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Abstract
Estimation of land productivity and availability is necessary to predict land production potential,
especially for the emerging bioenergy crop production, which may compete land with food crop
production. This study provides land productivity estimates in the contiguous United States
(CONUS) through a machine learning approach. Land productivity is defined as the potential in
producing agricultural outputs given biophysical properties including climate, soil, and land slope.
The land productivity is approximated by the potential yields of six major crops in the CONUS, i.e.
corn, soybean, winter wheat, spring wheat, cotton, and alfalfa. This quantitative relationship is
then applied to estimating the availability of marginal land for bioenergy crop production in the
CONUS. Furthermore, the levels of uncertainties associated with land productivity and marginal
land estimates are quantified and discussed. Based on the modeling results, the total marginal land
of the CONUS ranges 55.0–172.8 mha, but the 95% inter-percentile distance of the estimated
productivity index reaches up to 60% of its expected value in data-scarce regions. Finally, in a
cross-check analysis, marginal lands estimated based on biophysical criteria are found to be
comparable to those based on an economic criterion.

1. Introduction

The high precision of agricultural management
nowadays calls for accurate estimation of land pro-
ductivity, i.e. the capability of a piece of land in
supporting agricultural production based on its bio-
physical conditions (e.g. climate, land slope, and
soil condition) [1, 2]. A pressing need of land pro-
ductivity assessment is the identification of mar-
ginal land that is not highly productive (that should
be used to produce food crops for the human-
ity) but can be used for growing dedicated bioen-
ergy crops (e.g. miscanthus, switchgrass, and sweet
sorghum). Existing studies that estimate land pro-
ductivity and land availability for biomass produc-
tion are mostly subject to significant uncertainties
due to incomplete data [3, 4], insufficient resolu-
tion [5], and even some unknown factors [5, 6].
This study provides land productivity estimates in
the contiguous United States (CONUS) through a
machine learning approach, based onwhichmarginal

lands available for bioenergy production are estim-
ated using both biophysical and economic criteria.

A simple method to estimate land productivity
is to classify the land through simple soil taxonomy
rules (i.e. empirical knowledge about land productiv-
ity and soil taxonomy features). Although the result-
ing land productivity index from even such a simple
method is proved to correlate well with the observed
county level crop yield [3], uncertainty treatment
in the estimation requires advanced methods [6–8].
For example, national commodity crop productiv-
ity index (NCCPI) is another land productivity index
that is derived through fuzzy logic models [4], which
estimates the land productivity through a set of fuzzy
if-then rules based on empirical knowledge and has
been widely used for deriving land use decisions
[9, 10]. Limitations on uncertainty treatment exist
in previous studies, including subjective compon-
ents (e.g. the subjective choice of membership func-
tion and its parameter values in a fuzzy logic model
[7]), unrecognized uncertainties in the input data for
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Table 1. Datasets used in this study.

Data Databases Spatial resolution Time period Sources

Soil Gridded Soil Survey
Geographic (gSSURGO)

10 m 2017 USDA [15]

Slope Global Terrain Slope
(GTS)

30 arc-second 2006 Fischer et al [16]

Temperature and
precipitation

Daymet data set 1 km 2008–2017,
monthly

Oak Ridge National Laborat-
ory (ORNL) Distributed Active
Archive Center (DAAC) [17]

Evapotranspiration NCEP North American
Regional Reanalysis

32 km 2008–2017,
yearly

NOAA/OAR/ESRL [18]

Land cover Cropland Data Layer
(CDL)

30 m 2008–2017,
yearly

USDA [14]

Land cover National Land Cover
Database (NLCD)

30 m 2016 Multi-Resolution Land Cover
Characteristics (MRLC)
Consortium [19]

Irrigation MIrAD-US 250 m 2012 USGS [20]
Gross Primary
Productivity
(GPP)

MODIS 250
productivity

250 m 2008–2017,
yearly

Robinson et al [21]

Crop price, crop
yielda, land rent

NASS Surveys County/state 2008–2017,
yearly

NASS [22]

Crop specific pro-
duction cost

USDA Economic
Research Service (ERS)

US/major pro-
duction region

2008–2017,
yearly

USDA [23]

aIn this paper, for grain crops, yield refers to the yield of grain; for alfalfa, yield refers to above-ground biomass.

generating those indices [11–13], and complex rela-
tions between uncertainty sources in the land obser-
vation data (e.g. correlation between soil and land
slope [6]).

To address these limitations, this study updates
our previous research on fuzzy logic models based
land productivity [6] through a set of specially
designed ML models, which (i) avoid relying on
empirical knowledge and subjective judgements that
can occur with the use of a completely data-driven
approach; (ii) provide an estimate of the uncer-
tainty associated with the ML model prediction; and
(iii) automatically extract the information embed-
ded in data by assuming no pre-defined relationship
between the predictors and the predictand. In addi-
tion, this study is benefited from updated remote
sensing data with improved spatial resolutions (up
to ~250 m resolution, see table 1). We use long-
term yields of six major crops (corn, soybean, winter
wheat, spring wheat, cotton, the five most grown
crops in CONUS [14]; and alfalfa, a major crop in
high slope regions [14]) in the contiguous United
States (CONUS) as proxies of land productivity, and
use machine learning (ML) algorithms to estimate
the potential yields of these six major crops and their
associated uncertainties at ~250 m resolution. A pro-
ductivity index is then derived based on the estimated
long-term average potential yields of the six major
crops during 2008–2017. To the best of our know-
ledge, this is the first productivity index that links
directly to the actual crop yields through advanced
ML techniques. This quantified relationship together
with a set of biophysical and economic criteria are
applied to estimating potential land available for

bioenergy crop production (here referred as ‘mar-
ginal land’) at ~250 m resolution in the CONUS.
Overall, this study is expected to contribute to the
existing literature of agricultural land management
and biofuel development in the following aspects:
(i) accurate estimation of land productivity through
a machine learning approach, (ii) improved identi-
fication of marginal lands for producing bioenergy
crops, and iii) reliable quantification of uncertainty
involved in land productivity and marginal land
estimations.

2. Methods

2.1. Model overview
Figure 1 provides a general flow chart for deriving
the land productivity index and potential marginal
lands. The first step is to collect and preprocess spa-
tial data from table 1. Detailed characteristics of data
from table 1 and their preprocessing procedures are
introduced in Section I in the supporting informa-
tion (SI), while their usage in this study is introduced
in the subsequent sections. All the spatial data are
projected to the World Geodetic System (WGS) 84
coordinate and resampled to 250 m resolution using
the ‘Bilinear’ (for continuous data) and ‘Majority’
(for categoric data) resampling methods in ArcGIS
[24]. In addition, all time-series of the data in table 1
are collected during 2008–2017, and their average val-
ues over these years are calculated and used in the
ML models.

We then adopt a two-step ML approach for
each of the six major crops: we first downscale the

2
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Figure 1. Flow chart for deriving land productivity index and identifying potential marginal lands.

county-level crop yield data (table 1) to a ~250m res-
olution based on the remote sensing gross primary
productivity (GPP) data (equation 2). Second, we
estimate the pixel-level potential yields and yield
uncertainties across the CONUS based on a model
trained with the downscaled crop yield data from
equation 1 as the target and climate, land slope, and
soil properties as inputs. Finally, we estimate the land
productivity index and marginal land through a set
of rules.

2.2. Crop yield downscaling andmodeling
Figure 2 providesmore details about the estimation of
crop yields and their associated uncertainties through
the two-step ML approach. The first step crop yield
downscaling is implemented through a Gaussian pro-
cess model (GPM), and the second step yield estima-
tion through a random forestmodel (RFM). GPM is a
Bayesian inferencemethod that has been proved to be
able to provide excellent accuracy estimations as well
as error bars (i.e. uncertainties) for geophysical stud-
ies [25–27]. The solid statistical foundation and non-
parametric structure of GPMmake it appealing espe-
cially for applications with small datasets (e.g. our
case for downscaling county-level crop yield data),
where the information-to-noise ratio is low [25, 28].
For larger datasets (e.g. the downscaled crop yield
at ~250 m resolution), GPM is no longer suitable
because of its high computational burden [29]; while
neural network (especially deep neural network) and
RFM are among the most widely used ML mod-
els and those with the best performing [25, 30–33].
Our preliminary test shows neural network and RFM
have a similar performance. RFM is selected because
of its simpler structure and lower computation bur-
den. The tree-based RFM also holds an advantage of
‘built-in’ resistance to overfitting because of its ‘bag-
ging’ process [34], while other popular ML models

requiremajormodifications to achieve such perform-
ance [35, 36].

The first step GPM is used to estimate the follow-
ing variableα at pixel-level (~250m), which is further
used to estimate downscaled crop yield:

αi = YDi/GPPi (1)

where αi is the ratio between crop yield YDi and the
growing season GPP value of a specific crop i (GPPi).
The GPMs are trained with long-term (2008–2017)
average county level crop yield data as the target and
county average temperature and water availability
data as inputs, as suggested by other studies [37–39].
The water availability information is represented by
two variables: the ratio of evapotranspiration (ET)
over precipitation and the percentage of land being
irrigated. GPM assumes αi to follow a normal distri-
bution as shown in figure 2, a common assumption
in crop yield estimationmodels [40]. Section II in the
SI provides details about the development of GPM for
estimating αi, and table 1 shows the sources of input
data. A 5-fold cross-validation as suggested by Yadav
and Shukla [41] is used to validate the GPMs trained
in this study. It should be noted that, when estimat-
ing pixel-levelαi, the ratio of irrigated land (oneGPM
input to represent the water availability information)
is set to zero, whichwill decrease the land productivity
estimate for irrigated land. By this treatment, the land
productivity index would only represent the ‘natural’
productivity of land based on the biophysical prop-
erties, but not the ‘artificial’ increase of yield from
irrigation. The GPMs are trained at a county level,
where all the inputs and targets reflect the county-
averaged values. Then the GPMS are reapplied at a
pixel level to estimate the pixel-level crop yields. Since
the temperature and water infrastructure conditions
(the GPM inputs) are usually homogeneous within a
county (especially with the large spatial scope of the
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Figure 2. Schematic diagram showing the processes of the two-step ML approach applied to each of the six major crops
considered in this study, refer to section 2.2 and sections II and III in the SI for the definition of variables.

Table 2. Inputs for the random forest regression model.

Category Variable description

Average temperature Monthly average air temperatures from January to December
Diurnal temperature
range

Monthly average diurnal air temperature ranges from January to December

Average precipitation Monthly average precipitations from January to December
Slope Percentages of the area falling into eight levels of slope classes: 0%–0.5%,

0.5%–2%, 2%–5%, 5%–10%, 10%–15%, 15%–30%, 30%–45%, and >45%
Soil Soil depth, soil available water storage and soil organic carbon in 6 levels of

soil: 0–5 cm, 5–20 cm, 20–50 cm, 50–100 cm, 100–150 cm, and >150 cm

GPMs), the additional uncertainty caused by the dif-
ference between the resolutions in the GPM training
and application phases would be limited.

As illustrated in figure 1, the second step RFM in
our two-stepML approach is then trainedwith down-
scaled crop yield data from the first step GPM. To
further capture the uncertainty associated with the
GPM, for each crop, an ensemble of random forests
are developed, each trained with a stochastic realiza-
tion of normally distributed downscaled crop yields
in GPM (figure 2); the variances among the ensemble
of random forests are included as one source of uncer-
tainty in the final RFM crop yield estimation. We
sample an ensemble of downscaled crop yields from
the GPM to prepare the training targets for the sub-
sequent RFM in figure 2 by equation (2):

ŶDi
(j)

= α̂i
(j)GPPi (2)

where variables with hat ‘̂’ refer to their pixel-level
estimated values from a trained GPM, and the super-
script in parentheses ‘(j)’ refers the ensemble number.
Inputs to the RFM include the climate variables, slope
information, and soil information (table 2). Table 1
provides references for the data sources of the vari-
ables shown in table 2.

To account for the uncertainty associated in RFM,
we adopt a modified bootstrapping approach (MBA)
[42] (figure 2).We train a separate random forest with
each of the stochastic realizations of the downscaled
crop yields (equation 2), where each random forest

consists of a small number of regression trees. To bal-
ance the estimation accuracy and computation bur-
den, the number of separate random forest and the
number of regression trees in each random forest are
selected as 50 and 10 respectively according a previ-
ous study [42], which results in 500 separate regres-
sion trees for each RFM and a 20%Monte Carlo error
for variance estimation according to the MBA [42].

The expected yield for each crop i ŶRFMi t ha−1 is
calculated as the average of all the 500 regression tree

outputs; the variance of ŶRFMi calculated based on
the within/between random forest variances.

A separate RFM is developed for each of themajor
crops. Data in table 2 are split into training (50%)
and testing (50%) sets, and around 36.8% of the
training data are unused in the training process and
are retrieved as an out-of-bag (oob) validation set
for hyperparameter selection [43]. Details about the
development of RFM and hyperparameter selection
are provided in section III in the SI.

2.3. Estimation of productivity
We then approximate the land productivity using the
maximum value of the normalized potential yield
across all six major crops, as estimated in section 2.2.
To make the potential yields of different crops com-
parable, we normalize the deterministic RFM estim-
ated yields for each crop with its 99th percentile:

NYi = ŶRFMi/YRFM
99
i (3)

whereNYi is the normalized potential yield for crop i,

and YRFM99
i the 99th percentile of ŶRFMi t ha−1. The
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land productivity index, defined as maximum pro-
ductivity (MP), is then calculated as the maximum
value of NY i over all major crops for each pixel:

MP=max
i∈VS

(NYi) (4)

where VS denotes a viable set of crops for a partic-
ular pixel. A specific crop i is said to be ‘viable’ for
land pixels in counties that have a record of grow-
ing crop i (identified based on the CDL data). Since
the performance of data-drivenmodels like RFM tend
to deteriorate for input combinations not seen dur-
ing the training phase, the introduction of a viable
set concept helps avoid such a problem. If the viable
set VS is empty for a particular pixel, MP is assigned
the NYi value of winter wheat at that pixel because
of its wide spread over the CONUS (figure S2 in the
SI). Such an operation might result in overestima-
tion/underestimation of the MP value of that par-
ticular pixel, but we do not anticipant a significant
effect on the overall pattern of the productivity in the
CONUS, given that it is uncommon that a pixel would
have empty VS [14]. Also, as all the row crops con-
sidered in this study aremostly grownunder low slope
conditions (more than 99.9% are grown at lands with
average slope classes smaller than 4, while the slope
class ranges from 1 (most flat) to 8 (most steep), as
shown in table 2),MP of grid cells with average slope
class larger than 4 are assigned theNYi values of a pas-
ture crop alfalfa (which is more likely to be grown in
slope lands) to avoid overestimating productivity at
those regions [44].

We quantify the uncertainty of MP through a
Monte Carlo approach, and calculate theMP value of

one Monte Carlo realization (N̂Yi
(j)
) as:

M̂P
(j)

=max
i∈VS

(
N̂Yi

(j)
)

(5)

where the superscript j is the realization number,

N̂Yi
(j)

is sampled based on the RFM estimated vari-
ance of NYi (equation S8, section III in the SI). We

randomly generate 1000 realizations of M̂P
(j)

and cal-
culate its 95% inter-percentile distance (IPD), the
distance between 2.5th and 97.5th percentile of the

aforementioned 1000 realizations of M̂P
(j)
) to repres-

ent the uncertainty associated withMP. A larger value
of IPD represents a higher level of uncertainty.

2.4. Identification criteria for potential land
available for energy crop production
One potential application of the derivedMP index is
to identify marginal land available for bioenergy crop
production. We develop a series of scenarios for mar-
ginal land identification based on biophysical criteria,
and cross-check and justify the results using an eco-
nomic criterion.

Two aspects of land properties are considered to
develop biophysical criteria: the productivity and cur-
rent land use [6]. For land productivity, the MP val-
ues are classified into three categories: high, medium,
and low, based on the distribution of MP values of
currently cultivated land. For current landuse, similar
to our previous study [6], two land use scenarios are
used in combination with the productivity categor-
ies to identify marginal land: one scenario constrains
marginal land to only current cultivated land, includ-
ing crop land and pasture land, with low to medium
productivity; the other scenario is bolder and assumes
current grassland and shrubland with medium pro-
ductivity could also be identified as marginal land
for growing energy crops. However, the current
study does not consider existing forest lands with
improved land use classification that differentiates
forest land from a coarse classification of mixed crop-
land, forest, grassland, and shrubland [19] as poten-
tial land for bioenergy production due to a growing
concern on producing energy crops at the expense of
deforestation.

The thresholds for breaking the productivity cat-
egories could be identified based on fuzzy logic rules
[6], or by constraining the productivity estimate with
other variables, e.g. land cover [45] or environmental
vulnerabilities [46]. Since such constraining variables
are not directly available, we test a series of thresholds
via a trial and error method, and identify two sets of
thresholds (whichwill be further validated with profit
estimate) on productivity classification: criterion I
assigns P25 and P50 (i.e. 25th and 50th percentiles)
of the current crop land MP values over the CONUS
as the break points from low to median and from
medium to high productivity, respectively; criterion
II assigns P10 and P25 as those break points. It should
be noted that many other combinations of thresholds
could be used, but the above two combinations are
shown here to represent a realistic range for mar-
ginal land acreage. Criterion I represents an aggress-
ive scenario that the maximumMP value of marginal
land is higher than the MP values of the vast major-
ity (i.e. 90th percentile) of existing grassland and
shrubland (table S1 stacks.iop.org/ERL/15/074013/
mmedia); criterion II represents a conservative scen-
ario that the maximum MP value of marginal land
reaches just themediumMP values (i.e. 50th percent-
ile) of existing grassland and shrubland. According
to the productivity classification criteria and land use
criteria as specified above, four scenarios of marginal
land estimation are formulated, as displayed in table
3 in the result section.

We use the commonly used economic criterion of
positive profit to cross-check themarginal land estim-
ation based on the biophysical criteria [47, 48], i.e.
the land that does not pay off the investments and
costs when growing regular crops is identified asmar-
ginal land. The maximum potential profit (MPF) is
calculated as:
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Table 3. Definitions of scenarios of biophysical and economic criteria for marginal land and their associated total acreages in CONUS.

Scenario/criteria Description Acreage (mha)

S1 Current crop and pasture land withMP ⩽ P50a 109.2
S2 Current crop and pasture land withMP ⩽ P25a 55.1
S3 S1+ current grass and shrub land withMP ∈ [P25, P50] 175.6
S4 S2+ current grass and shrub land withMP ∈ [P10, P25] 152.7
Economic Current crop and pasture land with MPF < 0 73.8
aP10, P25 and P50 are the 10th, 25th and 50th percentile of cropMP values

Fi = YRFMi ×CPi −R−OCi −MCi, for i ∈
[corn, soy,Wwheat, Swheat, cotton] (6)

MPF=max
i∈VS

(Fi) (7)

where Fi is the potential profit of growing crop i
($ ha−1), CPi the price of crop i ($ t−1), R the rent
($ ha−1), OCi the operation cost of growing crop
i ($ ha−1), and MCi the capitalized machinery and
equipment costs for crop i ($ ha−1). Data sources for
CPi and R are shown in table 1, and the costs OCi

and MCi are calculated with data from USDA Eco-
nomic Research Service [23] (ERS) (see section I in
the SI for the details). The viable set VS in equa-
tion (7) is identical to that in equations (4) and
(5). If the MPF of a land pixel is negative, the land
might be marginal from an economic perspective.
The marginal land estimate based on the economic
criterion is used as a cross-check with those based on
the biophysical criteria. Theoretically, the estimate of
marginal land conforms to the economic theory on
farmers’ land use decision in real life. However, the
national level economic data available (crop prices
and land rent rates) only has a state-level resolution
and may involve large unidentified uncertainty. Also,
crop prices and land rents are dynamic and change
with the evolution of market conditions, and it is
difficult to predict their change beforehand. There-
fore, the economically identified marginal land can-
not be used directly to identify candidate locations for
energy crop production; instead, the marginal land
acreage and its spatial distribution are only used to
cross-check if anymajor inconsistencies exist between
the marginal land estimated from the biophysical and
economic criteria.

After the marginal lands are identified, we apply
an irrigation filter to exclude any land pixels with
existing irrigation infrastructures (refer to figure S3
for the regions with existing irrigation infrastruc-
tures). This follows our assumption that marginal
land for bioenergy crops will not include irrigated
land, i.e. the current land with irrigation facilities is
used for food and fiber crops, especially high-valued
crops such as vegetable and fruit in arid and semi-
arid regions; future land development for bioenergy
production usually does not consider irrigation due
to existing water stress around the world [49].

3. Results and discussion

3.1. Machine learning performances
The GPM for crop yield downscaling has good per-
formance in the 5-fold cross-validation results shown
in figure S3 in the SI. In terms of the coefficients
of determination (R2) and root mean square error
(RMSE), the GPM has at least the same level of per-
formance as the work by Marshall et al [37], who
developed a crop production efficiency model to
adjust yield estimates of corn, soybean, and wheat
using GPP. The GPM performances for cotton and
alfalfa are also comparable with other studies [50, 51].
The RFM oob validation results are shown in fig-
ure S4, and the R2 values for corn, soybean, winter
wheat, spring wheat, and cotton all reach to a high
value of ~0.9, and 0.83 for alfalfa. The RFM with
the testing dataset shows similar performances (fig-
ure S5) to that of the oob validation set. The RFM
also adequately estimates the uncertainty associated
with the crop yield estimations. As is shown in fig-
ure S6, most of the downscaled crop yield data are
within the standard deviation of the RFM estima-
tions. The coverage ratios (the percentage of down-
scaled crop yields falling in their associated RFM
confidence intervals, see figure S6) of 95% con-
fidence intervals of the crop yield estimations are
0.95, 0.90, 0.92, 0.93, 0.86, and 0.83 for corn, soy-
bean, winter wheat, spring wheat, cotton, and alfalfa,
respectively, which are considered acceptable given
the 20% Monte Carlo error allowed for our study
(see section 2.2).

3.2. Spatial distribution of productivity
The derivedMP value shows similar general patterns
as other productivity indices (e.g. NCCPI [4] and the
soil productivity index [3]). The value appears to be
high in the Midwest corn-belt region (figure 3(a))
that is usually considered as the most productive
region in the US. Major attributes of the corn belt
region include flat topography, medium temperature,
sufficient amount of rainfall (the new figures 3(c)–
(e)), and deep and fertile soil, representing high land
productivity given appropriate drainage facilities to
reduce extra soil moisture before the crop growing
season. The western US along and west to the Rocky
Mountains has lowMP values, mostly due to the high
slope (figure 3(e)) and low precipitation (figure 3(c)).
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Figure 3. Spatial distribution of (a) maximum productivity (MP) expected value, (b)MP 95% inter-percentile distance, (c)
average annual cumulative precipitation, (d) annual average temperature, (e) average slope class, and (f) irrigated agricultural
land in the CONUS.

Between the corn belt and the western US is a cor-
ridor with moderate MP values. The lower Missis-
sippi region and California Central Valley are major
agricultural regions in the US but show moderate
MP values as compared to that in the corn belt. The
major reason for relatively low MP values in these
two regions is the water deficit from precipitation and
evapotranspiration, and irrigation is necessary (figure
3(f)).Note that the irrigation impact is removedwhen
calculating theMP value (section 2.1).

The productive corn-belt region shows relatively
small IPD values (which accounts for 10%–20% of
the expected MP values in these pixels, figure 2(b)).
In comparison, this ratio between IPD and MP in
the western US and high slope regions reach to over
60% (figure S7). Such high IPD values could mainly
be attributed to the smaller number of observed crop
cultivation in those regions (and thus more unseen
input combinations in the RFM model) as is shown
in figure S2, and the complex impact of slope on the
potential crop yields [52, 53].

The MP values of current cultivated land are
higher than other land covers (as can be seen in fig-
ure S8, showing the histograms of MP values of cur-
rent land uses). The ranking of MP values for each
current land use category from high to low (based
on their percentiles shown in table S3) is: cultiv-
ated, developed (urban), forest, herbaceous, shrub-
land, and barren land.

3.3. Spatial distribution of marginal land available
for bioenergy crop production
The marginal lands identified according to differ-
ent biophysical criteria S1–S4 show a considerable
level of variability in both their spatial distribu-
tions (figure 4(a)) and total area (table 3). The total
area of marginal land ranges from 55.1 (from scen-
ario S2) to 175.6 mha (from scenario S3), which
fall in the range of 43–179 mha reported by other
studies [6, 47, 54, 55]. Several marginal land ‘hot
spots’ that appear in all scenarios S1–S4 are iden-
tified, including the corridor region between the
Midwest corn belt and the western US, part of the
lower Mississippi region and California central val-
ley (that is cultivated but not irrigated according to
our land use and irrigation data), and southeastern
states.

As can be seen in figure 4(b), the marginal lands
identified in S1 and S2 mostly associate with high
probability, suggesting high confidence in identifying
these lands as marginal. Among all four scenarios, the
‘hot spots’ of marginal lands identified in figure 4(a)
are associated with high probabilities, which suggests
an agreement of the marginal land ‘hot spots.’ Less
confidence is found with the marginal lands identi-
fied in the western US from S3 and S4. This is mainly
because of the lack of crop data and the impact of
complex landscapes (i.e. frequently varying slopes) in
these regions.
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Figure 4. (a) Marginal lands identified deterministically according to biophysical criteria S1–S4 and (b) probability of land being
marginal given biophysical criteria S1–S4; refer to table 3 for the definition of marginal land criteria for S1–S4.

We then conduct a cross-check by comparing
the marginal land results (S1 and S2) based on the
biophysical criteria to those derived from the eco-
nomic criterion (MLEC). Figure 5 shows a sim-
ilar spatial pattern of marginal land identified from
the three criteria; the total area of marginal land
of MLEC is 73.8 mha, which falls in the range
between those of S1 and S2 (table 3). This sup-
ports the productivity thresholds as tested in sec-
tion 2.4. Nevertheless, we acknowledge that land
productivity is one among many factors (e.g. the
economic profitability, environmental vulnerability,
and accessibility of land) for identifying actual mar-
ginal land potentially available for bioenergy crop
production.

4. Implications and limitations

This study contributes to the existing literature of
land productivity estimation by adopting a data-
driven approach that incorporates the relationships
embedded in the data in estimating land productiv-
ity. This study is also the first to provide an estimate
of uncertainty associated with the land productivity
and marginal land, which is proved to be non-trivial.
Though our scope of land productivity estimation

and marginal land identification is limited within the
CONUS, the ML model we have developed is general
and could be applied to other regions and for solv-
ing other issues (e.g. hydroclimate modeling [56] and
geochemistry analysis [57]) in the world (see a recent
example of ML based estimation of land suitable of
growing cassava [58]).

The high IPD values in some regions (e.g. those
with a high slope) can result in a chance to signi-
ficantly overestimate or underestimate the land pro-
ductivity in these areas. Therefore, we anticipate sub-
stantial uncertainty with the marginal land estim-
ates in those regions (figure 4(b)). The uncertainty
must be assessed with caution before the land estim-
ate is used for land use decisions, especially for energy
crops, considering the crop market risk that can be
caused by the land availability uncertainty. Usually
the model performance could be improved when the
model scope moves from a national level to a local
level (state or county) because of the inclusion of loc-
ally relevant data. The model performance could also
be improved by incorporating the technique of trans-
fer learning, i.e. inserting the knowledge learned from
a large dataset to a model trained with a smaller data-
set. If the processes represented by the two datasets
are similar, transfer learning could significantly lower
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Figure 5.Marginal lands estimated derived from the economic criterion (MLEC) and biophysical criteria (S1 and S2) in the
CONUS.

down the uncertainty of the model trained with the
small dataset [59].

Our quantification of uncertainty in land pro-
ductivity and marginal land estimation might be
affected by several assumptions made with the two-
step ML approach and crop yield post-processing
procedures. First, errors in uncertainty estimation
might propagate through the two-step ML approach,
and one potential source of this error could be the
Monte Carlo sampling error (MC error) for the RFM.
In general, the Monte Carlo error is smaller if more
individual regression trees are included in an RFM,
and our choice (500 trees) results from a balance of
accuracy (about 20% MC error) and the computa-
tion burden. Future studies could consider to include
more regression trees or adopt advanced variance
reduction methods (e.g. Wager et al [60]) to poten-
tially reduce the MC error. Second, our calculation of
MP value is based on the assumption that all the six
major crops are equally good indicators of land pro-
ductivity. Such an assumption is made to allow prac-
tically meaningful calculation of MP value for agri-
cultural decisions, but it might underestimate some

uncertainties associated with the potentially differ-
ent yield-environment responses for different crops.
Incorporating crop specific processes and criteria for
more accurate land productivity uncertainty estima-
tion goes beyond the scope of this study and will be
one of the future research issues following this study.

This study trains the model for calculating MP
values with 10-year average crop yields for the major
crops in theCONUS, and the potential impact of yield
increase as a result of technology improvement [61,
62] is not considered as a factor. Since theMP is calcu-
lated in a comparative manner, we expect our estim-
ate of MP to be stable from time to time. However,
the MP value could potentially be changed as a res-
ult of climate change or new crop development. For
example, the northwestern US might be more pro-
ductive in the future as a result ofmore humid climate
[8]. Also, the southwestern US might be more pro-
ductive if new, reliable drought-tolerant crops [63]
are developed and popularized.

The marginal lands in this study are identi-
fied assuming no irrigation and no deforestation for
bioenergy crop. The land acreage would be increased
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if irrigation is allowed for growing bioenergy crop,
especially for the intensively irrigated areas in the
lower Mississippi and California central valley. Also,
this study identifies marginal lands with biophysical
properties potentially suitable for solving the com-
petition between food and bioenergy production in a
long-term manner, but the actual lands available for
growing bioenergy crop in a short-term could largely
be affected by a series of factors: economic viability
[64], farmer’s willingness [65], environmental vul-
nerability [46], infrastructure availability [66], agri-
cultural policies [67], etc. It could be further complic-
ated by some potential environmental consequences
of large-scale energy crop plantation, e.g. loss of biod-
iversity [68], degradation of soil quality [69], and
additional use of water [70]. Local criteria for mar-
ginal land identification could be developed to reflect
the region-specific biophysical and socio-economic
conditions. The marginal land identified in this study
could be used as a base to consider these conditions
for further exploration of land availability for bioen-
ergy crop production.
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