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Abstract
Managing plastics has become a focal issue of the Anthropocene. Developments in plastic materials
have made possible many of the technologies and conveniences that define our modern life. Yet,
plastics are accumulating in landfills and natural environments, impacting resource utilization and
ecosystem function. Solutions to these rising problems will require action and coordination across
all stages of plastics value chains. Here, we offer the first contemporary plastics material flow by
resin type through the US economy, encompassing 2017 production, sales, use markets and
end-of-life management. This roadmap, while sourced from disparate and incomplete data,
provides stakeholders with a system-scale context for understanding challenges, opportunities and
implications of future interventions. More than three-quarters of the plastics reaching end of life
went to landfill, and less than 8% was recycled. Packaging was the largest defined use market for
plastics, but two thirds of the plastic put into use in 2017 went into other markets, including
consumer products, electronics, buildings and transportation. In nearly all uses, increased
coordination between material and product innovation and design and end-of-life recovery and
recycling are needed. Alignment of technology, policy and market drivers will be necessary to
reduce plastic waste and improve the circularity of plastic materials.

Abbreviation definitions

LDPE low-density polyethylene
LLDPE linear low-density polyethylene
HDPE high-density polyethylene
PP polypropylene
PS polystyrene
EPS expandable polystyrene
PVC polyvinyl chloride
PET polyethylene terephthalate
ABS acrylonitrile-butadiene-styrene
ASR auto-shredder residue
ACC American Chemistry Council
Mt Megatonnes=million metric tonnes
US United States of America
US EPA United States Environmental Protec-

tion Agency
PCB polychlorinated biphenyl
MSW municipal solid waste
C&D construction and demolition
EOL end-of-life
PUR polyurethanes

1. Introduction

Plastics—synthetic organic polymers—are ubiquit-
ous in today’s society. These versatile materials are
inexpensive, lightweight, strong, durable, corrosion-
resistant, and have valuable thermal and electrical

insulation properties. When blended, co-extruded,
or combined with performance enhancing additives
[1], the diversity of existing plastics exhibit a wide
range of properties and have made possible many

technological advances and a tremendous array of
plastic products, creating numerous societal benefits
such as energy savings, light-weighting, and safety.
Designers and engineers have grown accustomed to
specifying very detailed cost, performance and shape
requirements with the expectation that plastics will
meet them. Their extraordinary design potential and
flexibility, combined with low cost and durability
means that the global use of plastics now exceeds
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most other man-made materials in nearly all indus-
trial sectors, aside from construction where concrete
and metals still dominate. Nonrenewable organics—
predominantly plastics—were 4%of the non-fuel raw
material put into use in the US in 2014; disregard-
ing construction materials (stone, gravel, sand: 72%
of non-fuel raw materials) increases nonrenewable
organics to 15% [2].

Yet this extensive and often highly specialized
plastics economy has also resulted in significant
challenges at the end-of-life management of plastic
products in recovering and retaining the economic
and technical value of the materials. The outcome
has been significant ‘leakage’ of plastics out of the
economy in the form of waste and plastics pollu-
tion. An estimated 4900 million metric tonnes (Mt)
of the 6300 Mt total of plastics ever produced glob-
ally have been discarded either in landfills or else-
where in the environment [3]. Most common plastics
do not biodegrade, and their accumulation in and
contamination of natural environments is an ever-
increasing concern [4–7]. Further, the vast majority
of plastics are derived from fossil fuels, and global
production (including both feedstock and manu-
facturing energy requirements) currently represents
around 8% of global annual oil and gas consumption
[8]. Emissions associated with the 407 Mt of conven-
tional plastics produced globally in 2015 correspond
to 3.8% of global greenhouse gas emissions in that
year [9], and in the United States (US), plastics pro-
duction accounts for 1% of national greenhouse gas
emissions [10]. Projections based on current growth
rates suggest that emissions from plastics could reach
15% of the global carbon budget by 2050 [11].

North America—and the US in particular—is
both a major producer and consumer of plastics, rep-
resenting 19% of global plastics production and 21%
of consumption [12]. At 139 kg capita−1 year−1, the
North American region has the highest per capita
plastic consumption in the world [12]. Further, the
US has not (at the national level, at least) imple-
mented regulatory actions to incentivize plastic recyc-
ling, and rates lag behind other developed economies.
Thus, the US has an opportunity to reinvent the ways
in which plastics are produced, used and disposed in
order to move aggressively toward a system based in
the principles of circular economy. A systemic shift
to a circular economy involves designing out waste
and pollution by reducing, reusing, recycling and
recovering materials in production and consumption
processes, within sustainable development aims [13].
The objective of this study is to characterize the con-
temporary macro-scale material flow of plastics in
the United States. The goal is to generate a roadmap
to assist stakeholders across plastics value chains—
material scientists and engineers, resin producers,
product and packaging designers and manufacturers,
retailers, material recovery innovators and operators,
and solutions-oriented academics, institutions and

policy-makers—in appreciating the broader system-
scale implications of their decisions and actions.

There is broad interest in increasing the circular-
ity of plastics in general, as evidenced by the rapid
and widespread adoption of the New Plastics Eco-
nomy Global Commitment [14]. While much of this
effort has, perhaps rightly so, focused on single-use
packaging, here we recognize that plastic materials
have widespread applications across nearly all sectors,
demanding an integrative set of solutions that both
recognize unique sector challenges while also captur-
ing system-level coordination and synergies. Visualiz-
ation of the economy-wide flow of plastics can assist
in identifying major opportunities and the potential
scalability of emerging solutions. It can also bring
clarity to the characteristics embedded in the cur-
rent system that represent major barriers to change,
such as relatively inexpensive plastic feedstocks, vari-
ety and incompatibility (in recovery and recycling)
of plastics, a lack of infrastructure for recovery of
plastics in durable goods, lack of reliable markets
for recycled materials, and low tipping fees for waste
materials.

Thematerial flow offered here is a first order char-
acterization of a single year of plastics production, use
and disposal in the US using available data. Although
focused on the US economy, data limitations pre-
clude clean boundary conditions and disaggregation
from other North American production and usage,
and potential double-counting of trade flows between
North American countries are evident. The follow-
ing section describes the data used to construct the
material flow. We then offer context to support inter-
pretation of these macro-level flows including iden-
tification of gaps in data availability, and challenges
and opportunities in advancing toward circularity.

2. Methods

Material flow analysis has been used to assess the
flows and stocks ofmaterials through a particular sys-
tem defined in space and time in order to character-
ize scale and connections between sources, conver-
sion processes and sinks of the material in question
[15]. Our aim was to characterize the flows of plastics
through the US economy in a given year, 2017. How-
ever, establishing a material flow of the diverse poly-
mer production and use in theUS requires data integ-
ration and reconciliation from published sources
that are sometimes inconsistent in material defini-
tion, geographic region, year, and measurement unit.
These inconsistencies precluded strict maintenance
of spatial and temporal boundaries and application
of material balances at all stages. The sections below
detail the data sources used, including identified lim-
itations, across plastics production, trade, use bymar-
ket sectors, municipal solid waste discards, and end of
life management.
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2.1. Plastics manufacture, trade and use by market
sectors
The starting point for plastic production and use by
major markets in North America is the survey-based
industry data compiled for the American Chem-
istry Council (ACC) through an independent third
party [16]. These data are limited to plastics man-
ufacturers that participate in the survey, but cov-
ers an expected 95%–100% of the total US produc-
tion for the materials reported. We use these data
as provided, noting limitations here. The geographic
boundaries for the data from ACC reflect the produc-
tion locations of survey participants and are incon-
sistent (e.g. production of polyethylenes represents
US and Canada, whereas polypropylene and poly-
styrene represents US, Canada & Mexico) and dis-
aggregation by country is unavailable. We offer scal-
ing estimates based on both the relative national
gross domestic product (GDP) and population to
provide context for the US component of this North
American data. In addition to North American pro-
duction, resin sales can include imports by resin
manufacturers. Further, only the dominant thermo-
plastics (LDPE, LLDPE, HDPE, PP, PS, EPS, PVC) are
disaggregated and detailed, requiring supplemental
data from disparate sources on other important res-
ins such as PET. While the ACC data may include
imports, it does not account for all imports. Like-
wise, reported exports represent sales by resin man-
ufacturers to foreign buyers, but do not capture addi-
tional exports by brokers or other third party sales.
This makes reconciliation with international trade
data challenging. We include US imports of primary
form plastics as well as formed plastics (rods, sticks,
sheets, films, plates, caps, etc) based on US trade
data for 2017 [17], acknowledging that some double-
counting can not be avoided and that some discrep-
ancies may be introduced due to trade between N.
American countries. These imports are detailed in
the supplementary information (available online at
stacks.iop.org/ERL/15/094034/mmedia). Imports of
plastics also occur as finished consumer goods. The
plastics contained in imported finished goods (foods,
apparel, footwear, computers and electronics, appli-
ances, automobiles, furniture, medical supplies, ath-
letic goods, toys) and their packaging were estim-
ated using the monetary value of net imports into
the US, averaged over three years (2016–2018) com-
binedwith sector-level estimates of plastic content per
unit of revenue [18]. Details are contained in the sup-
plementary information. Resin composition of these
imported finished goods is unspecified. While mater-
ial flow estimates reliant on monetary value is less
desirable than physical bases, in the absence of higher
quality data on the quantity of plastics in imported
and exported finished goods, we offer these as rough
initial estimates.

2.2. Plastics in municipal solid waste
The US EPA maintains national level data on the
characterization and management of municipal solid
waste (MSW) in the US [19]. These data are used
to define the majority of post-use flow of plastics,
based on the year of 2017. Plastics in the US MSW
stream are estimated by US EPA using material flow
methodologies, but rely on the industry data from
ACC as the primary source of plastic generation,
with sales data that include Canada being reduced by
the ratio of Canada/US population [20]. In the US
EPA method, containers and packaging are assumed
to be discarded in the same year that the products
they contain are purchased. Non-durable goods are
those that generally last less than three years and the
plastic-containing non-durables include plastic plates
and cups, trash bags, disposable diapers, clothing and
footwear, and other miscellaneous products. Durable
goods have assumed lifetimes of three years or more,
and include items such asmajor and small appliances,
furniture, carpets, and consumer electronics; specific
plastic-containing durable goods are poorly defined.
Appearance of durable and non-durable goods in the
MSWstream reported byUSEPA is temporally lagged
based onmodeling of the product’s useful life [20]. In
otherwords, inclusion of thesematerials inMSWrep-
resents disposal in 2017 of products manufactured in
previous years.

2.3. Disposition of plastics in MSW
The End of life (EOL) disposition of plastics con-
tained inMSW is also informed by data fromUS EPA
[19]. Recovery of plastics in that report is also primar-
ily based on industry-sourced surveys [21–24]. Data
on recovery of plastics from durable goods is limited.
After accounting for recovery, disposal of plastics in
MSW is distributed between combustion with energy
recovery and landfill based on average national rates.
Note that, per US EPAmethods, combustion without
energy recovery is included as landfill.

Recycling of post-industrial plastic waste is not
explicitly detailed in our analysis. These materials—
non-conforming parts, runners and trim waste from
processing—are generally clean and of high demand
and therefore have high recycling rates, often within
the same manufacturing facility.

2.4. Additional waste streams
Additional plastics-containing waste streams not cap-
tured in US EPA’s definition of MSW include con-
struction and demolition (C&D) waste and automot-
ive shredder residue (ASR). Estimates of the plastics
contained in these waste flows are included using
available data [25, 26]. Plastics represent a very small
fraction (<2%) of total C&D generation in the US;
packaging materials likely form the bulk of plastics
recovered by C&D recyclers [25]. Plastics in ASR are
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estimated based on the number of end of life vehicles
disposed annually in the US, a representative weight,
and the fraction of plastics in automobiles in 2003
(i.e., assumingmodels retired in 2017 are 14 years old)
[26]. Landfill disposal of ASR is most common and
assumed in this assessment.

2.5. Environmental Leakage
Leakage of plastics to aquatic and other environments
has arisen as a major concern due to their persist-
ence and potential impacts on organisms and ecosys-
tems.Herewe include estimates ofmacro- andmicro-
plastic losses in the N. American region from a recent
UN Environment report [12]. As such, this should be
an overestimate of the environmental leakage in the
US specifically. In this UN Environment assessment,
losses of plastic to the environment frommismanaged
waste treatment—amajor concern in other regions—
is assumed negligible in N. America. In addition, a
number of other sources of leaked plastics deemed of
low to medium importance were not included in the
UN Environment report estimates due to inadequate
quantitative knowledge (see table 19 in [12]).

3. Results and discussion

Figure 1 represents our best understanding of the
material flow of plastics in the US circa the year 2017,
based on available data. Details of data sources and
notes corresponding with specific flows are provided
in table 1. The thickness of lines in the diagram are
scaled by mass; dashed lines are used when a flow is
expected but its magnitude cannot be quantified with
available data. The left side of figure 1 representsman-
ufacturing of new plastic resins in 2017; this North
American production is combined with imports of
primary form plastics and distributed to known uses
by major markets (with export out of the region also
indicated). Due to data limitations, these flows are
largely based on North American production and
sales. Scaling these N. American flows based on the
gross domestic product of the represented countries
for each resin (see note in table 1) suggests that the
usage of plastics in the US is 93% of the reported
total presented in figure 1. Scaling based on popu-
lation suggests that the US uses 88% of the reported
total (see supplementary information for details on
these scaling estimates). The right side of figure 1 rep-
resents disposal of plastic materials through MSW in
the US, along with the major plastic-containing dis-
posal flows not captured in MSW: construction and
demolition (C&D) waste and auto shredder residue
(ASR).

Table 2 summarizes the scale of material flows
at major vertical columns based on our analysis,
as well as distribution of plastic by resin type, use
across major markets, and disposal by product type
and end of life destination. The notable fraction
of plastic materials with ‘undefined’ use is due to

unavailable data on use markets for lower-volume
polymer types, thermosets, and imports of primary
form resins and formed plastics. A large portion of the
‘undefined’ thermosets is likely phenol/formaldehyde
and urea/formaldehyde resins, used as adhesives to
make a variety of products including plywood and
engineered lumber, oriented strand board, and other
laminates [27]. Barring the uncertainty introduced
by these undefined markets, the largest market for
plastics in the US is packaging, as is the case glob-
ally [3]. Plastic packaging is dominated by polyol-
efins and is predominantly single use, and in the
datasets utilized here, assumed to be disposed in the
same year they are produced. The large market called
‘consumer and institutional products’ is made up of
items including: disposable food serviceware, kitch-
enware, toys, sporting goods, household and institu-
tional refuse bags, personal care items, healthcare and
medical products, hobby and graphic arts supplies,
apparel, footwear, luggage, buttons, lawn and garden
tools, signs, displays and credit cards [16]. Buildings
utilize the majority of PVC in the US in the form of
lowpressure piping, trim, window frames, and siding;
this is of note because PVC introduces challenges as a
contaminant in mechanical recycling of other poly-
mers [28], in pyrolysis of solid plastics waste [29, 30],
as well as in waste to energy technologies [31, 32].

It is clear from figure 1 that the material flows
in the US plastics economy are still largely linear:
‘take-make-use-dispose’. An estimated 8% of plastics
disposed in the US in 2017 were recycled (table 2),
yet inefficiencies in sorting and reprocessing likely
mean that an even smaller percentage returns as
feedstock for new products. More than three quar-
ters of the plastics disposed went to landfill. Estim-
ates of leakage of plastics to natural environments
(based on data for N. America) represented 2% of
the ‘end-of-life’ plastics in the US in 2017 (table 2).
Globally, environmental leakage of plastics is dom-
inated by mismanaged waste treatment, primarily
in the form of open dumping sites; in N. Amer-
ica, however, these losses are considered negligible
[12]. On the other hand, microplastic losses from
tire abrasion, road markings erosion, and launder-
ing of synthetic textiles in N. America are notable.
Tire abrasion is the largest source ofmicroplastics lost
to the environment both globally and in N. Amer-
ica. However, these tire elastomers do not appear in
samplings of microplastics in the ocean, suggesting
that either sampling measurements are not detecting
tire elastomers (i.e. their size is below detection lim-
its) or they are subject to environmental processes
that either capture or remove the particles before
reaching the oceans [12]. Another major source of
microplastics globally is the laundering of synthetic
textiles. While N. America represents a large frac-
tion of the use of plastic fibers for clothing (22%), a
large portion of the population are also connected to
wastewater treatment systems. Wastewater treatment
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can remove microfibers from effluent streams (an
estimated 93% of microfibers removed), meaning the
estimated losses of microfibers in N. America are
moderate (0.036 Mt annually, 13% of the estimated
global total) [12]. Microfibers removed in wastewater
treatment are likely to remain in sewage sludge, which
is commonly land-applied; the ultimate fate of these
microfibers is unknown.

3.1. Plastics in-use stock
Geyer et al estimate that roughly 30%of all the plastics
ever made globally are currently in-use stock: that
is, still contained in products that have not yet been
disposed [3]. Applying the product lifetime distribu-
tions reported by Geyer et al [3] to US sales and cap-
tive use of all plastics going back to 1973, we estim-
ate that the plastics existing as in-use stock in 2017
are on the order of 400 Mt, eight times the quantity
of plastics manufactured in 2017 (details of estimate
in supplementary information). These plastics exist
in durable applications including houses and build-
ings, automobiles, appliances and electronics, as well
as shorter lifetime ‘non-durable’ applications such as
clothing, housewares, and reusable containers.

3.2. Packaging
As plastic packaging represents a large fraction of
plastic use and because of its short-lived and per-
vasive nature, efforts to improve the circularity of
the plastics economy and reduce the impact of inap-
propriate disposal and environmental leakage have
focused on packaging [11, 41]. In theory, most of
the thermoplastics used in packaging have very high
recyclability, and the short lifespan and high volume
of single-use plastic packaging makes it attractive for
recapturing its material value. Current low recycling
rates can often be traced to market issues including
inexpensive virgin feedstocks, combined with mater-
ial quality aspects that are inherent in the current sys-
tem, either due to product design (choice of: mater-
ials and combinations of materials, colors, additives,
formats, labels) or use and handling (contamination
with dust, soil, organics, incomplete separation of
recycling streams) [42]. For example, the PET recyc-
ling rate of 29% reported in [19] reflects the recov-
ery or collection of PET bottles in 2017. 16% of
the total bottles collected were exported out of the
US, and only 67% of the recovered PET bottles pur-
chased by US reclaimers in 2017 became clean flake
available for reuse as recycled PET [21]. Combined
with expected utilization rates of exported bottles,
the utilization rate (i.e. amount of clean flake pro-
duced divided by bottles available in the US market)
was 20.9%. The discrepancy between the recycling (or
recovery) rate and the utilization rate is attributed to
non-PET contamination in recyclate bales, the preval-
ence of smaller, lighter containers which requiremore
processing per pound of material, and design for
recyclability issues such as difficult-to-remove labels,

barrier layers added to PET for added packaging func-
tion, and metal integrated into PET packages [21].
As PET bottles are among the easier plastic materi-
als to recycle and have a reliable recycled market, this
exemplifies the myriad challenges faced in improv-
ing the circularity of plastic materials. The market
drive to innovate has led to tremendous diversity
in the materials (polymers, additives, colors) and
formats (bottles, tubs, bags, films) present in today’s
plastic packaging, which has limited the technical
and economic ability to recycle these materials. There
is now growing recognition that improving recyc-
lability, especially of single-use plastics, will require
a systemic approach across the value chain that
coordinates material and application design with col-
lection, sorting and reprocessing innovation [11, 41].
Key strategies could include: innovations in reusable
packaging models for both consumer products and
business-to-business logistics; converging to a few
key materials used across the market and elimin-
ating less common materials from packaging such
as PVC, PS and EPS to reduce cross-contamination
and improve value of recycle streams; addressing
the challenges of multi-material layered packaging
via material innovation or reprocessing strategies;
promoting minimum recycled content in packaging
and products to build reliable markets for recycled
plastics [11]; and development of next-generation
plastic resins, such as poly(diketoenamine)s, that per-
mit easy depolymerization, re-manufacture and re-
use in a closed loop fashion [43]. Significant chal-
lenges exist in implementing and institutionalizing
these strategies, including replicating or overcoming
the need for the diverse performance characteristics
offered by less common plastic materials. Still, such
strategies offer important guideposts for innovations
in plastic packaging.

After years of tightening restrictions on the
purity of plastics imports, China implemented its
‘National Sword’ program in January, 2018, ban-
ning the imports of nearly all plastic waste into the
country and greatly disrupting material flows in the
global recycling industry [44]. Between 1992 and
2016, China imported 106 Mt of plastic waste, rep-
resenting 45% of all global imports. Combined with
Hong Kong, which largely serves as an entry port
into China, the two countries imported 72% of all
plastics waste [45]. In 2016, the US exported 0.7 Mt
of plastic waste to China, making it the third rank-
ing exporter after Hong Kong and Japan [45]. Then in
2018, China’s waste plastic imports dropped by 99.1%
[44]. Exports from the US and other developed coun-
tries shifted to Southeast Asian countries including
Malaysia, Vietnam, Indonesia and Thailand, which
have also begun to implement regulatory policies on
plastic waste imports [46]. These importing coun-
tries often lack sufficient infrastructure to properly
manage plastic waste [47], increasing the likelihood
of leakage. These dramatic changes in the global

9



Environ. Res. Lett. 15 (2020) 094034 M C Heller et al

recyclingmarkets are not reflected in thematerial flow
data presented here.

3.3. Addressing other market sectors
Two thirds of the plastic put into use in the US
in 2017 went into markets other than packaging.
These other sectors—consumer products, furniture
and furnishing, electrical and electronics, trans-
portation, buildings and construction—introduce
unique challenges and opportunities. They include
products with short- (disposable serviceware, trash-
bags, diapers), medium- (clothing, tools, electron-
ics, furniture, small appliances), and long- (large
appliances, automobiles, buildings) lifetimes. This
means that materials retired from medium- and
long-lifetime products were designed and manufac-
tured 5–50 years or more in the past, and material
and product innovations will not appear in the dis-
posal stream until many years in the future. As with
packaging, coordination and convergence are needed
between design and end-of-life efforts, but currently
retired products reflect design choices that may be
decades old. In addition, these products typically
involve combinations of materials—a great variety
of plastics plus metals, wood, rubber, foam, textiles,
etc, often joined together with adhesives, fasteners or
other methods. Durable parts also come in a much
wider variety of shapes and sizes than packaging, lim-
iting the ability to use automated handling and detec-
tion systems. At the same time, with sufficient separ-
ation and cleaning, many of the plastics commonly
used in durable products such as ABS and PC can
have higher market value than packaging recylates.
Where performance specifications will allow, dur-
able products may represent a growing market for
mechanically recycled plastics from packaging waste
streams. Ongoing developments in chemical recyc-
ling methods, especially those effective with plastic
mixtures, may ultimately offer preferred pathways for
recovering materials and/or energy from plastics in
durable goods [48–50]. In the following paragraphs,
we identify unique challenges and opportunities of
key product markets.

3.3.1. Building and construction
Modern building methods are utilizing an increas-
ing amount of plastics, primarily in the form of PVC
and HDPE used for piping, house wraps and siding,
trim and window framing, and plastic-wood com-
posites, as well as PUR used primarily as insulation.
Recovery of these materials at EOL is extremely chal-
lenging given that building demolition typically pro-
duces mixed waste with low fractions of plastics, as
well as the nature of the plastics themselves: PVC
recycling is difficult as mentioned above, and PUR
thermosets cannot be mechanically recycled.

Green building trends, commonly verified
through LEED certification [51], are promoting

recycled material content in buildings and diversion
of waste from landfills during construction, oper-
ation and maintenance and renovation activities.
Yet, design for recyclability of construction mater-
ials is currently not recognized in these certification
schemes and plastics recovery in demolition is rarely
practiced. Building Information Modelling (BIM)-
based design methods that document the materials
used and their recycling potential have been recently
described and applied to wood and concrete [52].
Plastic building materials could also be included
within such documentation. Widespread use of these
methods could promote design-for-deconstruction
decisions and increase both reuse and recycle of build-
ing materials by providing an inventory of building
material composition for use in deconstruction.

3.3.2. Transportation
The transportation sector utilized over 4% of plastics
in 2017, primarily in the production of new auto-
mobiles. Plastics in automobiles have increased over
the past decade, representing 8.6% of the mater-
ial weight of N. American light vehicles in 2017
[39]. This growth has been due primarily to light-
weighting efforts and new applications of engineer-
ing resins with specialized properties. Over 95% of
EOL vehicles in the US are recycled for their metals
content, but economics currently limits dismantling
and recycling of plastic parts in N. America and the
majority of plastics currently end up in ASR as small
pieces mixed with other materials. Separation and
recovery of plastics in ASR is challenging: 39 differ-
ent types of basic plastics and polymers are commonly
used to make cars today, and state-of-the-art separ-
ation technologies are very capital intensive. Ther-
moplastic polymers in ASR are often technically cap-
able of being recycled, but the cost to separate, clean
and collect often exceeds that of virgin plastic, espe-
cially with low oil and natural gas prices [53]. Prior
to 2013, the US EPA’s position was that ASR was
only to be landfilled due to concerns with possible
polychlorinated biphenyl (PCB) contamination. This
was recognized as unfounded and US EPA has har-
monized regulations for ASR treatments with those
in Europe, but disposal of ASR in landfill is still pre-
dominant. In Europe, the End of Life Vehicle Direct-
ive (European Parliament & the European Council,
Directive 2000/53/EC, effected from January, 2015)
set targets of 95% recovery of materials from vehicles,
with only 10% being met through energy recovery
from combustion and the remaining 85% needing
to be recycled or reused. This has driven greater
innovation and investment in separation and recyc-
ling of ASR plastics fractions, and is causing shifts
in design approaches of some global auto manufac-
turers [53]. Still, such targets are proving difficult to
meet due to the economics of the recycling industry
and shifts to more plastics in vehicle material
compositions [54].
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3.3.3. E-waste
Electronic waste (e-waste) is becoming an increas-
ing concern, with a global annual growth rate of
3%–4% [55]. An estimated 2.6 Mt of selected con-
sumer electronics appeared in MSW in the US in
2017 [19]. Plastics content in this e-waste is estimated
at 20% [56] to 33% [57]. The heterogeneous com-
bination of polymer types in e-waste makes recyc-
ling difficult. In addition, mechanical recycling of e-
waste is often complicated by the presence of bromin-
ated flame retardants which have been banned as an
additive for new products. Detection and extraction
of these compounds is possible, but adds to cost [29].
It is estimated that up to 2.5 Mt of polycarbonates
can potentially be recovered from e-waste globally
each year if efficient and cost-effective recoverymeth-
ods become available [50]. Examples of commercially
viable mechanical recycling of e-waste plastics exist,
but cannot handle the current volume and diversity of
plastics [55]. Research into selective recovery through
solvent extraction of mixed polymer e-waste is prom-
ising [49, 58] and pyrolysis is also being explored
[49, 59], though none of these technologies appear
to be commercially viable at present. Design for
plastic recyclability is an important consideration in
electric and electronic equipment as many design
choices such as fastener styles, paints, and molded-in
metal parts will impair recycling or diminish recycled
plastic quality [60, 61]. Extended producer responsib-
ility programs have the potential to stimulate design
changes, and strong examples of corporate design for
recyclability programs exist, such as Hewlett Packard
[62]. In general, however, much progress could be
made, and given the rapid replacement rate of per-
sonal electronic devices, significant opportunities for
design for recyclability exist.

3.4. Alternative recycling pathways
Waste to fuel and waste to energy are occasionally put
forth as a wholesale solution to plastic waste. While
these processes have unique technical challenges, it
is useful to understand the scale of energy resources
available from waste plastics. If the 32.1 Mt of plastics
reported as generated in US MSW in 2017 were all
combusted for energy, this would result in approx-
imately 0.6 EJ (0.6 quads) of electricity (estimated
via US EPA’s WARM model [63]), which would be
equivalent to 4% of total US electricity net gener-
ation [64]. Other potential air emissions notwith-
standing, combustion of plastics typically results in
greater CO2 emissions than disposing plastics in land-
fill, even when the emissions associated with dis-
placed electricity generation are taken into account
[65–67]. Alternatively, converting all of the 28.2 Mt
of landfilled plastics represented in figure 1 into fuel
via pyrolysis could result in roughly 26 gigaliters (6.8
billion gallons) of liquid fuels [67], equal to ∼15%
of the distillate fuel oil (diesel) consumed annually in
the US [64]. Life cycle greenhouse gas emissions from

Table 3. Policy instruments that can be utilized to reduce plastic
packaging pollution and increase plastic packaging recycling rates,
as identified in [40].

Policy goals Command-and-
control policies

Market-based
policies

Increasing
plastic recyc-
ling rates

• Product take-back
mandates

• Landfill/disposal
bans

• Advanced
disposal fees

• Deposit-
refund sys-
tems

• Pay-as-you-
throw

Reducing plastic
consumption

• Product/material
bans

• Product
taxes

Developing
plastic recycling
end markets

• Recycled content
standards

• Virgin resin
taxes

• Tradable
permits

plastic-derived diesel fuel are estimated to be 1%–
14% lower than conventional diesel, and the plastic
to fuel pathway also has lower emissions per tonne of
plastic than conventional disposal (landfill and waste
to energy) [67].

3.5. Policy considerations
A wide array of policy options will be required
to reduce plastic waste and improve the circular-
ity of the plastic economy given the complex and
systemic nature of plastic waste and recycling and
the diversity of sectors and products. In addition,
specific suites of policy instruments need to be
tailored to the objectives and context of an imple-
menting country. The Stockholm Convention and
the Basel Convention may offer the best opportun-
ities to address the impacts of plastics and plastic
waste through a coordinated global policy frame-
work, but will require notable strengthening to be
applicable to the full life cycle of all plastic applica-
tions [68]. However, the US is not currently a party
to the Basel Convention and remains an unrati-
fied signatory to the Stockholm Convention. Not-
able industry-led initiatives such as those through the
New Plastics Economy Global Commitment [14] are
likely to have significant impact on recyclability and
recycled plastic markets, but these voluntary commit-
ments will benefit from mandatory public policies
instated (preferably) at the federal level. In addi-
tion to creating more favorable economic conditions,
mandatory policy can add accountability, coordina-
tion and harmonization to voluntary industry efforts.
A suite of policy tools aimed at reducing plastic
packaging pollution and increasing plastic packaging
recycling rates, identified in table 3, were recently
analyzed to provide insights and recommendations
to the advantages and disadvantages of each [40].
While that analysis focused specifically on packaging,

11



Environ. Res. Lett. 15 (2020) 094034 M C Heller et al

the policy instruments—including recycled content
standards, virgin resin taxes, and tradeable permits
(similar in mechanism to ‘cap and trade’ schemes)—
which aim to address discrepant market conditions
between virgin and recycled plastics [8] and there-
fore develop plastic recycling end markets, should be
sector independent and impact the full plastic eco-
nomy. Regardless of instrument, development of new
waste and recycling policies must take a systems-
level, life-cycle approach to avoid burden shifting
or promotion of less environmentally sustainable
alternatives.

4. Conclusions

Managing plastics is now a focal issue of the Anthro-
pocene. Developments in plastic materials make pos-
sible many of the technologies and conveniences that
define our modern life. Indeed, the high perform-
ance to weight ratio of plastics relative to alternat-
ive materials has resulted in reductions in environ-
mental footprints across the life cycle of a number
of key sectors including transportation, food deliv-
ery, and electronics to name a few, and use of these
materials will be critical in achieving environmental
goals in the future. Yet, unmoderated production of
plastic products has resulted in unacceptable accu-
mulation of debris in landfills and in natural envir-
onments, representing a gross waste of resources and
disruptions to wildlife and ecosystem function. Solu-
tions to these rising problemswill come in amyriad of
forms, but there is widespread agreement that greatly
improved coordination between product design and
end of life is necessary.

The material flow presented here offers a coarse
map of annual plastics production, use and disposal
in the US, while acknowledging the limitations of dis-
jointed yet entangled source data. It offers a sense of
scale across polymer types, use sectors and end of life
destinations that can provide context and orientation
for strategic solutions. Plastic packaging utilizes large
quantities of materials in predominantly single-use,
‘disposable’ applications, clearly warranting focused
efforts for reductions where possible and coordinated
material recovery and recycling solutions implemen-
ted throughout design, recovery and reprocessing.
Major barriers to this circularity have been identi-
fied elsewhere, and it appears that such coordina-
tion is now underway on an increasingly global scale.
However, the material flow presented here reminds
us of an important perspective: over two thirds of
the plastics put into use in 2017 found applications
outside of packaging. These other use sectors intro-
duce unique challenges as well as opportunities, but
will also benefit from increased coordination of circu-
lar economy thinking between innovation and design
and recovery and recycling.

New technologies, policies and financial models
and investments will be required to create a funda-
mental shift toward a circular economy for plastics.
Replacing the largely linear flow of plastics in the eco-
nomy will require changes in the market conditions
anchoring both ends of the plastics material flow: low
costs of plastic feedstocks and relatively low value of
plastic waste materials. Successful shifts are unlikely
without alignment of technology, policy and market
drivers.

Finally, the data challenges encountered in char-
acterizing plastics material flows are a call for
improved data collection, coordination and trans-
parency. Improved understanding of plastic mater-
ial production and usage in various product sectors
can promote further coordination between product
design and manufacturing and material recovery and
reprocessing efforts. It can also assist in directingwell-
intended capital resources toward bottleneck stages in
greatest need of development and innovation.
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