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Abstract
In thewesternUnited States,mountain pine beetles (MPBs) have caused treemortality across 7%of
the forested area over the past three decades, leading to concerns of increased fire activity inMPB-
affected landscapes.Whilefire behaviormodeling suggestsMPB-associated changes in fuelsmay
influence fire behavior, retrospective studies have generally found negligible orweak effects of pre-fire
MPBoutbreak onfire activity. This apparent disagreementmay arise fromdifferences infire weather,
fuels, or scale and highlights the need for empirical studies that examine the influence ofMPB
outbreak on fire activity atfiner spatiotemporal scales. Herewe use a novel combination of geospatial
data andfirefighter observations to test the relative influences of red and gray stageMPBoutbreak on
twomeasures of daily wildfire activity—daily area burned (DAB) and observedfire behavior.We
analyzed 2766 largewildfires that burned in theWest over the 2003–2012 period.We found 329fires
that intersected priorMPBoutbreak, howevermost burned in areas affected byMPB for only a few
days (median= 4 d).WemodeledDAB and the occurrence of observation of high-extreme fire
behavior in 57 large (>1140 ha)wildfire events that burned for long time periods (>10 d) in
landscapes affected byMPB.Under these conditions, we found no effect of red or gray stageMPB
outbreak on eitherDABor observed fire behavior. Instead, greater DAB and observations of high-
extreme fire behavior occurred duringwarmer, drier, andwindier weather conditions andwhere pre-
outbreak fuels were characterized by lower canopy base heights and greater canopy bulk densities. The
overriding influence of weather and pre-outbreak fuel conditions on dailyfire activity observed here
suggest that efforts to reduce the risk of extreme fire activity should focus on societal adaption to
futurewarming and extremeweather.

1. Introduction

Wildfire and bark beetle outbreaks are key distur-
bances affecting forests across the western United
States, where they have respectively affected 6.3% and
7.1% of the forested area over the past three decades
(Hicke et al 2016). The coincidence of extensive
wildfire and bark beetle outbreak has led towidespread
concern that bark beetle-induced tree mortality may
exacerbate fire activity (Hicke et al 2012, Jenkins et al
2014). These concerns are driving costly federal policy
decisions and forest management actions across
millions of acres of National Forest System lands
(Agricultural Act of 2014). Yet at the broad spatial

scales most relevant to forest management and policy,
empirical evidence for increased fire activity in bark
beetle-affected forests is lacking (Harvey et al 2014b,
Hart et al 2015,Meigs et al 2016).

Across the Western US, the mountain pine beetle
(Dendroctonus ponderosae; hereafter ‘MPB’) has
caused most of the recent bark beetle-induced tree
mortality, primarily in lodgepole pine (Pinus contorta)
and ponderosa pine (Pinus ponderosa) (Negrón and
Fettig 2014). Adult MPBs inhabit a tree’s inner bark,
where they oviposit and the resulting larvae feed on
phloem tissues. Extensive colonization and reproduc-
tion by MPBs lead to tree death. MPBs typically attack
weakened trees, however outbreaks may occur when
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beetle populations rapidly grow in response to favor-
able effects of temperature on beetle development
rates and drought stress in host trees (Raffa et al 2008,
Chapman et al 2012).

Treemortality caused byMPB infestation is expec-
ted to alter fire activity by changing the flammability,
continuity, and structure of fuels (Hicke et al 2012,
Jenkins et al 2014). Initially following death, trees enter
the ‘red stage’, which is characterized by declines in leaf
moisture content and changes in chemical composi-
tion that increase flammability (Jolly et al 2012, Page
et al 2012). Predictive models of fire behavior suggests
these changes may promote crown fire (Page and
Jenkins 2007, Schoennagel et al 2012, Hoffman et al
2012, 2013, 2015). About three years following initial
attack, needles drop, and trees move into the ‘gray
stage.’ During the gray stage, canopy bulk density and
continuity are reduced (Klutsch et al 2009, Simard et al
2011, Schoennagel et al 2012), fuels build up on the
forest floor due to falling needles, branches, and/or
release of understory vegetation (Klutsch et al 2009),
and the forest microclimate changes from the loss of
live tree crowns (Simard et al 2011). In fire behavior
models these changes generally lead to decreased
crown fire potential (Page and Jenkins 2007, Klutsch
et al 2011, Simard et al 2011, Schoennagel et al 2012,
Hoffman et al 2015). However, fire behavior modeling
also shows that pre-outbreak stand structure and fuels,
weather conditions, temporal and spatial patterns of
tree mortality, and surface fireline intensity exert an
important influence on fire behavior in MPB affected
stands (Page and Jenkins 2007, Klutsch et al 2011,
Simard et al 2011, Schoennagel et al 2012, Hoffman
et al 2012, 2013, 2015).

Retrospective studies have generally found negli-
gible or weak effects of pre-fire MPB outbreak on fire
occurrence (Kulakowski and Jarvis 2011, Mietkiewicz
and Kulakowski 2016), area burned (Hart et al 2015,
Meigs et al 2015) and fire severity (Harvey et al
2014a, 2014b, Meigs et al 2016, Talucci and Krawchuk
2019). Effects of pre-fire MPB outbreak are also
thought to depend on daily weather conditions
(Harvey et al 2014a, 2014b, Agne et al 2016). However,
there are few empirical studies of the effects of MPB
outbreak on daily fire activity, largely due to difficul-
ties associated with collecting data in active wildfire.
Perrakis et al (2014) observed greater rates of spread in
red and gray stage MPB than unaffected forests, how-
ever analyses were limited to 16 observations. Results
from nine paired experimental burns in control and
simulated MPB-killed stands revealed no effect of
simulated red-stage MPB outbreak on fire behavior
(Schroeder and Mooney 2012). Yet, in interviews with
28 wildland firefighters, Moriarty et al (2019) found
amplified fire behavior in the red stage of outbreak.
These uncertainties highlight the need for a broad-
scale analysis of the relative influence ofMPBoutbreak
on daily wildfire activity.

We used a novel approach that combined geospa-
tial data and wildland firefighter observations. Specifi-
cally, we used satellite data to generate maps of daily
fire progression and linked these data to daily Incident
Status Summary reports (ICS-209 reports) filed by
wildland firefighters. ICS-209 reports are filed for all
large wildfires on lands managed by the US Federal
agencies and detail the daily fire size and observed fire
behavior. Reports provide coarse-grain daily ‘snap-
shots’ of the management situation and are critical in
determining resource allocation (National Intelligence
Working Group 2017). ICS-209 reports have been
used to make inferences about containment prob-
ability (Finney et al 2009) and biomass emissions
(Pouliot et al 2008), but to our knowledge have not
been used to analyze descriptions of observed fire
behavior. We focused on three questions: (1) At the
daily timescale, how frequently did fires burn in areas
affected by MPB? (2) In large wildfire events, is MPB
outbreak associated with greater daily area burned
(DAB) and/or the occurrence of days with high-
extreme fire behavior as reported by wildland fire-
fighters? and (3) Do the potential effects persist after
controlling for biophysical factors known to affect fire
activity? Additionally, we examined the relationship
between remotely sensedDAB andwildland firefighter
observations of fire behavior.

2.Methods

2.1.Data
We first obtained spatial data on large wildfire
(>405 ha) extent for all fires that burned during the
2003–2012 period in the contiguous western United
States (figure 1) from the Monitoring Trends in Burn
Severity Project (MTBS Project 2017). To characterize
daily fire growth, we obtained fire progression poly-
gons produced by incident management teams from
the Geospatial Multi-Agency Coordination group
(Geospatial Multi-agency Coordinating Group Geo-
MAC 2019). Consistent with previous retrospective
studies of wildfire (e.g. Collins et al 2009, Parks et al
2015), we found data on fire growth from GeoMAC
was characterized by many temporal gaps, thereby
limiting our ability to quantify DAB. We therefore
followedmethods outlined in Parks (2014) and created
maps of day-of-burning (DOB) for each fire by
spatially interpolating Moderate Resolution Imaging
Spectrometer (MODIS) active fire-detection data
(NASA MCD14ML product, Collection 5, Version 1),
which depicts the location of actively burning
1×1 km MODIS pixels (figure S1 is available online
at stacks.iop.org/ERL/15/054007/mmedia).We used
the high temporal resolution of MODIS to estimate
DOB at higher spatial resolutions (30×30 m) using a
weighted by mean and distance spatial interpolation
approach (Parks 2014). Finally, we converted gridded
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day-of-burning data to polygons depicting the daily
fire progression.

Maps of DOB are difficult to validate because of
the lack of ground-truthed data, particularly in large
wildfires. Parks (2014) found GeoMAC and MODIS-
based maps of DOB, matched exactly for 46.1% of
cases, while 75% of cases were within 1 d. However,
disagreement arises from errors in both datasets. To
determine if our results were sensitive to the use of
MODIS-based maps of fire progression, we compared
our findings to results obtained using the subset of
wildfires with both GeoMAC- and MODIS-based
maps of daily fire progression (Supplement).

To characterize daily fire behavior, we obtained
daily ICS-209 reports from theNational Fire andAvia-
tion Management (2019) Web Application. ICS-209
reports are filed daily by incident management
teams, who record the cumulative area burned,
observed fire behavior, and projected fire behavior,
among other things. For each day, we extracted the
observed fire behavior descriptions which were classi-
fied following the Fire Behavior Reference Guide
(NWCG 2017), where possible values included (1)
smoldering, (2) creeping, (3) running, (4) torch/spot,
(5) crowning, and (6) erratic and extreme (table 1). To
do so, we compiled a list of terms associated with each
category from the Fire Behavior Reference Guide
(NWCG 2017) (tables 1 and S3) and classified the text
in R (R Core Team 2017). In the dataset examined
here, the frequency of these six groups was extremely
unequal (figure 2). Therefore, we combined smolder-
ing, creeping, running, and torch/spot classes into a
low-moderate fire behavior category. The crowning
and erratic and extreme classes were grouped into a
high-extreme category (table 1). Where observations

indicated varied fire behavior, we assigned the highest
category.

To characterize MPB outbreak, we first defined the
presence of MPB host-species using three forest cover-
type spatial datasets: Landfire Existing Vegetation Type
(LANDFIRE 2001a), National GAP Landcover data
(LANDFIRE 2011), and a map of US forest types pro-
duced byZhu and Evans (1994).We created 30×30m
grids of the presence ofMPB host tree species (see table
S2) by defining presence as any cell where two or more
datasets were in agreement (e.g. Preisler et al 2012). We
then aggregated the data by calculating the percent of
host cover within a 990×990m cell, a spatial grain
chosen to match the coarse-scale of forest disturbance
data from theUnited States Forest Service (USFS)Aerial
Detection Survey (ADS) program (Johnson and
Ross 2008). We acquired all ADS describing the extent
and estimated severity (e.g. damaged trees per hectare)
of MPB infestation across the western US over the
2000–2011 period (USFS and its partners 2017).
Approximating the methods outlined by Meddens et al
(2012), we first converted annual (2000–2011) ADS
polygon data to a 990×990m raster by first calculat-
ing the percent of each pixel that intersected an MPB
damage polygon. We then constrained the percent
MPB damage of each pixel so that it could not exceed
the percent MPB host forest by overlaying the percent
host and percent MPB damage rasters. Thus, the rasters
created here are conservative estimates of where outbreak
is most likely to have occurred. Next, we multiplied
the percent MPB damage rasters by the estimated
number of affected trees per hectare to generate grids of
the number of damaged trees per hectare. These grids
were converted to crown area per hectare by multiplying
by the average tree crown diameter for each host tree
species, which we obtained from Meddens et al (2012).

Figure 1.The study area (A) and frequency distributions of the percent area of thefire event and dailyfire progression polygon that
intersectedmountain pine beetle (MPB) host forest (B) and (C) and priorMPBoutbreak (D) and (E). The insets show frequency
distribution formean crown area of priorMPBoutbreakwithin an event and daily fire progression polygon.Note the area ofmean
crown area of priorMPBoutbreak represents a conservative estimate.
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Finally, we created rasters depicting the stage of
outbreak, where we defined red-stage outbreak as the
totalMPBcrownareamappedwithin two years of thefire
year and gray-stage outbreak as the totalMPB crown area
within three or more years prior to the fire year (e.g.
Hart et al 2015). We assume the resulting datasets
describe the relative amount ofMPB activitywithin a cell,
but caution that aerial sketchmapping is subjective and
often underestimates the severity of tree mortality (John-
son and Wittwer 2008, Meddens et al 2012, Hicke et al
2016).

To determine the relative influence of MPB out-
break onDAB and observed fire behavior, we acquired
spatial data for eleven independent biophysical pre-
dictors (table S3).We selected variables that are known
to influence fire behavior, including fuels, topography,
and weather (Agee 1993). To characterize daily fire
weather, we used daily weather data (collected hourly)
from the nearest Remote Automated Weather Station
(table S5) describing the daily maximum temperature,
average relative humidity, and wind gust speed. To
describe fuel moisture, we obtained 4×4 km daily
grids of Energy Release Component (ERC), a compo-
site fuel moisture index that integrates the effects of
weather conditions on the focal day and preceding
seven days (Abatzoglou 2013). We characterized fuel
characteristics using a 30×30 m raster of pre-out-
break canopy bulk density (CBD) and canopy base

height (CBH) (LANDFIRE 2001b, 2001c), factors that
are known to affect crowning. Finally, to control for
potential differences in fire activity between MPB
hosts, we used 30×30 m rasters listing the presence/
absence of lodgepole pine and ponderosa pine. To
represent topography, we obtained 30×30 m rasters
of slope and elevation (LANDFIRE 2013).We assigned
values of each predictor to each daily fire progression
polygon by calculating the mean value of the raster
cells overlapping theDOBpolygon. Prior tomodeling,
we used pairwise correlations to detect potential mul-
ticollinearity issues associated with the predictor vari-
able set (figure S2).

2.2. Analyses
To better understand how frequently wildfires inter-
sected prior MPB outbreak, we first used GIS to
determine the number of wildfires that intersected
MPB host forest and prior MPB outbreak for all
wildfires. For wildfires that intersectedMPB outbreak,
we also calculated the number of daily fire progression
polygons that intersected prior MPB outbreak and the
meanMPB crown area.

To determine if prior MPB outbreak was asso-
ciated with increased DAB or high-extreme observed
fire behavior, we selected the fires where more than
50%of the daily fire progression days intersected prior
MPB outbreak. To determine if the 50% threshold for

Table 1.Categories, descriptions and search terms for categorizing observed fire behavior descriptions from ICS-209 reports.

Fire behavior class General fire behaviora Descriptiona Example search termsb

• White smoke • ‘smoldering’

Smoldering • Smoldering ground fire • ‘no openflame’

• Noopenflame

• Visible openflame (1–4 ft.) • ‘creeping’

• Surface fire only • ‘surface’

Creeping • Unorganized flame front • ‘minimal spread’

• Little or no spread

• Organized surfaceflame front (4–8 ft.) • ‘running’

Low-moderate • Moderate rate of spread • ‘moderate fire behavior’

Running • Torching and short-range spotting • ‘moderately active’

• Some candling

• Organized surfaceflame front (8–12 ft.) • ‘spotting’

• Moderate to fast rate of spread • ‘torching’

Torch/spot • Gray to black smoke • ‘fast rate of spread’

Torching

• Short range spotting

• Organized crownfire front • ‘Long distance spotting’

• Moderate to long range spotting

Crowning • Fast rate of spread • ‘Long range spotting’

High-extreme • Independent spot fire growth • ‘Crown’

• Black to copper smoke • ‘Active fire behavior’

• Independent spot fire growth • ‘Extreme’

• Development of pyrocumulus clouds • ‘Erratic’

Extreme and erratic • Presence offire whirls • ‘Plume’

• Violent fire behavior • ‘Fire whirl’

a Categories offire behavior and their descriptions are adapted from the Fire Behavior ReferenceGuide (NWCG2017).
b For a full list of search terms, see table S1.
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selecting fires influenced our results, we additionally
performed all analyses using both a 25% and 75%
threshold (see Supplement). We further constrained
our analysis to only wildfires with�10 d with fire pro-
gression data, which allowed for enough replication
within each fire to treat fire identity as a random effect
in analyses (described below) (Bolker et al 2009). We
examined the effect of pre-fire MPB outbreak on
observed fire behavior for the subset of these burning
days where data on observed fire behavior was recor-
ded and could be classified for both the current and
proceeding day, which allowed for the inclusion of a
temporal autocovariate term (table S4). As a con-
sequence, our analysis focuses on large wildfires that
burned over long time periods, which tend to have the
greatest social and ecological consequences.

To understand if fire growth was associated with
firefighter observations, we first compared DAB with
classified observed fire behavior. Specifically, wemod-
eled the occurrence of high-extreme fire versus low-
moderate fire behavior as function of DAB using a
generalized linear model (GLM) with a binomial dis-
tribution and logit link function. To account for dif-
ferences between fire events and temporal
autocorrelation, we also included an autocovariate
term—the prior day’s observed fire behavior. We
assessed significance using a likelihood ratio test that
compared the model with DAB as predictor to the
intercept onlymodel (Zuur et al 2009).

To determine ifMPB outbreak was associated with
either increased DAB or occurrence of high-extreme
rather than moderate-low fire behavior, we used two
approaches. First, we constructed univariate models,
where the only predictor was either the crown area of
red or gray stage MPB outbreak. As above, models of
observed fire behavior were constructed using a GLM
with a binomial distribution (logit link) and included
an autocovariate term. We used a linear mixed effects
(LME) model with a random intercept term for fire
identity and a first order autocorrelation structure
nested within fire identity to model DAB (log

transformed to improve normality). We fit LMEmod-
els using theR package ‘nlme’ (Pinheiro et al 2017).

Next we constructed multivariate models using
the samemodeling frameworks as in the bivariate ana-
lyses and including the eleven other biophysical pre-
dictors of fire activity. We used a model selection
approach to determine the influence ofMPB outbreak
relative to other drivers of daily fire activity. Prior to
model construction, all predictor variables were
z-score transformed to allow for comparison.We star-
ted with a model with all possible predictors and used
likelihood ratio tests to evaluate the effect of dropping
each variable from the model (Zuur et al 2009).
Non-significant (p>0.05) terms were removed until
all remaining variables were significant. Variable selec-
tion removed both red and gray stage MPB outbreak
from models of observed fire behavior and DAB, but
we forced these variables into the final model to evalu-
ate their relative influence as indicated by the model
coefficients. Because the effects of MPB outbreak on
fire activity have been hypothesized to only occur dur-
ing specific conditions (Harvey et al 2014a), we also
tested for interactions between MPB outbreak vari-
ables and significant biophysical variables using like-
lihood ratio tests. Overall explanatory power of the
most parsimonious model was evaluated using the
marginal coefficient of determination (R2), which
reflects the variance explained by the fixed effects
(Nakagawa and Schielzeth 2013).

3. Results

We examined 2766 large wildfires that burned in the
westernUS during the 2003–2012 period (figure 1(A)).
Of these fires, 916 (33%) burned in MPB host forest
and 329 (12%) burned in areas with prior MPB
outbreak. When fires burned in areas with MPB host
forest, typically less than 30% of the total fire area was
MPB host forest (median=27%) and less than 3% of
the total fire area was affected by prior MPB outbreak
(figure 1). At the daily scale, we were able to use
MODIS data to produce at least one fire progression
perimeter for 92% of the fire events that intersected
MPB affected forest (n=302). The resulting dataset
consisted of 3501 daily fire progression polygons, of
which 91% (n=3191) intersected MPB host forest
and 58% (n=2030) burned in areas with prior MPB
outbreak (figures 1(C) and (E)). Of the 302 fires
intersecting prior MPB outbreak, 60% (n=192) had
a fewer than 10 daily fire progression polygons
(median=8) and only a few days (median=4 d)
intersected prior MPB outbreak. Of the fires intersect-
ing prior MPB outbreak that also burned for at least
10 d, 43% (n=57) burned in MPB-affected land-
scapes for at least half of the burning days (n=1318
dailyfire progression polygons) (table S4).

Coincident ICS-209 data and MODIS-based fire
progression polygons were available for 41 fires and

Figure 2.Boxplots displaying theDAB in each observed fire
behavior class. Data shown are from the 41fires and 663 d
with coincidentMODIS and ICS-209 data. The horizontal
line is themedian, 25th and 75th percentiles are box edges,
vertical lines show 1.5 times the interquartile range, and
points are outliers.
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663 d (table S4). Data was generally available in both
datasets when fires were large (>500 ha) and observed
fire behavior was more extreme (figure 2). Consistent
with the expectation ofmore rapid growth during per-
iods of more extreme fire behavior, increases in DAB
were associated with the occurrence of high-extreme
(i.e. crowning or extreme)fire behavior.

We found observations of high-extreme fire beha-
vior in daily ICS-209 reports and greater DAB often
occurred in areas with greater red stageMPBmortality
area (figures 3–4). However, neither red nor gray
stage MPB were significantly related to either the
occurrence of high-extreme fire behavior or DAB
(p>0.15;figures 3–4). Around 20%of the variance in
observed fire behavior was explained by theMPB vari-
ables and autocovariate combined. Less than 1%of the
variance in DAB was explained by MPB variables

(RGLMM
2

m
�0.01; figures 4(A)–(B)). These results were

not sensitive to either the source of daily fire progres-
sion data nor the choice of threshold used to select
fires for our analyses (figures S2–S7).

The top performing multivariate model of
observed fire behavior explained about 30%of the var-
iance (R2=0.31) and included maximum temper-
ature, gust speed, pre-outbreak canopy bulk density,
and percent lodgepole pine cover (figure 3(C), tables
S6–S7). More extreme fire behavior occurred when
maximum daily temperatures were warmer, gust
speeds were higher, and average pre-outbreak canopy
bulk density was greater (figure 3(C), table S6). We
found the top performing model of DAB explained
about 30%of the variance (RGLMM

2
c
=0.30) about half

of which was attributed to the predictor variables
(RGLMM

2
m
=0.15). Greater DAB was associated with

Figure 3.The effect ofMPBoutbreak on observed fire behavior. Density plots illustrate the univariate associations between observed
fire behavior andmean red stageMPB (A) and gray stageMPB (B). The right panel shows regression estimates for the top performing
multivariatemodel of observedfire behavior (C).Whiskers illustrate the 95%confidence intervals for the regression estimates. Note
that confidence intervals forMPB associated coefficients overlapwith zero.Data shown are from the 41fires and 663 dwith coincident
MODIS and ICS-209 data.

Figure 4.The effect ofMPBoutbreak on daily area burned (DAB). Scatterplots illustrate the univariate associations betweenDAB and
mean red stageMPB (A) and gray stageMPB (B). The solid red line illustrates predicted values for the population based on thefixed
effect estimates. Red shading shows the 95% confidence interval for the population prediction conditional on estimates of the random
effects. P-values are from likelihood ratio tests. RGLMM

2
m and RGLMM

2
c
are themarginal and conditional coefficients of determination,

respectively. The right panel shows regression estimates for the top performingmultivariatemodel of observed fire behavior (C).
Whiskers illustrate the 95% confidence intervals for the coefficient estimates. Data shown are for the 57wildfires that burned inMPB-
affected landscapes for at least half of the burning days (n=1318 dailyfire progression polygons).
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higher ERC, warmer temperatures, windier condi-
tions, lower canopy base height, flatter terrain, and
lower relative humidity (figure 4(C), table S6). The
inclusion of interaction terms between MPB outbreak
and biophysical variables did not significantly improve
performance of either observed fire behavior or DAB
models (table S8). Similarly, average red or gray stage
MPB outbreak were not important predictors of DAB
or observed fire behavior when the threshold used to
select fires was higher or GeoMAC data was used to
mapfire progression (figures S3–7).

4.Discussion

Using a combination of geospatial data and firefighter
observations, we found no effect of priorMPB outbreak
onDABor the occurrence of observed high-extremefire
behavior in 1318 burning days occurring in 57 large
wildfire events. Instead, the occurrence of high-extreme
fire behavior and greater DAB were associated with
the burning conditions of the previous day, weather
conditions, pre-outbreak fuel conditions, and to a lesser
extent, topography. These findings are consistent
with experimental burning research that showed fire
behavior increased with fire weather but not simulated
MPB-kill conditions (Schroeder and Mooney 2012).
Our results suggest that during drought conditions
that promote extensive wildfire across the western US
(Dennison et al 2014), short-term fluctuations in
weather are likelymore important thanMPB-alterations
to fuels atmoderate spatiotemporal (daily) scales.

Consistent with previous work showing negligible
effects of prefire-MPB on area burned (Hart et al 2015,
Meigs et al 2015), our results indicate that fewwildfires
burned extensively inMPB-affected landscapes during
the a decade of widespread fire and MPB outbreak.
The limited overlap between MPB-affected forest and
wildfire reflects the heterogenous environments where
western wildfires burn—even when fires intersected
MPB host forest, most fires burned in areas composed
of diverse plant communities. Moreover, here we
show that when wildfires intersected prefire-MPB, the
area burned in MPB outbreak accounted for a small
proportion of the total area burned. At the daily scale,
the overlap of MPB outbreak and wildfire disturbance
typically occurred for a small proportion of the DAB
and a relatively low crown area of MPB mortality.
Given the limited spatial and temporal coincidence of
MPB andwildfire, post-outbreak fuels treatmentsmay
be of limited efficacy.

We found firefighter observations of daily fire
behavior and fire growth agree with MODIS-based
reconstructions of DAB. Additionally, we found simi-
larmodels of DAB usingmaps of fire progression from
incident management teams (e.g. GeoMAC) and
MODIS active fire detection data. However, because
MODIS data does not lack temporal gaps it provides
key information about daily fire activity (Parks 2014).

These findings support the use of MODIS daily fire
activity data in reconstructing daily fire growth. How-
ever, we note thatMODIS data is biased toward differ-
ences days of large fire growth and results should be
interpreted in this context.

Here we examined the effect of MPB outbreak on
two measures of daily fire activity in large wildfire
events. At finer spatial and temporal scales, anecdotal
observations and qualitative interviews with firefighters
suggest that outbreaks may affect fire behavior
(Moriarty et al 2019). Subsequent analyses where the
spatial and temporal heterogeneity of MPB outbreak is
better characterized may provide critical insights into
this apparent incongruity. Additionally, our analyses
use average conditions to characterize fuels, weather,
and topography, the role of variability and extreme
values at the daily scale requires more research. Further
our analysis targeted large wildfires and days of notable
fire growth (minimum daily area burned=26.7 ha),
when the potential effects ofMPB on fuels are expected
to be less important. Under more moderate weather
conditions and finer spatiotemporal scales, the poten-
tial effects of bark beetle outbreaks onfire behaviormay
be important and warrant caution from a firefighting
perspective (Jenkins et al2014).

In addition to finding no significant effect of pre-
fire MPB outbreak on observed fire behavior, we
found strong influences of daily weather variability on
observed fire behavior and daily fire growth (DAB).
Weather and climate variability strongly influence fire
occurrence (Dennison et al 2014), annual area burned
(Littell et al 2009, Abatzoglou and Kolden 2013), fire
severity (Holden et al 2007), and average fire size
(Miller et al 2012) across the westernUnited States. Yet
the effects of climate conditions on individual fire sizes
are less clear. For instance, Harvey et al (2016) found
fire size in the Northern Rockies was weakly associated
with cumulative moisture deficit at the time of fire and
moisture deficit during the burning period. Yet Riley
et al (2013) found individual fire sizes across the
contiguous western United States were not strongly
related to long- (>6months) ormoderate-term (7 d to
3 months) drought indices. Here, we found daily fire
growth was sensitive to both daily weather variability
(maximum temperature, gust speed, and relative
humidity) and moderate-term drought (ERC), sup-
portive of the idea that variation in weather is a key
driver of fire size. Thus, predictions of future wildfire
should incorporate both the effects of slowly changing
broad-scale climate, which promote periods of wide-
spread wildfire, and extreme weather events, which
lead to rapid periods offire growth.

5. Conclusion

At a moderate spatiotemporal scale, both daily fire
growth (DAB) and observed fire behavior, as recorded
in ICS-209 reports, were driven by fire weather, not
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MPB outbreak in 56 large wildfire events that burned
across the West during the 2003–2012 period. Given
the relative rarity of wildfire burning in MPB-affected
forests and negligible effects on daily fire activity, post-
outbreak management strategies should emphasize
mitigation of other negative effects on socioecological
systems, including diminished tourism, tree-fall
hazards, and effects on wildlife habitat (Morris et al
2018). In general, efforts to reduce the risk of extreme
fire behavior should focus on societal adaption to
futurewarming and extremeweather events.
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