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Abstract
Estimating baseline carbon stocks is a key step in designing forest carbon programs. While field
inventories are resource-demanding, advances in predictive modeling are now providing globally
coterminous datasets of carbon stocks at high spatial resolutions that may meet this data need.
However, it remains unknown how well baseline carbon stock estimates derived from model data
compare against conventional estimation approaches such as field inventories. Furthermore, it is
unclear whether site-level management actions can be designed using predictive model data in
place of field measurements. We examined these issues for the case of mangroves, which are among
the most carbon dense ecosystems globally and are popular candidates for forest carbon programs.
We compared baseline carbon stock estimates derived from predictive model outputs against
estimates produced using the Intergovernmental Panel on Climate Change’s (IPCC) three-tier
methodological guidelines. We found that the predictive model estimates out-performed the
IPCC’s Tier 1 estimation approaches but were significantly different from estimates based on field
inventories. Our findings help inform the use of predictive model data for designing mangrove
forest policy and management actions.

1. Introduction

Forest carbon offset programs are controversial,
partly due to the high levels of uncertainty associated
with estimating carbon fluxes from land use change
(Grassi et al 2008, Griscom et al 2009, Vanderklift
et al 2019). The validity of these programs for mit-
igating climate change depends in part upon these
estimates and it is therefore important for them to be
accurate (Grassi et al 2017). One key step in accur-
ately estimating the climate benefits from these pro-
grams is the estimation of baseline carbon stocks,
or the reference levels upon which potential project
interventions are evaluated (Bento et al 2016, Gren
and Zeleke 2016). Despite their importance, obtain-
ing accurate estimates of baseline carbon stocks can
be a barrier for program design due to the costs

of implementing statistically valid field inventories.
There has consequently been longstanding interest in
improving both the accuracy andprecision of baseline
carbon stock estimates at lower costs (Willcock et al
2012, Langner et al 2014).

The Intergovernmental Panel on Climate Change
(IPCC) is the foremost authority on inventorying
ecosystem carbon stocks. The IPCC provides a three-
tier system for categorizing the accuracy and uncer-
tainty of baseline carbon stock estimates (IPCC
2003). Under the IPCC’s guidelines, the Tier 1 and
Tier 2 approaches use global and regional default
parameters, respectively. The Tier 3 approach uses
‘higher-order methods,’ which may include models
or field data from national forest inventories to meet
country-specific conditions. Inventorying baseline
carbon stocks under the Tier 3 approach provides

© 2020 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/1748-9326/ab7e4e
https://crossmark.crossref.org/dialog/?doi=10.1088/1748-9326/ab7e4e&domain=pdf&date_stamp=2020-07-23
Creative Commons Attribution 4.0 licence
Creative Commons Attribution 4.0 licence
https://orcid.org/0000-0002-2334-5023
https://orcid.org/0000-0001-8583-3295
https://orcid.org/0000-0003-3779-787X
https://orcid.org/0000-0002-4631-596X
https://orcid.org/0000-0001-7442-3944
mailto:jbukoski@berkeley.edu


Environ. Res. Lett. 15 (2020) 084019 J J Bukoski et al

the highest data quality but is the most complex and
resource-demanding (Kovacs et al 2011).

To better understand global variation in forest
carbon and potentially provide baseline carbon stock
estimates under a Tier 3 approach, globalmaps of car-
bon stocks are increasingly being produced using pre-
dictive modeling. Modern classification techniques
(e.g.machine learning algorithms), access to remotely
sensed data, and larger compilations of empirical
data have enabled these models to accurately pre-
dict trends in environmental variables from global to
sub-regional scales (Saatchi et al 2011, Baccini et al
2012, Ge et al 2014). The benefits of these models
includewall-to-wallmappings of environmental vari-
ables, which can account for broad-scale variation
in forest carbon stocks or land use change (Herold
et al 2019). The shortcomings, on the other hand,
include relatively coarse spatial resolutions as well
as the risk of introducing biases when correlating
remotely sensed metrics to field data. Despite their
promise, it remains unclear i) whether the estimates
are sufficiently accurate for designing forest carbon
programs at local scales, and ii) how these global pre-
dictive models fit best within the IPCC’s three tiers
of approaches for estimating carbon stocks (Hill et al
2013, Langner et al 2014).

Mangroves are one ecosystem for which accur-
ate estimates of baseline carbon stocks from pre-
dictive models would be highly valuable (Macreadie
et al 2019). Mangroves provide many environmental
and social benefits, including the stocking of large
amounts of organic carbon (Gedan et al 2011,Donato
et al 2011). As a consequence, mangrove-holding
nations are interested in ‘blue carbon’ projects, or
the financing of mangrove conservation and res-
toration through forest carbon programs (Ullman
et al 2013, Macreadie et al 2017, Hamilton and Friess
2018). However, quantifying baseline carbon stocks
in mangroves is particularly resource demanding due
to limited accessibility and the importance of the
soil organic carbon pool. Numerous predictive mod-
els of mangrove carbon stocks have consequently
emerged in recent years, and may potentially meet
the demand for accurate estimates of baseline carbon
stocks (Hutchison et al 2014, Jardine and Siikamäki
2014, Sanderman et al 2018, Simard et al 2019).
(Sanderman et al 2018, Simard et al 2019).

Although a number of studies have compared pre-
dictive models of forest carbon stocks against empir-
ical data for pan-tropical forests, no study has done
this for mangroves despite their explicit inclusion
in the 2013 Supplement to the IPCC Guidelines for
National Greenhouse Gas Inventories (IPCC 2014).
The lack of such a study is a key gap in the literat-
ure as pan-tropical forest carbonmaps are often inac-
curate for mangroves due to unique ecological condi-
tions. For example, tidal dynamics greatly influence
remotely sensed imagery often used to produce these
pan-tropical maps, potentially inducing high levels of

uncertainty (Lagomasino et al 2019). Operationaliz-
ing predictive models of mangrove carbon stocks for
forest carbon program design thus requires assessing
the accuracy of these datasets as well as guidance on
their use.

The goal of this study was to (i) compare estim-
ates of baseline carbon stocks in mangroves derived
from predictive model data against stock estimates
derived through the IPCC’s methods, and (ii) assess
the accuracy of the predictive model data estimates
against statistically valid field inventories. To do so, we
compared estimates of baseline carbon stocks built off
predictive model data against the IPCC’s approaches
for mangroves located along four coastlines of the
globe.We compared the four estimates to gain insight
into potential biases, shortcomings, and benefits of
each of the approaches. While the results are directly
relevant for the blue carbon community, the study
also provides guidance on the role of predictive mod-
els in environmental decision-making.

2. Methods

2.1. Study sites
We estimated ecosystem carbon stocks for mangroves
along four coastlines of the world: (a) the northwest
coast of the United Arab Emirates, (b) the Brazilian
coast south of the Amazon river, and both (c) the
western and (d) eastern coasts of peninsular Thailand
(figure 1). The sites were selected to capture a range of
mangrove climatic and geomorphological variation
(table 1), including aridmangroves (UAE), sites heav-
ily influenced by fluvial transport of sediment (Brazil
and eastern Thailand), and tidally-dominated estuar-
ies (western Thailand). Furthermore, only sites that
used standardized methods and had field inventory
data not included in the predictive model parameter-
ization were used. Each of the sites were sampled with
the primary objective of estimating site-level carbon
stocks, and each of the sampling regimes used proto-
cols that were designed specifically tomeet the IPCC’s
Tier 3 approach. Additional details of the sites and
our selection criteria for inclusion are provided in the
supplementary material.

2.2. Estimation approaches
We compared baseline carbon stock estimates at each
site using four different approaches. It is worth not-
ing that there are errors and biases inherent to estim-
ates of baseline carbon stocks derived from both
field inventories and predictive models, and object-
ive comparisons of the approaches are limited by the
absence of ‘true’ values of extant carbon stocks (Hill
et al 2019) . However, it is valid to assume that each
of the approaches provide independent estimates of
the ‘true’ values of site-level baseline carbon stocks,
and thus their comparison is informative. We fol-
lowed each of the IPCC’s Tier 1, Tier 2, and Tier
3 approaches for estimating baseline carbon stocks,
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Figure 1. Location of the mangrove sites included in this study. The mangrove sites are located in Brazil, the United Arab
Emirates, and Thailand. The three panels show: (A) the Brazilian plots located along the coast of Para, (B) the mangrove sites in
the Arabian Gulf, and (C) the plots located in peninsular Thailand.

Table 1. Key climatic and geomorphological characteristics of the sites. The mean annual total suspended matter and tidal amplitude
values are calculated by extracting and averaging TSM and tidal amplitude data within a 50 km buffer of all plots, and averaging across
those values.

Site Latitude Longitude
Mangrove
Type

Annual
Precipitation

(mm)

Mean
Annual TSM
(g m−3)

Mean Tidal
Amplitude

(cm)

Coast of Para, Brazil −0.83 −46.56 Deltaic 2300 14.3± 0.4 144.6± 6.6
Arabian Gulf, UAE 24.17 53.61 Lagoon <100 5.3± 0.2 28.0± 1.6
Krabi River Estuary, Thailand 8.02 98.94 Estuarine 2040 2.4± 0.2 69.7± 1.8
Pak Panang Mangrove, Thailand 8.44 100.18 Deltaic 2220 4.2± 0.3 17.8± 0.1
Palian River Estuary, Thailand 7.38 99.59 Estuarine 2350 3.0± 0.2 83.4± 1.8

which are defined in terms of increasing methodolo-
gical rigor. The Tier 1 and 2 approaches use global
default parameters and country-level data on baseline
carbon stocks, respectively. The Tier 3 approach uses
empirical data that account for site-specific condi-
tions and are collected through statistically valid field
inventories. In addition to the Tier 1, Tier 2 and Tier
3 approaches, we also performed site-level pseudo-
inventories by extracting carbon stock data from the
modeled datasets at each of our field plots. We then
compared the plot-level and site-level estimates of
baseline carbon stocks using each of the estimation
approaches.

2.3. Field inventories
Field inventory data were collected using variations
of the Kauffman and Donato protocols for sampling
forest structure and carbon stocks inmangrove forests
(Kauffman and Donato 2012). The protocols were
designed to fit the IPCC’s Tier 3 approach for
estimating baseline carbon stocks. We sampled the

sites in Thailand and obtained plot level field invent-
ory data for the UAE and Brazilian sites from pub-
lished datasets that used the same protocols (Schile
et al 2017, Kauffman et al 2018b). All field inventories
were designed with the stated purpose of estimating
site-level ecosystem carbon stocks. The boundaries of
the sites under consideration were delineated using
geographic information systems software. Transects
consisting of five to six circular plots at 25 m inter-
vals were randomly located and placed perpendicular
to the shoreline within each mangrove forest, allow-
ing for unbiased estimation of site-level ecosystem
carbon stocks. Within each plot, all trees were iden-
tified to species and their stem diameters at breast
height were recorded. Additionally, soil cores up to
2 m depth were collected from the center of each plot
with a Russian peat auger.

Biomass carbon was estimated by converting
diameter at breast height measurements to volume
estimates using species-specific allometric equations
when available. In the absence of species-specific
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equations, a general allometric equation for man-
groves with species-specific wood densities was used
(Komiyama et al 2008). Soil carbon was estimated
by coring each plot, collecting 5 cm soil samples at
five depth intervals (0–15, 15–30, 30–50, 50–100, and
100–200 cm), and processing the samples for per-
cent organic carbon, bulk density, and soil organic
carbon density. Minor variations in the laboratory
analyses of soil carbon existed across the studies,
but all methods used widely accepted techniques for
deriving bulk density (drying until constant mass)
and percent organic carbon (dry combustion with an
elemental analyzer) (Robertson 1999). Soil organic
carbon density was calculated as the product of per-
cent organic carbon and bulk density. Despite the
coring to amaximumof 2mdepth, we only examined
soil organic carbon stocks in the top meter of soil to
match the predictive model data. The field inventory
methods are described in full detail in the supple-
mentary information, as well as in the other publica-
tions associated with the published datasets (Bukoski
et al 2017, Schile et al 2017, Kauffman et al 2018b,
Elwin et al 2019).

2.4. Pseudo-sampling using predictive model data
We performed a pseudo-inventory of each site using
the locations of the field inventory plots by substi-
tuting predictive model data for field data. We used
two raster maps at 30 × 30 m spatial resolution
to extract modeled estimates of aboveground bio-
mass and soil organic carbon to 1 m depth using the
Simard et al and Sanderman et al datasets, respect-
ively (Sanderman et al 2018, Simard et al 2019). The
Simard et al mangrove biomass data were produced
by extracting mean canopy height from synthetic
aperture radar data and converting themeasurements
to biomass estimates using allometric equations. The
Sanderman et al dataset of soil organic carbon was
produced using the random forest algorithm to pre-
dict soil organic carbon in mangroves as a function
of globally coterminous covariates. We provide addi-
tional details of the predictive models in the supple-
mentary information.

We used the plot-specific coordinates to extract
the modeled estimates of aboveground biomass and
soil organic carbon from each sampling plot. We
excluded plots whose geographic coordinates either
could not be confirmed or did not align with the
extents of the modeled data. Aboveground biomass
was converted to aboveground biomass carbon using
the IPCC’s conversion factor of 45.1% dry-weight
biomass to biomass carbon. Accurate estimates of
belowground biomass are lacking due to the diffi-
culties of field sampling root biomass, and predictive
models of belowground biomass in mangroves con-
sequently do not exist (Adame et al 2017). While we
excluded belowground biomass from our statistical
tests, we calculated rough estimates using a simple
root-to-shoot factor for mangroves of 27.8% and a

belowground dry-weight biomass to biomass carbon
ratio of 39% for amore complete picture of ecosystem
level carbon stocks (Donato et al 2011, Kauffman and
Donato 2012). Others have recommended the adjust-
ment of belowground biomass based on salinity and
stem density; however, these variables are absent for
our plots andwe did not apply this correction (Adame
et al 2017). For those plots that were less than 1 m in
soil depth, we adjusted the predictivemodel estimates
of soil organic carbon to the actual soil depth of the
plot given that the modeled soil organic carbon data
are estimated at 1 m depth.

2.5. Calculation of Tier 1 and Tier 2 estimates
We calculated Tier 1 and Tier 2 estimates of ecosys-
tem carbon stocks using global and regional default
factors, respectively. For the Tier 1 estimates, we used
default parameters for mangroves specific to differ-
ent climatic zones from the IPCC Guidelines (IPCC
2014). While the IPCC Guidelines were recently
updated, the specific guidance for wetlands were not
refined (Lovelock et al 2019). Losses from the soil
organic carbon pool under shifting forest manage-
ment practices are assumed to be non-existent under
the Tier 1 approach, and we therefore omitted the soil
organic carbon pool from our Tier 1 estimates. The
IPCC’s Tier 2 methods are analogous to Tier 1 meth-
ods but use country- or region-specific estimates of
ecosystem carbon stocks to reduce uncertainty. For
the Tier 2 estimates, we used ecosystem carbon stock
estimates from published studies out of the same
region. Specifically, we used a regional inventory
from Southeast Asia, an inventory from mangroves
in Northeastern Brazil, and two studies quantifying
biomass and soil organic carbon stocks formangroves
from the Red Sea (Donato et al 2011, Abohassan et al
2012, Almahasheer et al 2017, Kauffman et al 2018a).
Additional details are provided in the supplementary
information file.

2.6. Statistical analyses
We calculated mean baseline carbon stocks for all
sites using each of the four approaches. For those
approaches that allowed estimation of uncertainty,
we also report the standard error of the mean. Nor-
mality in the field inventory and model-derived data
were assessed using Shapiro-Wilk tests and quantile-
quantile plots. We tested for significant differences
in baseline carbon stocks between the field invent-
ory and model-derived estimates. To account for spa-
tial autocorrelation within transects, biomass car-
bon and soil organic carbon from all plots within
the same transect were averaged for both the field
inventory and model-derived data prior to the stat-
istical tests. The statistical tests were performed
with one-way analysis of variance for normally dis-
tributed data and non-parametric Kruskal-Wallis
analysis of variance for non-normally distributed
data.
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Table 2. IPCC Tier 1 and Tier 2 estimates of baseline ecosystem carbon stocks for the mangroves of this study. The Tier 1 estimates use
global default parameters provided in the Wetlands supplement to the IPCC Good Practice Guidelines for National Greenhouse Gas
Inventories (IPCC 2014). The Tier 2 estimates use published parameters from the countries and regions of our mangrove sites. All
carbon stock estimates are provided in mean Mg C ha−1, and standard errors of the mean are provided where available. Soil organic
carbon is constrained to 1 m.

IPCC Tier 1 IPCC Tier 2

Site AGB BGB SOC AGB BGB SOC
Coast of Para, Brazil a 86.6 42.4 — 69.7± 2.18 14.3± 0.6 133.9± 21.3
Arabian Gulf, UAE b 33.8 16.6 — 6.7 26.4 42.5± 5.3
Krabi River Estuary, Thailand c 86.6 42.4 — 88.5± 18.1 34.1± 6.6 382.0± 49.6
Pak Panang Mangrove, Thailand c 86.6 42.4 — 88.5± 18.1 34.1± 6.6 382.0± 49.6
Palian River Estuary, Thailand c 86.6 42.4 — 88.5± 18.1 34.1± 6.6 382.0± 49.6
a(Kauffman et al 2018a)
b(Abohassan et al 2012, Almahasheer et al 2017)
c(Donato et al 2011)

3. Results

The estimates of baseline carbon stocks varied by both
site and estimation approach. Figure 2 shows the eco-
system carbon stocks for the individual sites using
each of the four estimation approaches. The Tier 1
estimates do not incorporate soil organic carbon and
therefore differed substantially from the other estim-
ation approaches at an ecosystem level. Given that
the sites only fell within two of the IPCC’s climatic
classes for mangroves, only two Tier 1 parameters
were used (33.8 Mg C ha−1 for the UAE site, and
86.6 Mg C ha−1 for all others). The Tier 2 estimates
(regional defaults) both over- and under-estimated
baseline ecosystem carbon stocks relative to the Tier
3 field data (table 2). Visual comparison of baseline
carbon stock estimates using the field inventory vs.
predictive model data revealed significant biases, par-
ticularly for aboveground biomass carbon.

Pooling the data across all sites, we did not find
a significant difference in aboveground biomass car-
bon for the field inventory vs. predictive model data
(Kruskal-Wallis Test, X2 = 2.19, p-value= 0.1). How-
ever, for the soil organic carbon data, we found a sig-
nificant difference between the field inventory and
predictive model data when pooling across all sites
(Kruskal-Wallis Test, X2 = 14.9, p-value = < 0.001).
The results were variable for individual sites. Only
one of the five sites showed a significant differnce in
abovegroundbiomass carbon stock estimateswhereas
four of the five sites had significant differences in soil
organic carbon estimates (table 3).

4. Discussion

Our results reveal substantial differences in baseline
carbon stock estimates that arise from the estima-
tion approaches. The results suggest that estimat-
ing site-level baseline carbon stocks in mangroves
using default factors is inaccurate and does not
account for important regional and local variation.
If we assume the field inventory data are the most
accurate for estimating true carbon stocks (as is

widely done), it is clear that the predictive model data
better-approximate these estimates compared to the
IPCC Tier 1 defaults and may outperform the Tier 2
approach in certain cases. These results parallel sim-
ilar findings for predictive models of biomass in trop-
ical forests more generally and suggest that the wide-
spread availability of predictive models of biomass
may obviate the IPCC’s default factors at global scales
(Langner et al 2014).

4.1. Results of the four approaches for estimating
baseline carbon stocks in mangroves
For the sites in which the Tier 2 estimates closely
approximated the site geomorphology (i.e. neighbor-
ing sites rather than regional inventories; Brazil and
the United Arab Emirates), the Tier 2 estimates based
on field data better approximated site level values
than estimates from predictive model data. However,
the estimates derived from predictive model data bet-
ter approximated the field inventory estimates than
the Tier 2 estimates for the sites in Thailand. These
results suggest that while the predictive models are
capable of accounting for regional scale variation in
ecosystem carbon stocks, this ability begins to break
down at local scales. For mangroves, these differences
at sub-regional scales are likely a result of differing
mangrove typologies, which may depend upon the
particular hydrological, sedimentary, or climatic con-
ditions at a given site (Twilley et al 2018). While pre-
vious studies have provided country-level estimates
of mangrove carbon stocks, a potentially promising
and more ecologically-informed update would be to
produce country-specific default mangrove carbon
stocks by mangrove typology (e.g. lagoon vs. deltaic
vs. estuarine sites) (Hamilton and Friess 2018, Rovai
et al 2018).

Despite the promise of predictive models for
improving default estimates of carbon stocks, our
statistical comparisons of field inventory vs predict-
ive model carbon stock estimates at the site level
reveal significant differences. The findings emphas-
ize that even with the relatively fine spatial resolu-
tion of the predictive models (30 m), caution should
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Figure 2. Two-panel plot summarizing the estimation of ecosystem carbon stocks for each of the five sites. Panel (a) compares the
estimation approaches of Tier 1 (T1), Tier 2 (T2), Tier 3—model (T3 m), and Tier 4—field (T3 f) for the three key ecosystem
carbon pools. Panel (b) shows Tier 3—model vs. Tier 3—field estimates of plot-level carbon stocks for the aboveground biomass
and soil organic carbon pools. The SOC estimates in panel (a) are constrained to 1 m for the T2, T3 m and T3 f estimates. The
Arabian Gulf plots are from the United Arab Emirates, the Coast of Para plots are from Brazil, and the Krabi River Estuary, Pak
Panang Mangrove and Palian River Estuary are from Thailand.

Table 3 | Results of statistical tests for differences in site-level carbon pool estimates using predictive model vs. field inventory data.
The tests are performed for aboveground biomass carbon (AGC) and soil organic carbon (SOC) constrained to a maximum of 1 m
depth. All values are in Mg C ha-1. All statistical tests are performed with the non-parametric Kruskal-Wallis analysis of variance given
non-normality in the data.

Field-based (Mg C ha-1) Model-based (Mg C ha-1) X2 P-value Significance

AGC
Arabian Gulf, UAE 7.29± 2.2 10.5± 5.2 0.16 0.7 NS
Coast of Para, Brazil 147.4± 19.0 55.1± 11.8 6.63 0.01 ∗∗

Krabi River Estuary, Thailand 66.3± 5.3 58.3± 2.1 0.57 0.4 NS
Pak Panang Mangrove, Thailand 67.9± 7.9 73.5± 2.7 1.28 0.3 NS
Palian River Estuary, Thailand 100.5± 12.2 69.6± 3.2 1.86 0.2 NS
SOC
Arabian Gulf, UAE 89.0± 11.6 270.0± 28.6 8.08 0.004 ∗∗∗

Coast of Para, Brazil 163.8± 10.0 365.5± 29.4 9.00 0.003 ∗∗∗

Krabi River Estuary, Thailand 315.5± 27.8 268.4± 59.0 0.32 0.6 NS
Pak Panang Mangrove, Thailand 113.1± 4.3 175.1± 4.4 14.29 <0.001 ∗∗∗

Palian River Estuary, Thailand 285.1± 9.1 357.7± 7.6 12.06 <0.001 ∗∗∗

Note: NS= not significant, ∗ = significant at α= 0.1, ∗∗ = significant at α= 0.05, and ∗∗∗ = significant at α= 0.01; degrees of

freedom= 1 for all tests.
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be taken in their use at site-level scales. These differ-
ences are particularly pronounced at the pixel level,
confirming the warnings of model producers against
use of products at local scales (panel b of figure 2).
While we acknowledge that direct comparisons of
the plot-level field inventory and predictive model
estimates of carbon stocks are not valid due to their
differing spatial footprints, we visualize the data to
further emphasize this point. Visual inspection of
plot-level carbon stock estimates against a one-to-one
line (i.e. perfect alignment of stocks estimates from
field inventory and predictive model data) indicates
that the variation in field inventory aboveground bio-
mass at the plot-level was not captured by the predict-
ive models (figure 2). Estimates of aboveground bio-
mass from the predictive model data fell between < 1
to 114.4 Mg C ha−1 across all sites whereas the estim-
ates from the field inventories varied from < 1 to
490.3 Mg C ha−1. Although it is not possible to say
for certain, the use of different allometric equations
(regional-level equations based on height for the pre-
dictivemodel vs. species-specific based on diameter at
breast height for the field inventories) likely contrib-
uted to the differences in plot-level estimates of bio-
mass. Other sources of uncertaintymay have included
geolocation errors, error propagation and differences
in timing of measurements.

4.2. Recommendations for the design of blue
carbon projects
In considering our results, we recommend the use
of predictive model outputs for estimating site-level
baseline carbon stocks over global defaults (Tier 1)
and regional inventories (Tier 2). The predictive
model data can provide large improvements in accur-
acy and are freely available for those with capacity
in geographic information systems (GIS). Free and
open source GIS software are sophisticated, well-
developed, and provide a readily accessible means to
analyze the publicly available maps of mangrove car-
bon examined here. We further discuss the utility of
GIS for designing blue carbon projects in the sup-
plementary information. However, our results also
indicate that Tier 2 estimates may out-perform pre-
dictive model estimates when using field data from
neighboring sites with similar geomorphological and
climatic conditions (e.g. see panel (a) of figure 2 for
the Arabian Gulf and Coast of Para). It is import-
ant for blue carbon projects to justify their use of one
data type over the other and may be most appropri-
ate to provide both. Additionally, we advise caution
in using predictive model data for decision-making
at the within-site level despite their high spatial res-
olution. Methodological differences in producing the
datasets may bias estimates of carbon stocks and may
ultimately be ill-suited for interventions that are not
uniform across space.

A hybrid approach that uses the predictive model
outputs for stratifying sampling regimes may hold

promise in reducing uncertainty at lower costs.
The aboveground biomass model is based on a
remotely sensed measure of canopy height, which is
an appropriate variable to stratify sampling regimes
of mangrove biomass by. Should programs have
capacity in GIS analyses on hand, significant cost
reductions can be achieved by using predictive model
data to inform stratified inventories (Tang et al 2018).
Ultimately, a combination of modeled-derived data
and field inventory data may provide the best com-
bination of cost-efficiency and accuracy in estimating
baseline carbon stocks.

It is important to note that the epistemic stance
of this paper emerges primarily from the field of pre-
dictive modeling. While accurate estimates of car-
bon stocks are of clear importance for advancing
valid forest carbon programs in mangroves, there are
other critical barriers that emerge from disciplines
such as the field of environmental justice (Schroeder
and McDermott 2014). For example, equitable bene-
fit sharing, assent of local communities, and de-
/centralization of governance can be equal, if not lar-
ger, barriers to forest carbon programs (Lovell 2015,
Friess et al 2016). Our aim here is not to argue for
more complicated measurements of forest carbon in
mangroves but rather situate the accuracy of pub-
licly available datasets that may meet this need. While
we only note the importance of these additional bar-
riers to carbon forestry programs here, we provide
additional discussion of them in the supplementary
information.

4.3. Considerations for future field-based vs.
model-based approaches
The uncertainty associated with not knowing the
‘true’ value of ecosystem carbon stocks will per-
sist within forest carbon programs and is likely
best addressed by a combination of field invent-
ory and model-based data. Given the absence of
‘true’ values of mangrove carbon stocks at our sites,
we cannot state that the predictive model data or
field inventory data provide more accurate or more
valuable estimates of baseline carbon stocks in man-
groves. Field inventories provide nuanced measure-
ments of environmental variables but are resource-
demanding to collect and require the extrapolation
of measurements from plot to stand or site-level
scales. Conversely, predictivemodels also provide dir-
ect estimates of forest metrics across broad regions
but are limited in their ability to account for fine scale
variation. While both have their strengths and limit-
ations, they are capable of providing complementary
information.

Numerous satellite missions with the primary
objectives of estimating and monitoring ecosystem
biomass will be launched from 2020–2030 (Herold
et al 2019). These missions will be critical for meas-
uring changes in forest biomass over broad scales,
but will also need corresponding field inventory data
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to validate the measurements and calibrate the pre-
dictive models based upon them (Schepaschenko
2019, Chave et al 2019). Although limited in num-
ber, networks of large permanent plots exist for
other tropical forest types that will facilitate the use
of space-based estimates of forest biomass. How-
ever, to the best of our knowledge, permanent
field plots of mangrove forest structure and bio-
mass are largely absent. While the Kauffman and
Donato protocols and the associated widespread col-
lection of mangrove forest structure data have greatly
benefited the mangrove community, the next phase
of mangrove forest biomass estimation and monit-
oring would be appropriate in aligning with space-
basedmissions capable of estimating ecosystem struc-
ture.

5. Conclusion

We tested the utility of predictive models to estim-
ate baseline carbon stocks in mangroves, which are
among the most carbon dense ecosystems globally.
Our results show that predictivemodels are capable of
providing more accurate estimates of ecosystem car-
bon stocks at local levels than the IPCC’s Tier 1 default
parameters. However, we also found that estimates
of mangrove carbon stocks derived from predictive
model data were significantly different from analogs
based on comprehensive field inventories (IPCC Tier
3 approach). We recommend the use of predictive
models in designing national or regional forest policy
and strategies but also recommend caution in using
them at local scales.
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