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Abstract
Weather shocks, such as heatwaves, droughts, and excess rainfall, are amajor cause of crop yield losses
and food insecurity worldwide. Statistical or process-based cropmodels can be used to quantify how
yields will respond to these events and future climate change.However, the accuracy of weather-yield
relationships derived from cropmodels, whether statistical or process-based, is dependent on the
quality of the underlying input data used to run thesemodels. In this context, amajor challenge in
many developing countries is the lack of accessible and reliablemeteorological datasets. Gridded
weather datasets, derived from combinations of in situ gauges, remote sensing, and climatemodels,
provide a solution tofill this gap, and have beenwidely used to evaluate climate impacts on agriculture
in data-scarce regions worldwide. However, these reference datasets are also known to contain
important biases and uncertainties. To date, there has been little research to assess how the choice of
reference datasets influences projected sensitivity of crop yields toweather.We comparemultiple
freely available gridded datasets that provide daily weather data over the Indian sub-continent over the
period 1983–2005, and explore their implications for estimates of yield responses toweather
variability for key crops grown in the region (wheat and rice). Our results show that individual gridded
weather datasets vary in their representation of historic spatial and temporal temperature and
precipitation patterns across India.We show that these differences create large uncertainties in
estimated crop yield responses and exposure to variability in growing seasonweather, which in turn,
highlights the need for improved consideration of input data uncertainty in statistical studies that
explore impacts of climate variability and change on agriculture.

1. Introduction

Farmer livelihoods depend strongly onweather condi-
tions during the growing season. Smallholder subsis-
tence farmers in developing countries in Africa and
Asia, in particular, are impacted disproportionately by
weather shocks due to their lower adaptive capacity
and dependence on agriculture for basic staple crop
production, nutrition and incomes(Morton 2007,
Harvey et al 2014, Niles and Salerno 2018). In this

context, understanding crop yield responses in small-
holder farming systems to different types and magni-
tudes of weather shocks is critical for estimating
impacts of future climate variability and change on
agricultural productivity and food security, and for
designing appropriate strategies to reduce exposure to
weather-related production risks.

To assess the impacts of weather and future climate
on agriculture, crop models are commonly used to
simulate yield responses to different meteorological
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conditions. Two types of modelling approaches exist.
Statistical yield models (e.g. Lobell and Burke 2010, Cai
et al 2014, Duncan et al 2015, 2016, Parkes et al
2017, 2018) develop empirical relationships between
observed weather conditions and crop yields reported
through field surveys or agricultural censuses. In con-
trast, process-basedmodels, such asAPSIM(Holzworth
et al 2014) or AquaCrop(Foster et al 2017), use mathe-
matical representations of plant physiology to simulate
crop growth and yield development for specified
meteorological conditions, soil properties, andmanage-
ment practices. Both modelling approaches have
strengths and weaknesses (Roberts et al 2017). Impor-
tantly, where sufficient observed yield data exist, statis-
tical models may provide additional information about
yield sensitivity to climate due to their ability to account
for the effects of unobserved farmer management prac-
tices or indirect weather-related drivers of yield losses
that cannot be simulated by process-based models (e.g.
mechanical damage by hail or wind, pests, diseases,
extreme rainfall etc)(Roberts et al2017, Li et al 2019).

In many regions worldwide, and in particular in
developing countries where agriculture underpins
food security and rural livelihoods, there is a lack of
reliable and comprehensive historical weather records
from in situmonitoring stations. Consequently, statis-
tical models typically are developed using weather data
drawn from national, regional, or global gridded
weather datasets. A diverse range of gridded weather
datasets exist (e.g. Yatagai et al 2012, Ashouri et al
2015, Funk et al 2015, Ruane et al 2015), each differing
in the underlying source of primary observations (e.g.
satellite data, model reanalysis, etc), the variables
reported (e.g. temperature, precipitation, solar radia-
tion, etc), and the resolution (spatial and temporal) at
which these data are reported. Differences in the data
sources and algorithms used to create these gridded
products mean that reported meteorological condi-
tions at a given location and time can often vary sub-
stantially across datasets. For example, the high
resolution of 0.05° used in the ClimateHazards Group
InfraRed Precipitation with Station (CHIRPS)(Funk
et al 2015) is able to resolve storms a few kilometres
across which are blurred out by the coarser resolution
datasets such as the 0.75° ECMWF Re-Analysis
Interim (ERA-Interim)(Dee et al 2011).

Despite these known differences, the choice of
weather dataset is often an arbitrary decision in studies
that use these datasets to evaluate climate impacts on
agriculture and other sectors(Auffhammer et al 2012,
Cai et al 2014, Duncan et al 2016). To date, there has
been little evaluation of how the choice of reference
weather datasets affects estimates of implied sensitivity of
agriculture to climate variability and change from statis-
tical crop yieldmodels. This omission is in contrast with
hydrological modelling(Decharme and Douville 2006)
and statistical climate downscaling(Iizumi et al 2017)
where weather dataset choice has been acknowledged as
a key source of model uncertainty. Similarly, higher

spatial resolution datasets may be able to better to cap-
ture elevation-induced weather variability, which is
known to be a key driver of uncertainty in gridded
weather products(Semenov et al 2013, Beck et al2019).

In this study, we address this knowledge gap by
developing multiple statistical crop yield models for
wheat and rice production in India using 50 unique
combinations of weather datasets. Our study focuses
on India due to the availability of comprehensive his-
torical yield observation data, along with the wide-
spread past use of statistical modelling approaches in
India and South Asia as part of climate impact resear-
ch(Lobell et al 2012, Duncan et al 2015, 2016,Mondal
et al 2016, Asseng et al 2017, Jain et al 2017, Gilmont
et al 2018).We hypothesise that weather dataset choice
will have an impact on estimates of crop yield respon-
ses toweather shocks. These shocks, in turn, will intro-
duce uncertainty to estimates of farmers responses to
weather-related production risks and impacts of
future climate change on agriculture.

2.Methods

2.1. Study area
Crop yield observations required to train statistical
models were obtained from a panel dataset of district-
level yield observations for rice and wheat from across
India provided by the ICRISAT VDSA (Village
Dynamics in South Asia) study database (http://vdsa.
icrisat.ac.in/vdsa-database.aspx). For this study, we use
yield data for the period 1983–2005 to align with the
common temporal coverage period for available
gridded weather products (table 1), and omit district-
year observationswhere reported cropped area ofwheat
or ricewas less than 1000 acres in any year of our record.
These restrictions retain 267 districts for wheat and 299
districts for rice. Districts for each crop are geographi-
cally spread across most of India, omitting mostly the
extreme northern districts where terrain is mountai-
nous, along with a small number of districts in eastern
India, where administrative boundary changes make
identifying consistent locations infeasible.

2.2.Weather datasets
To develop statistical models of weather impacts on
wheat and rice yields, we use a total of 50 different
reference gridded weather dataset combinations (pre-
cipitation and temperature) that are available for the
Indian sub-continent. Table 1 summarises the key
features of these datasets (name, resolution, variables,
data sources, and key references). Almost all districts
in India are significantly larger than the spatial
resolution of gridded weather products. As a result,
seasonal temperature and precipitation variables are
calculated for each pixel and subsequently aggregated
up to the district-level to match the spatial resolution
of crop yield observations. Aggregation is performed
based on area weighted averages of weather dataset
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pixels within each fixed district boundary, as opposed
to specific annual harvested areas for which no reliable
inter-annual data exists for our spatial and temporal
study domain. Furthermore, we do not consider
differences in elevation between grid cells when
weighting, consistent with prior statistical crop mod-
elling(Fishman 2016, Zaveri and Lobell 2019) when
upscaling griddedweather data.

Of the gridded weather datasets included in our
analyses (table 1), three (some reporting both temper-
ature and precipitation) rely on satellite data as a pri-
mary source of weather observations—PERSIANN-
CDR, NASA POWER, and CHIRPS. In contrast, two
datasets use weather station data as their primary
source of information for generating gridded weather
observations—the APHRODITE, and Indian Meteor-
ological Department (IMD) datasets. The final five
datasets use weather model reanalysis as their data
source, whether bias corrected or uncorrected:
AgMERRA, ERA-Interim, Princeton, and two variants
of theWATCH-Forcing-Data-ERA-Interim (WFDEI-
CRU andWFDEI-GPCC) that are differentiated based
on the reference precipitation dataset used to generate
the product. The sources here are not necessary the
only source used and datasets such as CHIRPS use a
blend of satellite and station data that is subsequently
bias corrected. See S1 and S2 for examples of the dif-
ferences between the datasets.

Many of the weather datasets reported in table 1
have been used in past studies of climate impacts on
agriculture in India and more broadly in South Asia.
For example, the precipitation only datasets (i.e.
CHIRPS, APHRODITE, PERSIANN-CDR, IMD)
have been used to analyse impacts of drought and
rainfall extremes on agricultural yields and water
demands in the region (Romaguera et al 2010, DeFries
et al 2016, Aadhar and Mishra 2017). Similarly, the
Princeton and ERA-Interim datasets have been used in

assessing regional droughts(Mishra et al 2014) and
water resource assessments (Mathison et al 2013),
while WFDEI has been used as an input in a study on
irrigation demand(Biemans et al 2016). AgMERRA
has been used to analyse the uncertainty of aggregating
crop yields from large scale studies(Porwollik et al
2017) and for a global gridded crop model evalua-
tion(Müller et al 2017). Finally, NASA POWER has
been widely applied for modelling temperature—rela-
ted impacts on wheat yields in the South Asia regio-
n(Asseng et al 2017). Although not an exhaustive list,
these studies highlight both the regional relevance of
the datasets and their history of use in agricultural
and climate impacts research across the Indian
sub-continent. Additional global gridded weather
datasets, for example AgCFSR(Ruane et al 2015) and
S14FD(Iizumi et al 2017) that have been specifically
developed for cropmodelling, also exist and should be
considered in future research beyond the Indian
sub-continent

2.3. Yieldmodels
We develop a total of 50 unique statistical crop yield
models for both rice and wheat in India, using the
different combinations of available gridded temper-
ature and precipitation datasets described in table 1
and section 2.2. Following Lobell and Burke (2010),
wheat yield models are formulated as linear regres-
sions relating observed crop yields to growing season
aggregates of precipitation and temperature (growing
degree days and extreme degree days). The rice yield
model uses a similar specification to the wheat yield
models, but omits the extreme degree day term to
maintain consistency with prior statistical models of
rice yields in South Asia (Auffhammer et al 2012,
Fishman 2016). Specifically, the wheat and rice yield
models are defined as follows:

Table 1.Name, abbreviation, resolution, indication of temperature or precipitation data, time frame, primary type of source data and key
reference for the reference datasets.WhereT andP indicate if the dataset provides temperature or precipitation data respectively. Datasets
that list ‘Present’ as their end time can be delayed by a fewmonths. See S6 for a visual representation of the differences in resolution.

Name Abbrev. Res. T P Time frame Primary source type References

AgMERRA Ag 0.25° X X 1980–2010 Bias corrected reanalysis Ruane et al (2015)
APHRODITE AP 0.50° X 1951–2007 Weather station data Yatagai et al (2012)
CHIRPS CH 0.05° X 1981—Present Bias corrected satellite

record

Funk et al (2015)

ERA-Interim ER 0.75° X X 1979—Present Reanalysis Dee et al (2011)
IMD-Precipitation IM 0.50° X 1969–2005 Weather station data Pai et al (2014), Rajeevan and

Bhate (2009)
IMD-Temperature IM 1.00° X 1969–2005 Weather station data Pai et al (2014), Rajeevan and

Bhate (2009)
PERSIANN-CDR PE 0.25° X 1983—Present Satellite record Ashouri et al (2015)
POWER PO 0.50° X X 1981—Present Satellite record Stackhouse et al (2018)
Princeton Pr 0.25° X X 1948–2016 Bias corrected reanalysis Sheffield et al (2006)
WFDEI-CRU WC 0.50° X 1979–2016 Bias corrected reanalysis Weedon et al (2014), Harris et al

(2013)
WFDEI-GPCC WG 0.50° X 1979–2016 Bias corrected reanalysis Weedon et al (2014), Schneider et al

(2014)
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where: Yt,i is the crop yield from district i in year t,
GDDt,i is the total seasonal growing degree days,
EDDt,i is the total seasonal extreme degree days (EDD),
Pt,i is the total seasonal precipitation, b, c and d are
model parameters, fs(t) is a state-specific quadratic
time-trend representing growth in yields through
breeding and other improvements to management
practices, ai is a district-specific fixed effect term (i.e.
district-level intercept) to account for unobserved
time-invariant drivers of yield differences between
districts, and òt,i is the error term. The natural log of
yield is taken to produce models that provide relative
changes instead of absolute changes, since this moder-
ates the effects of districts having significantly different
absolute yields.

Precipitation, growing degree days (GDD) and
extreme degree days per season are calculated as the
sum of the daily values of these variables within the
respective growing seasons for wheat (November to
February) and rice (June to September) (Datta and
Jong 2002, Auffhammer et al 2012). Daily values of
GDD and EDD are calculated as shown in
equations (3) and (4) below, accounting for the
within-day distribution of temperatures by fitting a
sinusoidal curve between observed maximum and
minimum temperatures on each day following the
approach proposed by Schlenker and Roberts (2009).
This approach to GDD and EDD estimation is selected
as it is provides a more robust estimate of daily degree
day accumulation compared to using a simple daily
average temperature, which does not account for
within-day temperature distributions and thus may
affect statistical model performance (Fontes et al
2017, Roberts et al 2017).
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where T is the temperature, f(T) is the daily cumula-
tive distribution of interpolated temperatures based
on the sinusoidal fit between the daily maximum and
minimum temperatures, and Tbase and Tupp are crop-
specific lower and upper temperature limits, respec-
tively, for GDD accumulation. For wheat, these lower
and upper limits are equal to 0 °C and 30 °C (Lobell
et al 2012). In contrast, for rice, limits of 8 °C and
30 °C are chosen following van Oort et al (2011). EDD
accumulation occurs for temperatures above a thresh-
old temperature limit for the initiation of heat stress
(Tstr), which we set equal to 30 °C for wheat consistent
with prior econometric yield models (Schlenker and
Roberts 2009, Tack et al 2015, Roberts et al 2017). As

described earlier, no value is specified for rice as EDDs
are omitted from thesemodels.

2.4. Assessing uncertainty in future crop yield
change
A common use of statistical crop yields models is to
assess how agricultural production may respond to
future changes in climate conditional on existing
management practices and technologies being hold
constant (Lobell and Burke 2010). In this study, we
explore the effect of the choice of the reference weather
training dataset on the estimated impacts of climate
change on Indian agriculture by applying a range of
idealized future temperature and precipitation change
scenarios to our set of 50 unique statistical wheat and
rice yield models. Temperature change scenarios in
our analysis involved perturbing baseline daily temp-
erature values by between −2 °C and +2 °C in
increments of 1 °C in each reference dataset. Updated
seasonal GDD and EDD totals in each district and year
are then calculated using these perturbed daily temp-
erature time series holding threshold limits for GDD/
EDD accumulation constant consistent with assump-
tions of no changes in crop varietal properties in this
analysis. Precipitation change scenarios in turn were
constructed by modifying existing seasonal precipita-
tion totals for each dataset, district and year by
between −20% and +20% in steps of 10%. We apply
each combination of perturbed precipitation and
temperature (GDD and EDD) totals as inputs to
statistical yield models generated in section 2.3 to
generate projections of future yield changes, and, in
particular, evaluate uncertainty in yield change projec-
tions resulting from the choice of historical reference
weather dataset.

3. Results

Our results show that only limited differences exist in
the ability of statistical models developed using
different reference weather datasets to explain
observed spatial and temporal variability in observed
crop yields. All models are highly significant
(p< 0.001), and capture a large proportion of the
observed spatial and temporal variability in district-
level wheat (R2> 0.85) and rice (R2> 0.80) yields.
Performance of models is shown to be robust when
assessed based out-of-sample tests omitting one-year
of data at a time (SI figure 7 is available online at stacks.
iop.org/ERL/14/124089/mmedia), with only limited
differences observed between in-sample and out-of-
sample correlations with actual yields across all dataset
combinations. However, the choice of reference
weather dataset does lead to large differences in the
significance and magnitude of individual estimated
weather coefficients. From this, several key insights
can be drawn to inform the use of such models in
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weather and climate impact assessment (figures 1
and 2).

3.1.Weather dataset choice alters implied crop yield
sensitivity to climate
While all models perform equally well in explaining
overall yield variability, figures 1 and 2 highlight that
only limited consensus exists across models about the
magnitude and significance of crop yield sensitivity to
specific meteorological variables and extreme events.
For wheat, GDDs are a significant (p<0.05) and
positive predictor of crop yields (i.e. yields increase
with GDDs) for all datasets, in agreement with

previous studies of wheat production in South Asia
(Mondal et al 2016). Increasing EDDs has a negative
impact on wheat yields for all datasets. However, the
negative impact of EDD’s is only statistically signifi-
cant (p<0.05) for two datasets based on the temper-
ature thresholds and specifications adopted in this
analysis, highlighting that weather dataset choice can
have important implications for robustness of conclu-
sions drawn about climatic driver of yield variability. A
clear difference in temperature coefficients—both
for GDD and EDD—is also observed for models
using NASA POWER temperature data, for which
coefficient sizes are noticeably smaller than other

Figure 1.Coefficients (left) and significance values (right) for variables fromfixed effects panel regressionmodels forwheat.

Figure 2.Coefficients (left) and significance values (right) for variables fromfixed effects panel regressionmodels for rice.
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temperature datasets (figure 1). This can be explained
by the hot bias in POWER temperature data relative to
other datasets (figure S1), resulting in higher EDD
totals and therefore a smaller coefficient. POWER’s
hot temperature bias also has the effect of blurring the
identification of positive GDD and negative EDD
effects, as the temperature threshold for wheat is
assumed to be crop rather than dataset specific. Figure
S1 demonstrates this effect, showing that more than
65% of daily observations during the wheat growing
season have a higher maximum temperature than
30 °C—the lower limit for EDD accumulation—for
POWER. By contrast, ERA-Interim has the smallest
percentage of days (14%) that exceed 30 °C during the
wheat growing season. We suggest that this may
explain the greater significance and larger coefficient
size for EDD in wheat models using ERA-Interim
temperature data, which captures a much smaller
subset of true extreme temperature events in compar-
isonwith other datasets.

In general, higher precipitation has a positive
effect on wheat yields for all datasets except WFDEI-
CRU. However, for the majority of datasets, precipita-
tion is not a significant predictor (p>0.05) of wheat
yields, reflecting the fact that wheat is commonly irri-
gated acrossmuch of India. Indeed, it is noticeable that
for many datasets the identification of precipitation as
a predictor of yield variability is not robust, with sig-
nificance changing substantially depending on the
choice of paired temperature dataset. CHIRPS is the
only dataset for which precipitation has a consistently
significant relationship with wheat yields. CHIRPS
predicts a stronger effect than any of the other pre-
cipitation datasets, perhaps reflecting the greater
capacity of CHIRPS to capture aggregated impacts of
sub-district rainfall heterogeneity. However, it is
important to note that the absolute differences in the
size of precipitation coefficients are small across
datasets (figure S3). A 10 mm change in total seasonal
precipitation is between 15% and 30% of the total
seasonal precipitation (figure S2). Yield differences for
a precipitation change of this magnitude range
between 14.2 kg/ha for CHIRPS to −2.2 kg/ha for
WFDEI-GPCC, both of which are less than 1% of the
averagewheat yield in the dataset.

For rice, precipitation is a consistently positive and
significant predictor of variability in crop yields over
space and time in India (figure 2), reflecting the fact
that rice is predominantly grown under rainfed or par-
tial irrigation conditions(DeFries et al 2016). How-
ever, variations in the size of the precipitation
coefficients exist between datasets, with coefficient
values ranging from 1.66×10−4 to 3.90×
10−4 ln(kg/ha)/mm. These values mean that an
increase in seasonal rainfall of 100mm would result in
a yield increase of between 31.4 kg/ha and 62.2 kg/ha,
a non-trivial level of uncertainty as total monsoon
(kharif) seasonal precipitation (averaged across all
years and datasets) in India is 869 mm. For all datasets,

GDDs are found to have a negative impact on rice
yields. This finding indicates that higher temperatures
lead to yield reductions, and is consistent with pre-
vious econometric studies of rice yields in India
(Auffhammer et al 2012, Fishman 2016). However, as
with precipitation, notable heterogeneity exists across
datasets, with yield reductions per 100 GDDs ranging
from 56.3 kg/ha for Princeton to 177.1 kg/ha when
using ERA-Interim.

The models in this study are based on seasonal
totals for precipitation, GDDs and EDDs instead of the
sub-seasonal totals used with most process-based
models. Crop yields are known to be affected by intra-
seasonal timing (Dalhaus et al 2018, Hufkens et al
2019) and intensity (Fishman 2016) of extreme
weather events. Incorporating sub-seasonal weather
variables is likely to exacerbate differences between
models even further as individual gridded weather
datasets are known to differ substantially in their abil-
ity to capture intraseasonal weather dynamics, for
example the size and arrival of the South Asian mon-
soon (Ceglar et al 2017).

3.2. Predicted impacts of climate change varywith
reference dataset choice
The changes in predicted wheat yields for each model
under potential climate change scenarios are shown in
figure 3. The range in yield changes for a one degree
increase in temperature is between −0.45%±0.07%
when using models trained on IMD temperature data,
and −1.15%±0.01% when using models trained on
ERA-Interim temperature data (where the uncertainty
is the standard deviation across the precipitation
datasets for a given temperature dataset). For a two
degree increase in temperature, yield changes for
wheat expand further to −1.13%±0.18% (IMD
dataset) and −2.97%±0.03% (ERA-Interim data-
set). These two results highlight how the low temper-
ature bias in ERA-Interim affects the yield-
temperature relationship for projected crop yields.
The increase in temperature leads to an increase in
EDDs, which in turn reduce the yield. Effects of
precipitation changes on yields are smaller in
magnitude, with the changes in yields for a 20%
increase in seasonal precipitation ranging from
−0.10%±0.04% (WFDEI-GPCC dataset) to
0.59%±0.28% (CHIRPS dataset) reflecting the smal-
ler effects of precipitation onwheat yields in India.

Results of the climate scenario analyses for rice are
shown in figure 4. Rice results show a significantly lar-
ger disagreement in future yield changes between
datasets, reflecting greater heterogeneity in coefficient
sizes for baseline rice models as shown in figure 2. For
example, a 20% increase in seasonal precipitation for
rice leads to an increase in yields of between
3.47%±0.26% (IMD dataset) and 6.67%±0.53%
(AgMERRAdataset). In contrast, a two degree increase
in temperature results in rice yield reductions of
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anywhere between 3.50%±0.76% (Princeton data-
set) and 7.51%±0.98% (ERA-Interim dataset) when
holding precipitation constant at historical levels.
Notably, there is large uncertainty in the combined
effects of uncertain future changes in temperature and
precipitation. For example, yield changes for a one
degree temperature increase and a 10% precipitation
increase range from 2.46% for the POWER temper-
ature + POWER precipitation model to 6.32% for
POWER temperature + ERA-Interim precipitation

model—a spread of over 3% based on reference data-
set choice alone.

4.Discussion and implications

Understanding the meteorological drivers of crop
yield variability is important for assessing exposure of
agriculture to climate risks, and for designing effective
strategies tomitigate impacts of future climate change.
For a case study in India, our findings highlight that

Figure 3.Wheat yield differences (%) projected as a result of afixedmodification to the input data. The fixedmodification is a
temperature increase or decrease (columns) and a precipitation increase or decrease (rows). The abbreviations are listed in table 1.

Figure 4.Rice yield differences (%) projected as a result of a fixedmodification to the input data. The fixedmodification is a
temperature increase or decrease (columns) and a precipitation increase or decrease (rows). The abbreviations are listed in table 1.
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our understanding of the sensitivity of crop yields to
climate variability and change is affected strongly by
the choice of reference weather dataset used to train
baseline statistical models. These differences in turn
have important implications for estimation of impacts
of climate change on agriculture(Van Wart et al
2013), which should be considered in future research
alongside other sources of uncertainty in climate
impact assessments such as the choice of emission
scenarios, climate model specification, downscaling
approach, reference timescale or impactmodel(Oettli
et al 2011, Hawkins et al 2013, Chen et al 2015, Iizumi
et al 2017).

In order to address these challenges, there is an
urgent need for greater evidence about the ability of
different gridded data products to capture spatial and
temporal weather variability in major agricultural
regions. A number of studies have evaluated the per-
formance of various gridded weather datasets against
station-level observations globally and regionally(Ii-
zumi et al 2014, Ruane et al 2015, Behnke et al 2016,
Beck et al 2017, Mourtzinis et al 2017). However, con-
clusions drawn from these studies are primarily driven
by performance in areas with high densities of weather
stations with long-term records (e.g. North America,
Europe). In contrast, performance of gridded weather
products in smallholder farming environments in
Africa and Asia is less well understood and quantified,
due to the more limited availability, coverage, and
reliability of weather station data in these loca-
tions(Menne et al 2012, Van Wart et al 2015, Heft-
Neal et al 2017). In these regions, our findings suggest
that modellers therefore should be cautious in using
only a single gridded weather data product to under-
stand current and future agricultural climate risks.
Specifically, we recommend that multiple gridded

weather datasets should instead be used when devel-
oping statistical crop yield models in absence of infor-
mation about the most reliable gridded weather
dataset, an approach that is comparable to the use of
multi-model ensembles in climate and other geophy-
sical modelling studies (Tebaldi and Knutti 2007,
Rosenzweig et al 2014).

Alongside these recommendations, our findings
also highlight the importance of weather dataset con-
sistency throughout the design and application of sta-
tistical weather-yield models. As an illustrative
example, figure 5 shows the errors in estimated aver-
age wheat and rice yields when a statistical model is
trained on POWER temperature and CHIRPS pre-
cipitation dataset and then used to predict yields using
alternative combinations of different input precipita-
tion and temperature datasets (see figures S4 and S5
for results using all dataset combinations). Impor-
tantly, such errors may have significant implications
for several end uses of statistical crop yieldmodels. For
example, weather index insurance policies, which are
widely offered to smallholder farmers in India and
other regions as a way to help mitigate financial risks
posed by weather-related crop losses (Barnett and
Mahul 2007, Clarke et al 2012), are often designed and
implemented using a range of different weather data
sources (e.g. long-term griddedweather data for regio-
nal contract design versus short-term station data for
triggering localised payouts). Each of these may con-
tain a different underlying bias. Where differences in
biases are large, the performance of index insurance
products may be negatively affected due to an over-
estimation or under-estimation of underlying climate
risks for farmers. This insight is comparable with pre-
vious conclusions about the robustness of weather
index insurance under non-stationary climate, which

Figure 5.Yield differences (%) forwheat (left) and rice (right) for themodel based on POWERGDDs and EDDs andCHIRPS
precipitation when applied to other dataset combinations.
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highlight that insurance performance deteriorates as
weather conditions deviate from historical bench-
marks due to factors such as multi-decadal climate
variability andman-made climate change (Daron and
Stainforth 2014).

Finally, while the discussion thus far in this paper
has focused on the impacts of gridded weather dataset
differences in the context of statistical crop yield mod-
elling, it is important to note that dataset bias will also
pose similar challenges when using biophysical pro-
cess-based crop models. Process-based crop models
internally specify fixed biological relationships
between growing season weather conditions and crop
yields. For example, the APSIM model assumes that
terminal heat stress for wheat is initiated for tempera-
tures above 34 °C. In addition, cold biases in weather
input data could also lead to an under-estimation of
yields because due to the erroneous triggering of low
temperature stress occurred within a process-based
crop model(Iizumi et al 2010). Any biases in input
weather datasets therefore will alter process-based
model predictions of expected yield variability, which,
in turn, may result in either an over- or under-estima-
tion of weather-related production risks in a given
farming system. The use of Tstr=30 °C is a limiting
factor in this study as it is based on values from other
statistical analyses(Schlenker and Roberts 2009, Tack
et al 2015, Roberts et al 2017) and the datasets therein.
The use of fixed limits is an additional mechanism
through which weather dataset choice can create
uncertainty in statistical yield models. For example
using an input weather dataset with a hot temperature
bias (e.g. POWER)will, all else being equal, lead a pro-
cess-based crop model to predict greater frequencies
and magnitudes of yield losses due to extreme heat
than if the same simulations were run using an input
temperature dataset without such a bias. As with sta-
tistical crop yield modelling, in the absence of objec-
tive information about the accuracy of different
griddedweather datasets, we argue that addressing this
challenge requires greater use of ensembles of gridded
weather datasets in process-based crop model simula-
tions. Such an approach would provide a more accu-
rate picture of the uncertainty in estimates of the
exposure of agriculture to climate risks, and, in turn,
improve the robustness of policy and management
recommendations about how to improve resilience of
smallholder farming to extreme weather and climate
change.
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