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Abstract
Many studies have reported that theArctic is greening; however, we lack an understanding of the
detailed patterns and processes that are leading to this observed greening. The normalized difference
vegetation index (NDVI) is used to quantify greening, which has had largely positive trends over the
last few decades using low spatial resolution satellite imagery such as AVHRRorMODIS over the pan-
Arctic region.However, substantial fine scale spatial heterogeneity in the Arcticmakes this large-scale
investigation hard to interpret in terms of vegetation and other environmental changes. Herewe focus
on one area of the northern AlaskanArctic using high spatial resolution (4m)multispectral satellite
imagery fromDigitalGlobe™ to analyze the greening trend nearUtqiaġvik (formerly known as
Barrow) over 14 years from2002 to 2016.We found that tundra vegetation has been greening
(τ=0.65, p=0.01,NDVI increase of 0.01 yr−1) despite no overall change in vegetation community
composition. The greening ismost closely correlated to the number of thawing degree days
(R2=0.77, F=21.5, p<0.001)which increased in a similar linear trend over the 14 year study
period (1.79±0.50 days per year, p<0.01, τ=−0.56). This suggests that in this Arctic ecosystem,
greening is occurring due to a lengthening growing season that appears to stimulate plant productivity
without any significant change in vegetation communities.We found that vegetation communities in
wetter locations greened about twice as fast as those found in drier conditions supporting the
hypothesis that these communities respondmore strongly towarming.We suggest that in Arctic
environments, vegetation productivitymay continue to rise, particularly inwet areas.

1. Introduction

Vegetation trends are important to the carbon balance
of Arctic ecosystems (Joos et al 2001, Mishra and
Riley 2012). Organic carbon content in Arctic soils is
about 1300 Pg (Hugelius et al 2014); roughly twice the
current total atmospheric carbon content
(IPCC 2013). Accelerated warming is occurring in the
Arctic as a result of climate change and positive

feedbacks (Chapin et al 2005, Serreze andFrancis 2006,
IPCC 2013) putting this large carbon pool at risk of
loss to the atmosphere (Schuur et al 2013, Schuur
et al 2015). Increasing permafrost temperatures
(Romanovsky et al 2017), lateral flowof organicmatter
(Spencer et al 2015), and disturbance (Price et al 2013)
are contributing to carbon losses. Carbon exchanges
vary between wet and dry vegetation communities
where wet communities (often standing water
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dominated by wetland sedges) are typically character-
ized by strong uptake of carbon dioxide (CO2)
(Sturtevant and Oechel 2013, Treat et al 2018) and
strong methane (CH4) emissions (Davidson et al
2016b, Treat et al 2018). Dry communities (dominated
bymosses, lichens and shrubs with a sub-surface water
table) typically exhibit weaker uptake or sometimes
net release of CO2 and low emissions of CH4 (Natali
et al 2015, Treat et al 2018).

Changes in vegetation productivity have been
measured by monitoring the normalized difference
vegetation index (NDVI) calculated from satellite ima-
gery (Jia et al 2003, Goetz et al 2005, Bhatt et al 2010).
NDVI is positively correlated to vegetation biomass
across Arctic tundra biomes (Jia et al 2003, Raynolds
et al 2011, Epstein et al 2012) thereforeNDVI increases
are defined as ‘greening’ and NDVI decreases are
defined as ‘browning’. Researchers have detected
greening trends across the pan-Arctic over the past
several decades (Jia et al 2003, Bhatt et al 2010, Bhatt
et al 2014); however, greening trends have started to
weaken (Piao et al 2014) or reverse with large brown-
ing areas, specifically in the European Arctic and
Seward Peninsula (Bhatt et al 2013, Phoenix and
Bjerke 2016, Bhatt et al 2017, Lara et al 2018).

Greening has predominantly been attributed to
large-scale climate conditions including rising tem-
peratures linked to reduced albedo over the ocean due
to sea ice decline (Bhatt et al 2010, Bhatt et al 2014,
Macias-Fauria et al 2017). In lower latitude Arctic
regions, greening has been associated with shrub
encroachment (Tape et al 2006, Forbes et al 2010,
Myers-Smith et al 2011), which also has a positive
feedback with warming (Chapin et al 2005). Greening
has also been correlated to shifting moisture regimes
(Bhatt et al 2017, Westergaard-Nielsen et al 2017) and
increases in temperature and precipitation due to
movements of air masses from lower latitudes
(Macias-Fauria et al 2017).

Most studies on Arctic greening use coarse satellite
imagery including AVHRR and MODIS with spatial
resolutions of 1–8 km and 0.25–1 km, respectively.
These images provide broad coverage of the pan-Arctic,
are relatively continuous temporally, and are useful for
determining global trends. However, due to the coarse
spatial resolution, fine details of patterns and processes
are indiscernible and has limited our understanding
of greening and browning (Bartsch et al 2016, Myers-
Smith et al 2019), particularly in ecosystems character-
ized by fine spatial heterogeneity such as Arctic tundra
(Webber 1978, Billings andPeterson1980).

Recent studies have taken more detailed approa-
ches to assess greening in the Arctic by utilizing Land-
sat satellites (30 m spatial resolution) (Frost et al 2014,
Nitze and Grosse 2016, Raynolds and Walker 2016,
Lara et al 2018). Some studies found that browning can
bemuddled by surface water due to the strong absorp-
tion radiance by water despite greening of vegetation
(Raynolds andWalker 2016). Others have shown how

the heterogeneity of vegetation cover, geomorphic
landscape type, and climate regimes can impact the
rate and trend of greening (Lara et al 2018). While
Landsat’s 30 m spatial resolution is able to cover a
large spatio-temporal extent, it does not fully capture
the heterogeneity within Arctic ecosystems, which
have fine scale polygonal landforms often less than
30 m across (Webber 1978, Billings and Peterson
1980).

Here we present a high spatial resolution (4 m)
analysis of greening for an area near Utqiaġvik (for-
merly Barrow), Alaska. Asmore high spatial resolution
satellite imagery is collected, these time-series approa-
ches will become increasingly valuable (Stow et al
2004) and offer new opportunities and challenges for
studying these complex, heterogeneous ecosystems.
These tools and their results will likely prove beneficial
for modeling carbon dynamics over multiple scales
and validating trends reported by larger scales studies.
In our study, we aim to (1) show if vegetation commu-
nities have changed, (2) analyze fine-scale spatial
NDVI trends, and (3) assess correlates of shifts in vege-
tation communities andNDVI.

2.Methodology

2.1. StudyArea
Our study was conducted on the Barrow Environmen-
tal Observatory (BEO) located near Utqiaġvik, Alaska
(figure 1). The BEO has a long research history,
resulting in a high frequency of satellite tasking, a
relatively steady meteorological data record, and
accessible field sites. Located in the Arctic Coastal
Plain, the site is on continuous permafrost and consists
of several drained lake basins (hereby basins), differing
in time since drainage (Hinkel et al 2003), and ice-
wedge polygon formations due to a seasonal freeze-
thaw cycle (Webber 1978). Dominant vegetation in
the region is characterized as a sedge/grass moss
wetland (Walker et al 2005). Further details are
available in the supplementary material is available
online at stacks.iop.org/ERL/14/125018/mmedia.

2.2. Imagery data acquisition and pre-processing
Imagery used in this study was procured through the
PolarGeospatial Center at theUniversity ofMinnesota
(table 1). Acquisition dates spanned 14 years, with the
earliest Ikonos image acquired 18 July 2002 and the
final WorldView-3 image acquired 24 July 2016. A
digital elevation model (figure 1(b)) was used to
measure the relative elevation of features (Wilson et al
2013). The largest overlapping area in all images
defined the study area extent with the northwest
corner at 71 °19′34.36″ N, 156 °41′20.62″ W and the
southeast corner at 71 °16′9.02″N, 156 °31′26.44″W.
The total study area was 37.42 km2. Supplementary
materials provide details on image pre-processing.
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2.2.1.Meteorological data
Hourly air temperature and relative humidity data
from the Barrow Atmospheric Baseline Observatory
(BRW, NOAA), located north of the study area
(71.3230 °N, 156.6114 °W), were used to understand
climatic conditions during growing seasons. Mean
growing season (June–August) air temperature, vapor
pressure deficit (VPD), growing degree days (GDD,
cumulativemean daily air temperature over 0 °C), and
thawing degree days (TDD, cumulative number of
days with a mean air temperature over 0 °C) were
calculated. TDD and GDD were calculated for image
acquisition dates allowingNDVI comparisons.

2.3. Field data collection
Field surveys were conducted in July 2018. Eight
transects were surveyed with a total of 2971 m × 1 m
plots. Transects ranged from 100 to 300 meters in

length and plots were surveyed every 5 m. For each
plot, plant types (grass, moss, lichen, shrub, open
water, and forb), thaw depth, soil moisture, and
canopy height were measured (see supplementary
materials for descriptions of field techniques). Med-
ians and standard deviations are reported as summary
statistics. Coordinates of plots were recorded using a
Trimble 5700 differential global positioning system
(Trimble®, USA).

2.4. Random forest vegetationmodel
Pixels with NDVI value below 0.1 (Gandhi et al 2015)
were masked to remove snow and water, which have
extremely high or low reflectance. Then we used
histogram matching to color correct images with the
2016 WorldView-3 image as the base (results in
supplementarymaterial). Bright and dark objects were
removed by the NDVI filter, therefore these objects

Figure 1. (a)Anoverview of the study area showing the location ofUtqiaġvik in Alaska represented by a red star. The study area extent
is highlightedwith a red box in the true color RGBmosaic acquired 22 July 2015 byWV2. (b)Basins over the study area; colors
represent the age of basins according toHinkel et al (2003). The blue is the only young age basin in the study area (basin 1). Therewere
eightmedium age basins (purple) and eight old basins (yellow). Basin numbers are labelled according to age and then generally north
to south. (c)Digital elevationmodel coverage through the study area. There is a gentle slope from the southern extent to the northwith
tributaries to the Elson Lagoon and basins as the lowest parts across the landscape. The background of panels b and c are a true-color
RGB image taken 24 July 2016 byWV3.
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will not skew histograms and allow for a better
comparison of illumination. A tasseled cap transfor-
mation was done to produce three orthogonal poly-
nomial combinations representing brightness,
wetness, and greenness of objects (Kauth and Thomas
1976, Yarbrough et al 2005).

Vegetation community classes from ‘wet’ and ‘dry’
locations were chosen based on functional relation-
ships with carbon cycling (Sturtevant and Oechel
2013,Natali et al 2015, Davidson et al 2016b, Treat et al
2018) and being spectrally separable. An additional
open water class was included after vegetation classifi-
cation; corresponding to pixels removed by the NDVI
filter. We utilized a random forest machine learning
algorithm for the vegetation classification model
because of its high accuracy when predicting vegeta-
tion classes (Chapman et al 2009, van Beijma et al
2014). Four spectral bands (blue, green, red, and near-
infrared (NIR)) and three tasseled cap variables were
used to train the random forest model. Welch two
sample t-tests were used to test for significant differ-
ences in spectral properties between vegetation com-
munities (see supplementary material). The random
forest model was then applied to all 15 images for pre-
dicting vegetation communities. Model accuracy was
assessed using 30% of ground reference points not
used in model training, against the classification of the
latest 24 July 2016WorldView-3 image.

2.5. Greening assessment
Greening of vegetation was measured using NDVI
following many Arctic studies (Bhatt et al 2010,
Epstein et al 2012, Bhatt et al 2013). Changes in NDVI

were estimated prior to applying the NDVI threshold
and histogram matching, since open water can con-
tribute to browning (Raynolds and Walker 2016)
which, we wanted to capture. Since NDVI changes
most rapidly during green-up (Zhang et al 2018),
differs seasonally and saturates (Suzuki et al 2001),
only peak season (mid-July to early August) image
acquisitions were used in the time-series analysis. This
approach captured NDVI shifts linked to long term
changes instead of seasonal differences due to acquisi-
tion dates. We also calculated a pixel level change to
locate finely detailed space-time anomalies by regres-
sing each pixel’sNDVI over time.

2.6. Statistical analyzes
Non-metric multidimensional scaling (NMDS) was
used to determine ecological separability between
vegetation communities using the ‘vegan’ package
(Oksanen et al 2018). Differences in the physical
environmental parameters were determined using
Welch two sample t-tests; the t-statistic (t), degrees of
freedom (df ), and p-value (p) are reported for these
tests. Homogeneity of variance was tested for all
parameters before significance testing.

Changes in vegetation coverage, NDVI, and TDD
over time were calculated according to Yue et al (2002)
using the ‘zyp’ package (Bronaugh and Werner 2019),
which is sensitive to potential autocorrelation in time-
series data. These changes were analyzed over the
entire image and by separating the landscape into the
following age based categories of basins (Hinkel et al
2003): young basins (0–50 years old), medium basins
(50–300 years old), old basins (300–2000 years old),
and the ‘other’ category that accounts for the remain-
ing landscape (figure 1(a)). Before analyzing controls
on NDVI, data were detrended to avoid temporal
autocorrelation by taking the residuals of the least
squares linear model between year and the given
variable.

NDVI controls were analyzed using linear mixed
effects models (LMEs) using maximum likelihood in
the ‘nlme’ package (Pinheiro et al 2018) and the
‘MuMIn’ package (Barton 2019) was used to calculate
the coefficient of determination of these LMEs. Two
components of coefficients of determination are
reported for each LME,marginal (R2

m) and conditional
(R2

c), representing the coefficient of fixed effects and
full model respectively. LMEs were compared to a null
model with only year as a temporal random effect
using analysis of variance. LMEs included single vari-
able models with each variable as fixed variables
(GDD, TDD, mean air temperature, and mean VPD)
and a full multivariate model with TDD, mean air
temperature, andmeanVPD.

To determine pixel level greening and browning
trends, the Theil–Sen slope method (Sen 1968,
Theil 1992) was used for the rate of change and

Table 1. Inventory of the images used for the
study including the acquisition date of the
image and the sensor used. All imagery used
wereDigitalGlobe™ assets (©Maxar
Technologies, USA). Sensors are as follows:
IKO, Ikonos;QB2,QuickBird-2;WV2,
WorldView-2;WV3,WorldView-3. July and
August images were used in time-series
analysis.

Acquisition date Sensor

18-July-02 IKO

02-August-02 QB2

16-June-06 QB2

21-July-10 WV2

24-July-10 WV2

25-July-10 WV2

03-August-10 WV2

10-July-11 WV2

05-July-12 WV2

13-August-12 WV2

30-June-14 WV2

24-June-15 WV2

22-July-15 WV2

20-July-16 WV2

24-July-16 WV3
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Yue et al (2002) time-series methods were again used
to determine statistical significance. This method of
trend detection performs better in remote sensing data
than more basic least-squares regression (Fernandes
and Leblanc 2005). NDVI of each pixel over time was
regressed using the ‘spatialEco’ package (Evans 2019),
resulting in rasters of Kendall’s τ statistics (ranging
from−1 to 1 with values closer to 0 indicating no sig-
nificant trend) and Theil–Sen slope. All statistical ana-
lyzes were conducted using R v.3.5.2 statistical
software (RCore Team2018).

3. Results

3.1. Vegetation community differentiation
Vegetation communities were separable with NMDS
showing distinct communities based on vegetation
composition (figure 2(a)), and environmental condi-
tions (figures 2(b)–(d)). Soil moisture was 55.09%
±12.40% and 83.18%±3.33% for dry and wet
communities respectively, and significantly different
(t=−23.4, df=143.6, p<0.001, figure 2(b)).
Canopy heights were also significantly different
(t=−11.7, df=280.4, p<0.001, figure 2(c)), with
higher wet than dry vegetation (19±8.99 cm and
10±5.49 cm, respectively). Thaw depths were not

significantly different between communities with
depths of 24.0±7.2 cm and 24.7±7.9 cm for dry
and wet communities (t=−0.93, df=287.8,
p=0.35,figure 2(d)).

3.2. Vegetation classification
The random forest vegetation classification had 82%
overall accuracy. Producer’s accuracy was slightly
higher for wet communities (86%) than dry commu-
nities (78%) and user’s accuracy was comparable for
wet (83%) and dry (82%) communities. Twenty-five
bootstrapped repetitions of the training data for
random forest model yielded an overall accuracy
of 89%.

Change detection between imagery dates revealed
negligible change in the overall areal extent of vegeta-
tion communities from 2002 to 2016. There was about
a half percent loss of dry community area (16 ha)
corresponding mostly to gains in open water (15 ha)
and a small increase in the wet community (1 ha), in
line with errors in areal estimates stemming from
image classification. A 2002–2016 change map
(figure 3) showed spatial trends of wetter areas becom-
ing wetter and drier areas becoming drier which,
appear relatively balanced from the total analysis.

Figure 2. (a)Non-metricmultidimensional scaling (NMDS) components 1 and 2 show ecologically unique vegetation communities
of dry andwet vegetation communities shown by sample clustering. (b) Soilmoisture is significantly different between the dry andwet
vegetation (t=−23.4, df=143.6, p<0.001). (c)Canopy height is also significantly different between vegetation classes (t=−11.7,
df=280.4, p<0.001), wet communities having higher growth. (d)Thawdepth is not significantly different between communities
(t=−0.93, df=287.8, p>0.05).
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3.2.1. Vegetation composition by basin age
There was no noticeable change in vegetation commu-
nity composition in the young basin with overall
changes less than 1% (< 1 ha). Medium age basins
by contrast showed a 16% increase in wet commu-
nities (85 ha) corresponding to similar losses in dry
communities. Old basins had a 4% decrease in wet
communities (26 ha) and similar increase in dry
communities (24 ha). The remainder of the landscape
showed little change with wet communities decreasing
by 3% and dry communities increasing by the same
amount. The only significant trend was open water in
the ‘other’ landscape area (τ=0.77, p=0.002,
slope=0.72 ha/year). All other trends were not
significant.

3.2.2. Vegetation change at individual basins
Some significant trends in vegetation cover were
observed within specific basins (table 2). Three med-
ium age basins (3, 4 and 5) had significant increases in
wet communities which, corresponded to losses in dry
communities. Conversely, old basin number 10 gained
dry community area but had no clear reciprocal
change in open water or wet communities. Since there
was only one young basin, these results do not differ
from above finding no significant change.

3.3. Greening of the landscape
We found an overall greening trend over the entire
study area (τ=0.65, p=0.01, NDVI increase of
0.01 yr−1) and within all basins, except for the young
basin, which showed a slight increase with no

significant change (p=0.077, τ=0.45, table 2). We
also found that the NDVI trend with respect to basin
age is spatially variable with faster rates of greening in
medium basins than old or ‘other’. Both wet and dry
vegetation communities significantly increased in
NDVI as well (τ=0.65, p=0.01 for both wet and
dry communities). The rate of increase in NDVI was
faster for wet communities (0.013±0.003 yr−1) than
for dry communities (0.011±0.002 yr−1). Pixel level
analysis showed similar results to those aggregated by
basins or vegetation. Wet areas showed the largest
change with rates of NDVI change around
0.05–0.08 y−1. Dry ridges show NDVI changes closer
to 0.01–0.04 y−1 (figure 4).

3.3.1. NDVI controls
TDD had the strongest correlation with NDVI
(figure 5, F=21.5, p<0.001,R2

m=0.56,R2
c=0.77,

NDVI increase of 0.004±0.001 d−1) and explained
most of the variability (the full multivariate model was
not significantly different from the individual model
of TDD (p=0.88, likelihood ratio=0.25)). GDD
also strongly correlated with NDVI, with a slightly
lower correlation coefficient than TDD (F=20.7,
p<0.001, R2

m=0.52, R2
c=0.77, NDVI increase of

0.0008±0.0002 °C−1). As GDD was strongly colli-
near with TDD, they were not assessed together in any
model (F=74.7, p<0.001, R2=0.84). Mean grow-
ing season air temperature and VPD were not corre-
lated to NDVI (F=1.2, p=0.27 for air temperature
and F=0.53, p=0.45 for VPD). The first day of the
year with a mean air temperature above freezing

Figure 3.Changemap of the vegetation community changes from 2002 to 2016.Numbers represent themagnitude of changewith
brown changes representing changes to drier communities and blue green towetter. A positive twowould be a change fromopen
water to dry and a negative two fromdry to openwater.White areas are anthropogenic areas that weremasked for all analyzes. (a)The
entire study areawhere it appears that wetter areas becamewetter and dry areas became drier which ultimately balanced out over the
landscape. (b)An enlarged subset of the red rectangle seen in panel (a) that shows dry community to openwater changes showing
possible erosion along the larger tributaries leading to the Elson lagoon. The edges of larger openwater seemed to transition towet
vegetation or openwater.
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Table 2.Time-series statistics for each individual basinwith regards to theNDVI and vegetation communities. Units for the vegetation communities are in hectares. The p-value is derived fromKendall’s Tau and the slope is derived from
Theil–Sen.

Dry Wet Water NDVI

Basin number Basin age p-value Tau Slope p-value Tau Slope p-value Tau Slope p-value Tau Slope

1 Young 0.421 0.216 0.223 0.334 −0.256 −0.216 1.000 0.198 −0.365 0.077 0.452 0.009

2 Medium 0.053 0.492 0.438 0.077 −0.452 −0.419 0.629 −0.138 0.050 0.016 0.610 0.013

3 Medium 0.036 −0.531 −2.931 0.036 0.531 2.846 0.006 0.688 0.039 0.024 0.570 0.013

4 Medium 0.016 −0.610 −1.125 0.016 0.610 1.125 1.000 0.000 −0.002 0.010 0.649 0.014

5 Medium 0.036 −0.531 −0.627 0.036 0.531 0.627 N/A N/A N/A 0.006 0.688 0.015

6 Medium 1.000 0.198 −0.049 1.000 1.000 0.079 1.000 0.010 −0.185 0.006 0.688 0.013

7 Medium 0.077 0.452 −0.142 0.077 −0.452 0.154 1.000 0.518 0.003 0.006 0.688 0.016

8 Medium 1.000 0.053 −0.368 0.053 0.492 0.031 N/A N/A N/A 0.006 0.688 0.015

9 Medium 0.147 −0.374 −0.697 0.147 0.374 0.697 N/A N/A N/A 0.006 0.688 0.016

10 Old 0.010 0.649 0.068 1.000 0.198 −0.540 1.000 0.260 −0.078 0.016 0.610 0.013

11 Old 0.872 0.059 0.235 0.872 0.059 −0.117 0.747 −0.098 0.134 0.010 0.649 0.011

12 Old 0.260 −0.295 −0.111 0.334 0.256 0.034 1.000 −0.020 0.012 0.010 0.649 0.012

13 Old 0.260 0.295 0.421 0.520 −0.177 −0.399 1.000 0.334 −0.291 0.016 0.610 0.011

14 Old 0.334 −0.256 −0.133 0.260 0.295 0.275 0.077 −0.452 −0.069 0.010 0.649 0.012

15 Old 1.000 1.000 12.125 0.872 0.059 −0.951 0.147 −0.374 −0.268 0.016 0.610 0.011

16 Old 0.107 −0.413 −0.643 1.000 0.107 7.255 1.000 0.421 −0.180 0.010 0.649 0.013

17 Old 0.629 −0.138 −0.133 0.629 0.138 0.131 1.000 0.162 −0.003 0.006 0.688 0.013

Other N/A 1.000 0.872 31.090 1.000 0.020 −4.096 0.002 0.767 0.619 0.010 0.649 0.011

7

E
nviron.R

es.Lett.14
(2019)125018



Figure 4.Pixel level changemaps of the study area from 2002 to 2016. (a)TheTheil–Sen slope (NDVI change per year) estimate shows
the largest changes came fromwater tracks in the south and basins 3, 4, 6 and 9. These areas had two to three times the rate of change of
drier ridges around the samewater tracks and surrounding basin 3, 4, and 11. Values are theNDVI change per year. (b)Mann-Kendall
p-values show areas with significant changeswere also largely located inwet areas including basins andwater paths. Openwater that
was included in the analysis was the least significant and changed the least giving us confidence the observed changeswere not due to
sensor drift or artificial interferences.

Figure 5.NDVI as a function of thawing degree days (TDD) across all images showing as the growing season length increases, NDVI
increases. As bothNDVI andTDD increased significantly over the course of the study, bothwere detrended in the LME testing the
significance (p<0.001,R2

m=0.56,R2
c=0.77,N=15). Year was kept as a random continuous variable withNDVI andTDDas

fixed variables.
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(i.e. first TDD) significantly shifted towards an earlier
date at a rate of 1.07 d per year (τ=−0.47, p=0.02)
but we found no evidence for changes in the last day
above freezing (τ=−0.01, p=1).

4.Discussion

4.1. Vegetation community characteristics
Vegetation community groupings based on functional
differences in carbon cycling characteristics (Sturtevant
and Oechel 2013, Davidson et al 2016b, Treat et al
2018), proved to be spectrally separable agreeing with
prior studies (Lin et al 2012, Davidson et al 2016a). We
were able to obtain ecological separation between
vegetation communities as well using surveys of plant
types (e.g. graminoid,moss, lichen, etc).

Soil moisture content was themain environmental
factor driving the separation of the vegetation com-
munities and dictating their geographical distribution.
Our results agree with findings from past studies (Lin
et al 2012) that showed vegetation communities near
Utqiaġvik exist across a moisture gradient. Canopy
heights differed between communities, with taller
vegetation in wet communities and shorter vegetation
in dry communities; canopy height has been used as a
correlative metric for predicting above ground bio-
mass in Arctic ecosystems (Berner et al 2018). This
suggests that wet communities typically have higher
biomass than dry communities and therefore the rela-
tionship between biomass and moisture may exist as
well (see supplementarymaterial). Thaw depth did not
differ between communities but this does not necessa-
rily imply equal carbon storage in the active layer
beneath the vegetation due to usually higher con-
centrations of organic matter in wetter lowlands, i.e.
higher biomass given equal soil volume (Ping et al
2008).

4.2. Vegetation community shifts at the landscape
scale
We observed no shift in the overall cover of vegetation
communities over the 14 year study. Measured shifts
were around 1% and could be due to differences in
water table, other seasonal differences, or classification
errors. These results are in line with prior long-term
studies of vegetation communities in this area showing
3% change over 60 years (1948–2008)when using high
spatial resolution photography with satellite imagery
(Lin et al 2012). However, Lin et al (2012) used four
single images (1948, 1955, 1979 and 2008) to assess
vegetation community change in their study which,
did not account for intra-annual variability in standing
water, a possible source of error. The seasonal progres-
sion in our data during 2010, where four images were
acquired over two weeks (21 July–3 August), showed a
seasonal drying. Changes in surface water during the
season can erroneously translate into error in pre-
dicted cover of vegetation communities by the random

forest model. This result highlights the importance of
considering timing of acquisition of high spatial
resolution imagery in analyzing interannual patterns
and change over long timescales.

Vegetation changes were observed in more loca-
lized areas. The young basin vegetation communities
did not change and consistedmostly of wet vegetation.
Old basins, comprised largely of low center polygons,
are thawing where ice wedge degradation occurs over
time scales ∼60 years; the stage of degradation deter-
mines the degree to which the landscape is wet or dry
(Liljedahl et al 2016). We saw no overall significant
changes in vegetation communities through the time-
series but that does not mean degradation and shifts
are not occurring. Polygon degradation effects could
balance out if multiple stages are occurring simulta-
neously over the entire study area. According to our
results, most changes occurred inmedium and old age
basins where medium age basins gained wet and lost
dry communities and old age basins showed the oppo-
site process (table 2, figure 3). Polygon degradation
(Liljedahl et al 2016) in old basins could increase drai-
nage to the lowest part of the nearby landscape, med-
ium basins, due to interconnected troughs and could
explain increases in wetness in these medium basins.
This is supported by the change map showing the wet-
ting in these medium basins and drying along the
edges (figure 3(a)). This is also supported by the fact
that medium basins had the lowest elevations
(figure 1(b)). Evidence of erosion or rising water levels
exists where edges of water paths have gains in wet
communities and edges of larger tributaries show dry
vegetation to open water transitions (figure 3(b)).
These results suggest that even though total vegetation
community compositions have not changed over the
entire study area, high spatial resolution imagery
allows us to detect localized but relatively balanced
shifts.

4.3. Greening of the landscape
4.3.1. Landscape scale greening trends
We found evidence of greening across vegetation
communities and basins. Mean NDVI values of the
whole image, split by vegetation type, basin age, and
individual basins, displayed significant increasing
trends in NDVI in all areas except the young basin.
However, the young basin already had a relatively high
NDVI (0.6 in 2016) and is at or above observed peaks
for this ecosystem (Bhatt et al 2017, May et al 2017).
Increases in NDVI can be due to changes in land cover
type (Elmendorf et al 2012) or increased vegetation
biomass (Hudson and Henry 2009). Due to the lack of
change in total vegetation community composition,
we suggest that the most likely explanation for the
observed greening in this ecosystem is increased plant
productivity and growth.
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4.3.2. Vegetation community specific greening rates
Our results show vegetation communities greening at
different rates, in agreement with prior studies (May
et al 2017, Andresen et al 2018). This trend has been
locally shown to stand across theNorth Slope of Alaska
where wet communities green faster under warming
(May et al 2017). Further, at a species level, wet
communities have been observed to shift more than
dry communities in this region over time, with sedge
species replacing bryophytes (Villarreal et al 2012),
which could aid in NDVI increases. When trends for
each pixel were analyzed, spatial patterns became even
more evident (figure 4). Some wet areas including
many medium age basins (basins 2, 4, 6 and 9) and
lower lying water paths had some of the highest rates
of greening, sometimes more than double that of dry
ridges (figure 4). The p-value map also supported that
these same areas have more instances significant
change. The faster green up in wet areas confirms
studies that show increases in moisture, expected in
this region under climate predictions (Zhang et al
2012), can enhance greening. Increases in moisture do
not universally increase NDVI as shown in Raynolds
and Walker (2016), where standing water depressed
NDVI due to differential absorption of NIR and
red irradiance by water. Lara et al (2018) further
showed negative correlations between precipitation
andNDVI.

4.3.3. NDVI controls and growing season length
Greening was most correlated to increases in TDD,
agreeing with previous studies (Huemmrich et al 2010,
Zeng et al 2011). This further suggests that NDVI is
most influenced by the thawing date (Oberbauer et al
2013, Andresen et al 2018); however, this may not
always be true. If there is a freezing day after initial
thaw, an early thawing can have the opposite effect on
growth (Oberbauer et al 2013), which causes browning
(Phoenix and Bjerke 2016). Mean temperature and
VPD did not influence NDVI in our study, possibly
because temperature and VPD have been shown to
correlate with max NDVI (Epstein et al 2012, Bhatt
et al 2014, Bhatt et al 2017) which we were are unable
to calculate with limited image acquisitions. Further,
the temperature-NDVI relationship has been seen to
weaken recently in theArctic (Piao et al 2014).

Many larger scale and coarser resolution studies
have used the summer warmth index (SWI), the sum
of mean monthly temperatures (Jia et al 2003), to
explainNDVI trends (Bhatt et al 2010, Bhatt et al 2013,
Bhatt et al 2014, Bieniek et al 2015, Bhatt et al 2017,
Berner et al 2018). SWI works for coarse-scale pan-
Arctic studies that use maximum or time-integrated
NDVI and have one value that represents the full
growing season. However, in high spatial resolution
investigations such as our study, a metric like TDD,
that’s measured on the acquisition date will better
explain NDVI. Due to the tie between TDD and
NDVI, we suggest that for high Arctic communities, if

thawing continues to start earlier, then continued
increases inNDVI are expected.

NDVI and vegetation communities differed sea-
sonally in 2010 when four images were acquired
within two weeks. This emphasizes that temporal and
spatial events may greatly affect NDVI values
observed. We accounted for this by only using images
acquired closer to peak growing season. While
intraannual variability was observed in NDVI, the
relationship with TDD, which also increased over the
study period, gives us confidence in the overall green-
ing trend. Further, these multiple images were used in
time series analyzes including the variability in trend
analysis. Ultimately more satellite tasking and image
acquisitions would be ideal to continue monitoring
this trend. More meteorological data, such as pre-
cipitation and evapotranspiration would be ideal to
tease out larger scale influences on NDVI (Andresen
and Lougheed 2015). Unfortunately, these datasets are
not always available over longer time-series or spatial
domains, especially within remote areas like the
Arctic.

5. Conclusion

We found evidence of greening across the landscape,
particularly in wet areas, and a balanced shift in
vegetation communities. TDD was best correlated to
the positive greening signal. There was no large shift in
vegetation community assemblage, but localized
changes were observed showing spatially variable
wetting and drying. Our study emphasizes the
increased ability of high-resolution remote sensing to
analyze details in change detection analyzes in the
Arctic. Specifically, we were able to observe that wet
communities may respond to warming at a faster rate
than drier communities.

Our study analyzes a small area in the Arctic but
takes a detailed approach to understanding Arctic
greening. Many studies have looked at large scale
changes which are important in a global context but
lack detailed explanations (Myers-Smith et al 2019).
Only by understanding drivers of greening can we
more accurately predict future vegetation productivity
in the Arctic, which is currently of great importance
given that experts cannot currently agree on the direc-
tion of change of the carbon balance (Abbott et al
2016).
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