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Abstract
While there is considerable agreement in the scientific community about the intensification of tropical
cyclones (TCs) in awarmingworld, that consensus does not exist for TC frequency. In order to shed
new light on this uncertainty, we classified the global oceans into three pools based on SST percentiles:
the (a)warm (�90th percentiles), (a)moderate (65th–90th percentiles) and (c) cool (<65th
percentiles) pools, and found that TC frequency increases significantly over the cool SST pool but
decreases in thewarm andmoderate SST pools. The differences in TC frequency change is large
among the three pools, contrasting to the small trend differences of TC intensity.

1. Introduction

Tropical cyclones (TCs) have considerable socio-
economic impacts, making assessments of their varia-
tions, long-term changes in intensity and frequency
are of considerable interest. There is a broad agree-
ment that TC intensity strengthens in a warming
climate based on observations [1–3] and on high-
resolution numerical simulations [4–7]. Given that
overall TC intensity has increased since the 1970s
[8, 9], stronger storms have been observed more
frequently in the North Atlantic [10] and over the
globe [11, 12]. However, no increase has been found in
the frequency of the weaker storms in the North
Atlantic [10]. Particularly, in the western North
Pacific, there has been a doubling in the proportion of
storms in Saffir–Simpson category 4 and 5 storms [13].
Furthermore, some high-resolution numericalmodels
have simulated a reduction in TC frequency in a
changing climate of warmer SSTs [6, 7, 14–17], while
other models gave an opposite conclusion [9, 18–22].
The results from model simulations and observations

show considerably more uncertainty in changes of TC
frequency compared to TC intensity [23]. Increased
TC frequency in a warming world can be explained by
an increase in the TC genesis potential index [24],
which empirically relates tropical cyclogenesis to
large-scale environmental parameters [18, 19]. On the
other hand, decreased TC frequency can be attributed
to increased vertical wind shear [25] and a decrease in
specific humidity [26, 27].

The analysis of the conditional probability of TC
genesis with environmental SST shows that increasing
SST favors TC genesis only for SSTs colder than the
most frequentmain development region environmental
SST [28]. Thus, it is possible that a better classification of
environmental conditions could assist in reducing
uncertainty associated with changes in TC frequency in
a warming world. In this study, the 2°×2 monthly glo-
bal SST background (ERSSTv5) [29]was divided, by the
SST percentile-based classification approach, into (a)
warm (�90thpercentiles), (a)moderate (65th–90thper-
centiles) and (c) cool (<65th percentiles) pools, respec-
tively (see data and method in supporting information
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section is available online at stacks.iop.org/ERL/14/
124052/mmedia). And, the TC activity change in these
three poolswill be themain focus of this paper.

TC data during 1977–2016 were obtained from the
International Best-Track Archive for Climate Steward-
ship version v03r10 database (IBTrACS) [30, 31]. All
TCs reaching the tropical storm category, i.e. max-
imum sustained wind speed reaching 34 knots, were
selected. The TCs were assigned to each SST category
according to the locations at the moments when they
first reached 34 knots. Their intensities and frequencies
are calculated on a seasonal basis for the three pools as
well as for the entire globe. To investigate the sensitivity
of TC intensity and frequency to changes in environ-
mental SST, simple linear trend analyses are performed
on the annual mean of Lifetime Maximum Intensity
(LMI), which is comparatively insensitive to someof the
past data uncertainties and is a better measure of TC
intensity [30], and storm counts of TCs with and with-
out the SST percentile-based classification. The correla-
tions of SST anomalies (SSTAs) from the climatological
meanwith LMI and storm counts are further calculated
to investigate the relationships of TC intensity and fre-
quencywith SSTAs in the three SSTpercentile pools.

2. TC activity trends over different SST
pools under global warming

Under the global warming background, themean SSTs
of the warm and cool pools had been increasing during
1977–2016 (figure 1). In this period, the minimum

SST threshold values of the cool pool in the SH and
NH are found to be 27.2 °C and 28.0 °C, while that of
the warm pool are 28.7 °C and 29.0 °C, respectively.
The SST thresholds increased at a rate of approxi-
mately 0.12–0.14 °C/decade, reaching the 99% con-
fidence level, over the 40 year period. As an example,
figure 2 gives the spatial coverage of the three pools in
February and August 2016. During the SH TC season,
the warm pool mainly covers the ocean around
maritime continent and north Australia; that during
the NH TC season is observed over the West Pacific
WarmPool and theGulf ofMexico, with themoderate
pool surrounding them.

The time series of the annual storm counts over
the entire globe and the three pools are shown in
figure 3. As listed in table 1, the linear increasing trend
of storm counts in the cool pool is the greatest (+1.92
storms per decade, significant at the 95% confidence
level); the storm counts in the moderate and warm
pools are declining at a rate of −0.79 storms per dec-
ade (not significant) and−1.08 storms per decade (sig-
nificant at the 90% confidence level), respectively. The
insignificant trend of entire globe storm counts (+0.33
storm counts per decade) represents the combined
effect of the significant positive trend in the cool pool
and the negative trends in the moderate and warm
pools.

The negative trends of TC counts in the moderate
and warm pools (figure 3), where the SST values are
already very high (>27 °C, figure 1), indicate that glo-
bal warming has an opposite impact on the TC counts

Figure 1. 1977–2016 annualmean SST threshold values of the cool pools in (A) the SHTC season (January–March) and (B) theNH
TC season (June–October). The SST thresholds selectedwere based on the ocean areas 35° latitudes of either side of the equator. (C)
and (D) are the same as (A) and (B) except of thewarmpools. The heavy solid black curve shows the SST threshold time series. The
solid blue line shows the bestfit linear trend, and the dashed red line shows the bestfit quadratic trend. The linear trend (unit: °Cper
decade) are shown at the top of each panel, which are all statistically significant at the 99% confidence level.
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in the warm pool to that in the cool pool. The storm
count trends show large differences betweenmoderate
pool and cool pool (−2.71 storms per decade, and
between warm pool and cool pool (−3.00 storms per
decade, both significant at the 99% confidence level),
meaning that global warming decreases (increases)
TCs frequency in the warmer (cooler) environment.
The significant positive trend in the cool pool areas is
most likely due to the expansion of TC genesis areas
exceeding the TC genesis SST threshold value
(26.5 °C) [31, 32]. Figure 4 plotted the total areas
greater than 26.5 °C in the cool and warm pools from
Equator to 35 °N/S summing over the NH and SHTC
seasons. The area with SST above 26.5 °C expanded
significantly over the cool pool, but stayed about the
same over the warm pool, supporting the above expla-
nation that the expanding area favoring TC genesis
lead to the more frequent TCs over the cool pool.
These results may explain why storm frequency trends

have been found to be so uncertain in previous studies,
which did not consider the impact of environmental
SST, and could imply that opposing trends may effec-
tively ‘cancel out’ any notable trends in TC frequency.
The above analysis excluded TC data from the North-
ern Indian basin for reasons explained in the support-
ing information section. TC frequencies and their
linear trends also exhibit large hemispheric differ-
ences, as listed in table 1. Nevertheless, there are clear
and contrasting linear trends of TC storm counts
among the three SST percentile pools in both
hemispheres.

The LMI and their linear trends are also listed in
table 1. The LMI strengthens over the entire globe,
with the largest trends being over the cool and warm
pools. The LMI trend is 1.39 knots per decade (sig-
nificant at the 80% confidence level) and 2.38 knots
per decade (significant at the 99% confidence level) in
the cool and warm pool, respectively. The LMI and

Figure 2. SST classification in (A) February and (B)August 2016 based on the Southern andNorthernHemispheric SST percentile
threshold values. Thewarm,moderate and cool pools are shaded in red, orange and blue, respectively.
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their linear trends also exhibit considerable hemi-
spheric differences. Since the grid areas greater than
26.5 °C stay about the same over the warm pool, the
empirical framework by Kang and Elsner, which pro-
jects global ocean temperature variation onto a two-
dimensional continuous frequency–intensity space,
could be used to explain physically why increasing the
opposite trends of TC intensities and TC fre-
quency [33].

3. Relationships of TC frequency and
SSTAs over different SST pools

The correlation coefficients between detrended total
TC storm counts and SSTAs are shown in figure 5 over
the entire globe and the three pools. Significant
positive correlations exist between TC storm counts in

the cool pool and SSTAs of almost all the oceanic
regions, as shown in figure 5(B), while there are
significant anti-correlations between SSTAs and storm
counts in the moderate and warm pools, especially
over the Indo-Pacific-Atlantic warm pools, as shown
in figures 5(C) and (D). The observed opposite
correlations of SSTAs with TC storm counts in
different SST pools are the main reason for the
insignificant correlation observed between SSTAs and
all TC cases over the entire globe, as shown in
figure 5(A). The different relationships of storm
frequency/count with SSTAs in various pools show
the complexity of the impacts of global warming on
TC frequency, which is similar to the trend analysis
results. This highlights the usefulness of applying the
SST percentile-based classification approach on study-
ing the TC activity responses to global warming.

Figure 3. 1977–2016 annual TC counts (heavy solid black), their linear (solid blue) and quadratic (dashed red) trends over (A) the
entire globe, (B) cool pool, (C)moderate pool and (D)warmpool. The linear trends (unit: counts per decade) of the annual TC counts
are respectively 0.33 (statistically insignificant), 1.92 (significant at the 99.0% confidence level),−0.79 (statistically insignificant), and
−1.08 (significant at the 90.0% confidence level) storms/decade, respectively.

Table 1. Linear trends of storm count (unit: storms per decade) and LMI (unit: knots per decade) time series.

Linear trends of storm count and LMI over the entire group and the three SST pools in both hemispheres, respectively. Bold black text

denotes trends significant at the 95% confidence level, while bold red text indicates a confidence level reaching 80%but lower than 95%.
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4. Relationships of TCLMI and SSTAs over
different SST pools

The correlation coefficients between SSTAs and the
TC LMI are plotted in figure 6. As shown in figure 6(C)
the LMI of TCs in the moderate pool was positively
correlatedwith SSTAs only over the Equatorial Eastern
Pacific Ocean (EEPO), corresponding to the main
activity area of the El Niño-Southern Oscillation
(ENSO). In contrast, the LMI of TCs over both the
cool and warm pool are significantly correlated with
the global SSTwarming pattern, except over the EEPO
(figures 6(B) and (D)). The big differences between the
correlations of the counts and LMI of TCs in the warm
pool with SSTAs (figure 5(D) versus Figure 6(D)) are
of interest. Thus, in the areas where the background
temperature is already high, the response of TC
genesis to the global warming pattern is negative and
results in a decreasing trend. However, once the
storms were developed, they could be much more
powerful due to the higher environmental SST. In the
cool pool areas, global warming favors bothTC genesis
andTC intensification.

5. Conclusions and discussions

In past studies, global warming impacts on TC beha-
viors weremasked due to differences in the background
climatic state of SST conditions. The SST percentile-
based classification method presented here helps one
identify the relationship between changes in TC activity
and SST, leading to a clearer and statistically significant
picture of the global warming impact on TC frequency.
By classifying the ocean into cool, moderate and warm
pools, we found that TC storm counts increased every-
where in the cool pool areas, and in contrast, TC storm
counts decreased in themoderate and warmpool areas.
The correlations of TC LMI with SSTAs show smaller
differences, compared to that between TC frequency
and SSTAs, among the three pools. The areas with
statistically significant positive correlations of TC LMI
over the cool and warm pools with SSTAs are much
larger than that in the moderate pool, where only the
EEPO shows statistically significant results. These
illustrate how the different characteristics of the TC
frequencies and intensities over different SST back-
ground responddifferently to climate change.

Figure 4.Time series of the total areas (heavy solid black, unit: 222 km×222 km) greater than26.5 °Cover the (A) cool and (B)warm
pools fromEquator to 35 °N/S summing over theNHandSHTCseasons.Red line shows the bestfit linear trend.Note that considering
theTC season length difference, the area sumsduring the twoTCseasonwereweighted in the analysis such that bothTCseasons
contribute the same to the annual sumof area.The annual areas for cool pools increaseby24.89 cell size (1 cell size=222 km×222 km)
per decade,which is significant at the 99.9%confidence level.However, that forwarmpools stay about the same.
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Figure 5.Correlation between annualmean SSTAs and the global TC storm counts over (A) the entire globe, (B) cool pool, (C)
moderate pool and (D)warmpool during 1977–2016. The shaded areas indicate significant correlations of 0.317, 0.408, and 0.507,
corresponding to the 90%, 95%, and 99% confidence levels respectively.

Figure 6. Same asfigure 5 but for LMI.
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Although previous studies of simulations and
observations show uncertain changes of TC frequency
under global warming [23], our result indicates that
global warming has an opposite impact on the TC
counts in the warm pool to that in the cool pool. We
attribute the increasing trend of TC storms in the cool
pool to the expansion of TC genesis areas over the cool
pool, while the TC genesis area trend of the warm pool
keeps steady. These resultsmay also explainwhy storm
frequency trends have been found to be so uncertain in
previous research works, which did not consider the
impact of environmental SST, and could imply that
opposing trends may effectively ‘cancel out’ any nota-
ble trends in TC frequency.

Understanding changes in TC frequency and inten-
sity in a warming world is important from both a science
and societal standpoint. While TC is primarily an atmo-
spheric phenomenon, warming SSTs have clear effects
on TC frequency and intensity that should be taken into
consideration to assist in reducing the uncertainty related
toTC climatology and seasonal outlooks. In additional to
environmental SST classification, we could also classify
TCs into different categories according to their intensity
when studying TC activity changes. Quantile regression
of wind speed quantiles on time (year) or annual global
SST could also be used for further study [33]. In this
paper, we have established that employing this SST per-
centile-based classification approach has great potential
to be a reliable indicator for explaining changes inTC fre-
quency and intensity in awarmingworld.
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