this with data from Louisiana’s
Coastal Protection and Restoration Authority (Flood
ProtectionGISDatabase as of June 2015), and inMas-
sachusetts, by Chris Watson at University of Mas-
sachusetts Boston, April 2014, based on MassGIS’s
Digital Orthophoto Topographic Breaklines, April
2003. We treat levees as impassible barriers, as these
data lack information regarding levee strength or
height. This could cause certain areas protected by
weak levees to appear less vulnerable than they truly
may be.

As before, for each grid cell below ~ 10 m,
we compute Ĩ(lat, lon), the smallest value of i in
which S̃i(lat, lon) = 1. Where no such value of i exists
(meaning the cell is isolated from the ocean up to a
water height of more than 10 m), we reassign its elev-
ation to 10 m—higher than any plausible combin-
ation of SLR and one year return level this century
in the United States, thereby effectively removing it
from further consideration. If I(lat, lon) = Ĩ(lat, lon),
we assume this grid cell is not hydrologically isolated
and do not modify its elevation. Otherwise, where
I(lat, lon)< Ĩ(lat, lon), meaning a cell is hydrologic-
ally isolated up to awater height of atmost∼ h̃I(lat,lon),
we reassign its elevation to h̃I(lat,lon).

2.2. Sea level rise
SLR is not geographically uniform. Because SLR is
driven by global, regional, and local factors, the rise
of local relative sea levels differs from the global
mean. These factors include changes to temperature

and salinity (i.e. steric processes), land-ice melt,
changes in the Earth’s rotation and gravitational field
associated with water-mass redistribution (e.g. from
land-ice melt; Mitrovica et al 2011), dynamic ocean
processes (Levermann et al 2005), as well as glacial
isostatic adjustment (GIA; Farrell and Clark 1976)
and other drivers of vertical land motion. To local-
ize SLR, we use probabilistic SLR projections from
Kopp et al (2014)—hereafter denoted byK14—which
account for these time- and geographically-varying
components. The K14 projections are conditional on
global carbon emissions scenarios, including Repres-
entative Concentration Pathways (RCPs) 2.6, 4.5, and
8.5 (Van Vuuren et al 2011).

2.3. Annual Flood Event Probabilities
We use the formulation derived in Kulp and Strauss
(2017) to construct Pannual(H≥ h), the probability of
the highest water height of the year exceeding h. This
function is defined at each of 71 U.S. tide gauge sta-
tions with at least 30 years of hourly records, based
on Tebaldi et al (2012), Supplementary Information
(SI) table 1 (stacks.iop.org/ERL/15/124020/mmedia).
The one year return levels for these stations are shown
in figure 2. The station-distance sensitivity analysis
presented in Kulp and Strauss (2017) suggests that
the spatial density of these locations is sufficient for
expected annual exposure analysis across the U.S.
coastline.

Given the (adjusted) elevation of a build-
ing’s geolocation (see section 2.6), Elev(lat, lon),
Pannual(H≥ Elev(lat, lon)) reflects the annual
probability of at least one flood risk event, in the
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Figure 2. One year return level water heights at U.S. tide stations (meters).

absence of SLR. Making the assumption that the
return level curves stay constant relative to sea level,
and treating the year 2000 as the baseline case where
SLR(2000)= 0, we incorporate a specific SLR pro-
jection to predict the flood event probability for
any given year, y, Pannual(H≥ Elev(lat, lon)|SLR(y) =
x) = Pannual(H≥ Elev(lat, lon)− x).

Since for each emissions scenario considered,
K14 provides a set of probabilistic distributions with
10,000 Monte Carlo samples of relative sea-level
change for each tide gauge, we denote each sample
as the function SLR(j)(y) for j∈ [1, ..., 10000]. We
can estimate the probability, unconditional on model
sensitivity, as:

Pannual(H≥ Elev(lat, lon)|Y= y)≈ 1

10000

×
10000∑
j=1

× Pannual(H≥ (Elev(lat, lon)− SLR( j)(y)).

(1)

Making the simplifying assumption that the prob-
ability of a flood event on one day is independent of
any other day, we can also estimate the daily probab-
ility of a flood event as:

Pdaily(H≥ Elev(lat, lon)|Y= y)≈

1− (1− Pannual × (H≥ Elev(lat, lon)|Y= y))1/365.
(2)

2.4. Expected Annual Exposure and Flood-Risk
Events
The probability of annual flooding, Pannual(H≥
Elevk|Y= y), where Elevk is the land elevation of
building k, reflects the annual probability of at least

one flood higher than the ground elevation of that
individual building. Multiplying this probability with
the number of housing units within the building
(Unitsk) represents the expected annual number of
units exposed. Summing the values of this metric
across all buildings within some administrative area
(i.e. a particular city, state, etc) results in that area’s
total expected annual exposure of units. Although
some units in an exposed building may not be dir-
ectly flooded, access points (e.g. entrances, stairs) and
amenities (e.g. electricity, water supply and sewage
systems) may be affected.

Similarly, the product of the structure’s daily flood
event probability with Unitsk results in the expec-
ted daily exposure of units. With the assumption of
daily independence, we can estimate the total num-
ber of expected annual flood-risk events by multiply-
ing expected daily exposure by 365.

2.5. Housing data
2.5.1. Affordable housing stock: Subsidized

We utilize a comprehensive dataset of feder-
ally subsidized affordable housing buildings as
of November 2018. This dataset was collected
through the National Housing Preservation Database
(https://preservationdatabase.org/), managed by the
Public andAffordableHousingResearchCorporation
and the National Low Income Housing Coalition,
and analyzed by the National Housing Trust (NHT).
Information collected for this analysis included each
building’s address, latitude/longitude coordinates,
number of units, number of subsidized units, govern-
ment program, and funding source (i.e. government
agency, shown in table 1). In this analysis, hous-
ing supported by any federal program is considered
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subsidized. An affordable housing building can be
subsidized by more than one program.

While some cities and states have additional pro-
grams to subsidize housing, many do not report com-
prehensive and publicly available data on the loca-
tions of housing supported by these programs. It is
also common for state programs to provide gap finan-
cing to properties that are already subsidized through
federal programs.We include housing subsidized dir-
ectly by federal programs, which captures the vast
majority of government-subsidized affordable hous-
ing.We include housing subsidized directly by known
state-funded subsidies, which make up 2% of all sub-
sidized housing in the database.

2.5.2. Affordable housing stock: Market-driven
Although there is no universally accepted definition
of unsubsidized affordable housing, the term is gen-
erally applied to housing that is rented below mar-
ket rates or ~ 30% of median income levels, without
rental assistance (such as government subsidies or
tax credits; NLIHC 2019, HUD2019). Below-market-
rate housing also tends to be low quality (e.g. Hood
2005, Nordby et al 2017). To identify and locate
below-market-rate housing, we use the CoStar Build-
ing Rating System, a national rating for commercial
andmultifamily buildings on a universally recognized
5-Star quality scale, following the approach of the
Urban Land Institute (Nordby et al 2017).

CoStar’s rating distinguishes properties based on
their age, physical condition, and amenities. We
classify properties that are rated one- or two-stars
as market-driven affordable housing because these
buildings tend to rent at levels that are below mar-
ket rate due to their age and need of signific-
ant repairs (Nordby et al 2017). For example, one-
star buildings are characterized as being practically
non-competitive with respect to typical multi-family
investments and possibly functionally obsolete. Two-
star units are characterized as having simply func-
tional structures, below average finishes, inefficient
use of space, and minimal or no shared amenit-
ies. Commercial real estate information (including
each building’s address, latitude/longitude coordin-
ates, quality rating, and number of units) was collec-
ted in December 2018.

2.5.3. General housing stock
In the context of this study, a methodologically com-
mensurate comparison of the exposure of affordable
housing to that of the general housing stock requires a
source of general housing information with address-
level data. Although the 2010U.S. Census (US Census
2011) includes data on all types of housing units, such
as single-family homes, condos, and apartments, it is
only available as totals at census block scale. As a res-
ult, we use housing data from Zillow’s ZTRAX data-
base, which includes latitude/longitude coordinates,
to characterize the general housing stock. The ZTRAX

data serves as a broad indicator of general housing
because it includes only housing units that are zoned
for non-commercial use, meaning apartments are not
included in the dataset. These data were collected in
June 2018.

2.6. Building Footprints
We further refine the geographic representation
of our affordable housing stock (subsidized and
market-driven) and general housing stock data-
sets using Microsoft’s U.S. Building Footprints
database (https://github.com/Microsoft/USBuilding
Footprints). Since points are poor representations
of the areal extent of a building, building latitude
and longitude locations are linked with the Building
Footprints database and each point is assigned to the
building footprint that contained it, or its nearest
building footprint. If any part of a building is on
land at a lower elevation than a given water height
(according to the DEMs described in section 2.1), we
considered the entire structure exposed, as well as
all units within it, if applicable. This is a conservat-
ive measure, as not all buildings will necessarily suffer
damage if water reaches the corner of a house, though
those with basements or split levels still may.

3. Results and discussion

In the following results, we assess the threat of
coastal flooding to individual affordable housing
units nationwide, tabulating results to the national,
state, and city levels. This analysis enables the iden-
tification of locations where affordable housing is
the most at risk and where the potential exposure of
affordable housing may be disproportionately high
compared to housing overall.

As the size of affordable housing buildings varies
from single-family homes to apartment complexes,
we present results on the units within buildings to
reflect the threat facing affordable housing residents.
Focusing on units is also helpful because flood dam-
age to a part of a building could impact all of the units
in the building (e.g. by way of flooded access points,
such as entrances or stairs, or service interruptions,
including electricity, water supply, and sewage sys-
tems).

3.1. Recent threat
Using mean sea levels for the year 2000 as a baseline
for comparison with future threat (section 3.2),
we found that 7,668 affordable housing units were
recently at risk of flooding per year in the United
States. Figure 3 illustrates the recent vulnerability
among states. New Jersey has the highest number and
percentage of its affordable housing stock exposed
(1,640, ~ 1%; figure 3.a,c; SI table 2). New York and
Massachusetts are also within the top three states
at risk in terms of the number of units exposed

6
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Table 1. Federal programs and corresponding funding agencies subsidizing affordable housing.

Program Funding source

Project-based (Section 8) U.S. Department of Housing and Urban Development
(HUD)

Supportive housing for the elderly (Section 202) HUD
HOME Investment Partnerships Program HUD
Public Housing HUD
Subsidized mortgage properties (Section 236) HUD and Federal Housing Administration (FHA)
FHA-Insured Mortgages FHA
Low-Income Housing Tax Credit Program Internal Revenue Service
Rural Rental Housing program (Section 515) U.S. Department of Agriculture (USDA)
Multi-Family Housing Loan Guarantees (Section 538) USDA
State funded rental subsidy State level
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Expected number of units exposed per yearA
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Expected number of units exposed at least four times per yearB

0.0

0.5

1.0

1.5

2.0

ME NH MA RI CT NY NJ PA DE MD DC VA NC SC GA FL AL MS LA TX CA OR WA AK HI

Affordable housing

General housing

Percentage of housing stock exposed per yearC

Figure 3. Recent threat of coastal flooding to states, based on mean sea levels for the year 2000 and integrating across local
distributions of flooding. Panel A shows the total expected annual exposure of units (integrated across all units with nonzero
exposure probability), while Panel B shows the expected number of units exposed at least four times per year. Panels A and B show
values for the affordable (subsidized plus market-driven) housing stock. Panel C shows expected annual exposures as percentages
of total affordable and general housing stocks. In Panel C, states are ordered geographically following coastlines from east to west.

(1,574, and 1,530, respectively)—an order of mag-
nitude more than the other coastal states (figure 3.a).
Massachusetts, Maine, and the District of Columbia
are noteworthy in that the percentage of the afford-
able housing stock exposed markedly exceeds that of
the general housing stock.

Looking at the number of flood-risk events per
unit exposed shows another threat dimension (fig-
ure 3.b). Although California, for example, has about
a third as many exposed units as New Jersey, it has
roughly the same number of units exposed to flood-
ing at least four times per year (358) as New Jersey
(313; SI table 2). We chose at least four times per
year because this corresponds to an average of at least
once per quarter, although actual flood-risk events
may be seasonally clustered. Along with New Jersey,
Massachusetts, New York, and California, affordable
housing units in Maryland are the most at risk of
repetitive flooding, with an over 200 units exposed
to at least four flood-risk events per year in each of
these states. By contrast, units in Rhode Island, New

Hampshire, and Oregon are some of the states least at
risk to more than one flood event per year.

Cities as well as states vary dramatically in the vul-
nerability of their affordable housing to flood risk.
Figure 4 shows the top 20 cities recently at risk of
coastal flooding, in terms of the absolute number of
units exposed (see SI table 3 for all cities). Threats
are primarily clustered in smaller cities in Califor-
nia and in the northeastern United States. New York
City has the largest number of units exposed per year
(1,373), even though these unitsmake up less than 1%
of the city’s supply of subsidized affordable housing
(figure 4.a,c). The secondmost at-risk city in absolute
terms is Atlantic City. Its significant number of units
exposed per year (618) consists of more than 10%
of the city’s affordable housing stock. With a similar
number of units exposed (609), Boston ranks third;
more than half of its at-risk units face at least four
flood-risk events per year.

Five of the top-ranked cities have more than 200
units that face flood-risk at least four times per year,

7
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Figure 4. Recent threat of coastal flooding to the top 20 cities exposed (in absolute terms), based on mean sea levels for the year
2000 and integrating across local distributions of flooding. Panel A shows the total expected annual exposure of affordable
housing units and the number of units expected to be exposed at least four times per year. Panel B shows expected annual
exposures as percentages of total affordable and general housing stocks. Cities are ordered geographically following coastlines
from east to west.

Figure 5. Future threat of coastal flooding to states, based on projected sea levels for the year 2050 and integrating across local
distributions of flooding and SLR, under high carbon emissions (RCP 8.5). Panel A shows the total expected annual exposure of
affordable housing units and the number of units expected to be exposed at least four times per year. Panel B shows expected
annual exposures as percentages of total affordable and general housing stocks. In Panel C, states are ordered geographically
following coastlines from east to west.

on average, including those inNewYork City; Boston;
Foster City, CA; Revere, MA; and Crisfield, MD.
Exposure may be overestimated in Foster City, CA,
where new levees may not have been included in
the Mid-term Levee Inventory. The percentage of the
affordable housing stock exposed exceeded that of the
general housing stock in nearly all of the top-ranked
cities, with the greatest disparities in relative terms in
Corte Madera and Suisun City, CA, and in Wood-
lawn, VA (figure 4.c).

3.2. Future threat
To estimate future threat of coastal flooding to
affordable housing, we focused on risks posed by

2050. This 30 year outlook reflects threats that could
affect current residents. The projected threats could
also affect private developers and government entit-
ies, as this time period spans the typical duration of
loans and other financial instruments. Results presen-
ted here assume continued high carbon emissions
(represented by RCP8.5); however, there is little dif-
ference in projected SLR across carbon emission scen-
arios by the mid-21st century (Kopp et al 2014). Res-
ults for 2100 and for other RCPs are listed in SI tables
2–4.

The mid-term change in risk is significant, with
the aggregate number of affordable units exposed in
theUnited Statesmore than tripling by 2050 to 24,519
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Figure 6. Future threat of coastal flooding to the top 20 cities exposed (in absolute terms), based on projected sea levels for the
year 2050 and integrating across local distributions of flooding and SLR, under high carbon emissions (RCP 8.5). Panel A shows
the total expected annual exposure of affordable housing units and the number of units expected to be exposed at least four times
per year. Panel B shows expected annual exposures as percentages of total affordable and general housing stocks.

units. Table 2 shows the ranking of states in terms of
units exposed per year in 2050. New Jersey remains
the most vulnerable state, as measured by both the
absolute and relative number of units exposed. In
New Jersey, the number of units exposed approaches
seven thousand per year, a four-fold increase from the
year 2000, and equal to the aggregate number of units
recently exposed across the country.

New York and Massachusetts remain within the
top three states at risk in terms of the absolute
and relative number of units exposed (figure 5.a,c).
Pennsylvania, Florida, and South Carolina face the
greatest percentage increase in the expected annual
exposure from 2000 to 2050 (792%, 774%, and 669%,
respectively; table 2). Across coastal states, a large
majority of exposed affordable housing units are sub-
sidized (72%; see SI table 4 for exposure by pro-
gram). In 2050, the affordable housing stock is estim-
ated to be markedly more exposed relative to the
general housing stock in Massachusetts, New York,
New Hampshire, Pennsylvania and the District of
Columbia (figure 5.c).

By 2050, most coastal states are estimated to have
at least some affordable housing units exposed to
flood risk events at least four times per year (table 2,
figure 5.b). Nearly half of New Jersey’s large stock of
exposed affordable housing units could flood at least
four times per year. Delaware,Washington, and South
Carolina had zero affording housing units exposed to
flooding at least four times per year in the year 2000,
but approximately one hundred units exposed to such
frequent flooding by 2050 (76, 103, and 119 units,
respectively).

Table 3 shows the ranking of the top 20 cities in
terms of annual number of units exposed by 2050.
The top 20 cities account for 75% of the United
State’s aggregate expected annual exposure. These
most vulnerable cities are highly concentrated along

the northeastern corridor and in California. In some
of these cities, with relatively smaller affordable hous-
ing stocks, over 90% of the stock is exposed (Crisfield,
MD and Revere, MA).

New York City remains the most vulnerable city
in absolute terms, with the number of units exposed
exceeding 4,000 per year by 2050. However, these
units represent less than 2% of the city’s affordable
housing stock and rich cities like New York generally
havemore resources to bolster protection than poorer
ones. For example, New York City not only plans
to increase its supply of affordable housing by 50%
in 10 years, but has also revised its building design
guidelines to address the projected impacts of climate
change (NYC 2014, NYC 2019).

The rankings of cities include many smaller and
less wealthy cities, where risk management efforts
may be lower. Aside from New York City and Boston,
all of the top-ranked cities have populations of ~
200 000 or less (m= 71 106, sd= 60 922; U.S. Census
2019). Four cities in New Jersey are of particular con-
cern: Atlantic City, Camden, Penns Grove, and Salem.
These top-ranked cities are some of the poorest in
the country, with average median household income
($28,618) half of the national median, and a cor-
respondingly high demand for affordable housing
(U.S. Census 2018a). In addition, their proportion
of people of color (81.2%) is double the national
average (U.S. Census 2018a). In most of these New
Jersey cities, about a third of the affordable housing
stock is projected to be exposed, a 321% to 957%
percentage increase in exposure from the year 2000
(table 3). This extensive exposure in multiple cities
could put a major strain on the state and is par-
ticularly concerning since many affordable housing
units in New Jersey are still being rehabilitated even
seven years after Hurricane Sandy (e.g. Ortiz et al
2019).
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The majority of the top-ranked cities face expos-
ure to flooding at least four times per year, which
could pose maintenance and public safety challenges.
This risk highlights the importance of flood resili-
ence measures to help residents and city managers
cope with increasingly frequent flooding, which may
be particularly challenging in the less wealthy top-
ranked cities, such as Camden, New Jersey.

3.3. Implications for the preservation of affordable
housing
Flooding can wreak havoc on buildings and the res-
idents who live in them. Even low levels of flooding
can damage belongings, disrupt electrical equipment,
contaminate water sources and septic systems, gen-
erate mold, and block roads (Moftakhari et al 2017,
Sweet et al 2018). These impacts may increase main-
tenance costs, threaten public health, and cause pro-
found disruptions to families already struggling to
make ends meet. Because affordable housing units
are frequently in poor repair to begin with, addi-
tional damage from flooding may be particularly
challenging—and expensive—to remedy.

This study’s findings demonstrate that if com-
munities aim to preserve affordable housing stock
in coastal areas, significant resiliency planning and
investment is likely to be needed. Inaction could result
in high risk for residents who may lack access to suf-
ficient resources to prepare and recover from flood-
ing impacts. As coastal flood risks to affordable hous-
ing units tend to be highly concentrated, flood protec-
tion measures in key cities and neighborhoods could
help protect a large number of affordable housing
residents. The number of expected annual flood-risk
events for individual buildings (or aggregated within
administrative areas) could be used to help identify
hot spots of repetitive flooding, and where to invest
in coastal protection or other adaptationmeasures for
the greatest impact relative to cost. Over time, invest-
ment in these areas may pay off in terms of not only
damage avoided, but also harm avoided to individuals
and families in need.

As community resilience investments are made,
complementary policies may be needed to protect
against the displacement (and potential homeless-
ness) of residents. Infrastructure improvements such
as flood defenses can result in new amenities that can
attract wealthier households and drive up property
values and rents (e.g. Keenan et al 2018). The issue
of improving the resilience of affordable housing,
without compromising its affordability, is complex
and increasingly being recognized in both public and
private spheres. For example, it has become a focus of
public-private partnership programs such as Energy
Efficiency for All (EEFA 2019), which upgrades
energy efficiency in multi-family affordable housing
complexes, and the Urban Land Institute’s Urban
Resilience Program (Urban Land Institute 2018),
which shares resilience information and strategies.

Such efforts are critically important to help avoid
systemic effects which may deepen cycles of poverty.
A reduction in affordable housing could have mul-
tiple downstream consequences for individuals and
families (e.g. affecting equitable access to public
transportation, healthcare, and other services) as well
as for regional and local economies, which may lose
part of their labor forces. The loss of affordable hous-
ing in coastal communities may also drive up hous-
ing costs in adjacent communities as competition for
a dwindling supply of low-cost housing intensifies
(e.g. Keenan et al 2018). Ultimately, increasing the
overall supply of resilient affordable housing is crit-
ically needed to help ensure that communities can
absorb the impacts of increased flooding among other
climate-related hazards.

4. Conclusion

Climate-change-driven sea level rise will continue to
amplify coastal flooding in the coming decades. To
better understand the potential impact on vulner-
able U.S. populations and to aid resiliency planning,
we assess the growing exposure of affordable hous-
ing with unprecedented geographic resolution and
national comprehensiveness. Knowledge of the estim-
ated number of affordable housing units exposed to at
least one flood-risk event per year as well as the total
number of flood-risk events facing an area’s afford-
able housing stock could help inform strategic resili-
ence planning. Because coastal flood risks are highly
concentrated, flood-threat reductionmeasures (phys-
ical, financial, or regulatory) in key cities and states
could help protect a large number of affordable hous-
ing residents. Localities where frequent exposure to
extreme coastal water levels is projected for affordable
housing may require near-term measures to success-
fully reduce flood threats.
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