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Abstract

Achieving the Paris Agreement’s near-term goals (nationally determined contributions, or NDCs) and long-
term temperature targets could result in pre-mature retirement, or stranding, of carbon-intensive assets
before the end of their useful lifetime. We use an integrated assessment model to quantify the implications of
the Paris Agreement for stranded assets in Latin America and the Caribbean (LAC), a developing region with
the least carbon-intensive power sector in the world. We find that meeting the Paris goals results in stranding
of $37-90 billion and investment of $1.9-2.6 trillion worth of power sector capital (2021-2050) across a
range of future scenarios. Strengthening the NDCs could reduce stranding costs by 27%—40%. Additionally,
while politically shielding power plants from pre-mature retirement or increasing the role of other sectors
(e.g. land-use) could also reduce power sector stranding, such actions could make mitigation more expensive
and negatively impact society. For example, we find that avoiding stranded assets in the power sector
increases food prices 13%, suggesting implications for food security in LAC. Our analysis demonstrates that
climate goals are relevant for investment decisions even in developing countries with low emissions.

1. Introduction Paris temperature targets require reaching net-
zero global carbon dioxide (CO,) emissions before the

The Paris Agreement uses nationally determined end of the century [3]. Achieving these goals would

contributions (NDCs) as the near-term foundation for
achieving its long-term goal of limiting the increase in
global mean temperature to ‘well below 2 °C above pre-
industrial levels and pursuing efforts to limit the temper-
ature increase to 1.5 °C above pre-industrial levels’ [1].
NDC targets are initially defined for the period 2025 or
2030 [2] and vary greatly from country to country,
reflecting countries” unique mitigation challenges and
opportunities and social, economic and political
circumstances.

require policies to shift the current methods of energy
production from carbon-intensive sources to low and
non-carbon-emitting sources. Such a shift could in
turn result in the devaluation or retirement of carbon-
intensive assets before the end of their expected life-
time, referred to as ‘stranding’ of assets [4-7]. The
concept of stranded assets has been explored by
experts in a variety of disciplines, from economics to
finance to accounting and public policy [8], in con-
texts ranging from fossil fuel reserves to electric power

© 2020 The Author(s). Published by IOP Publishing Ltd
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to natural gas liquefaction to agriculture [9, 10]. Stran-
ded assets, defined broadly by Caldecott ef al (2013) as
assets which ‘suffer from unanticipated or premature
write-offs, downward revaluations or [conversion] to
liabilities’ [9], can result a variety of physical /environ-
mental (i.e. increasing water scarcity as a result of cli-
mate change), technological (emergence of disruptive
technologies), social (shifting consumer preferences),
and regulatory forces [8]. The issue of stranded assets
is important because they could result in financial
market instability which in turn could create macro-
economic instability [11]. Stranded assets could also
create political instabilities due to a rapid loss of wealth
for the owners of affected capital assets, potentially
resulting in lobbying and rent-seeking behavior [12].

In the context of climate change mitigation, stran-
ded assets could manifest in various forms such as fos-
sil-fuel resources that cannot be burned in order to
maintain a long-term temperature goal or pre-mature
retirement of man-made capital assets due to climate
policies [13]. Previous quantitative studies of stranded
assets in the context of climate change mitigation have
focused on quantifying unburnable fossil fuels
[14-17], quantifying ‘committed’ future emissions
implied by current investments [18—21], and on asses-
sing stranded power sector capital assets under global
long-term mitigation scenarios with different levels of
stringency of near-term mitigation policies [7, 22, 23].
Several of these studies have utilized global integrated
assessment models (IAMs) to quantify the potential
for future stranded assets in a manner that captures
key regional and sectoral interactions and feedbacks.
Such IAM studies have largely quantified stranded
assets results in physical terms such as GW of stranded
capacity, seldom assigning monetary values to these
stranding outcomes. A number of studies have used
other methods to estimate stranded assets in more
specific regional and sectoral contexts (see IRENA
(2017) [10]), including several studies focused on coal-
fired power plants [24-31].

Stranded assets is a key issue for countries in Latin
America and the Caribbean (LAC), despite the fact
that the region is responsible for less than 10% of glo-
bal carbon dioxide (CO,) emissions [32] and already
generates more than half of its electricity from renew-
able sources [33, 34]. For example, a recent analysis
found that the region ranks second (behind only the
Middle East) in terms of total volume of unburnable
oil and gas reserves [16], and fossil fuel production is a
key component of many LAC economies. However,
the risks associated with man-made stranded assets in
LAC have been largely overlooked as few studies have
attempted to assess their implications for the region or
countries therein [10]; there is a clear need for tools
and analyses which help decision-makers better
understand the potential for stranded assets in LAC
and their implications for low-carbon development
strategies [35, 36]. In addition, financial institutions in
LAC are not as robust as in other regions [37, 38],
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which can hamper countries’ ability to deal with the
instability created by stranded assets.

Despite its growing prominence as a topic, there
has been little analytical work specifically looking at
stranded assets in regional contexts [10, 39]. While
global studies are helpful to provide a sense for the
scale of the problem, regulatory and investment deci-
sions are made predominately at the national and sub-
national level. Hence, conducting analyses with
greater geographic resolution is important for making
results relevant to decision-makers.

We provide analysis at the regional level, assessing
the issue of stranded assets and long-term dec-
arbonization strategies for LAC. Specifically, we
address the following question: What are the implica-
tions in terms of power sector stranded assets and invest-
ment needs for LAC countries in delivering their
commitments towards achieving the objectives of Paris
agreement? Additionally, to make our findings more
salient for decision-makers, we quantify stranded
assets in monetary terms. We also provide a sensitivity
analysis around several modeling assumptions,
including political willingness to avoid stranded assets,
technology availability, and the role of land-use in
mitigation, which were identified as key uncertainties
by decision-makers in LAC.

2. Methods

2.1. The global change assessment model

We use the Global Change Assessment Model
(GCAM) to analyze the composition and magnitude of
stranded assets in the LAC power sector. GCAM is an
open-source, global IAM which captures important
interactions between the global economic, energy,
agriculture, and land-use systems [40-43] (supple-
mentary figure 1 is available online at stacks.iop.org/
ERL/15/044026/mmedia). Dynamic-recursive mod-
els of each system are linked through markets and
paired with a reduced-form atmosphere-carbon-
cycle-climate model called Hector [44].

GCAM contains 32 geopolitical regions and oper-
ates in five-year time steps from 2010 (the last base
year) to 2100. LAC is divided into seven model
regions, four of which (Argentina, Brazil, Colombia,
and Mexico) represent individual countries (see sup-
plementary table 1 for a breakdown of countries con-
tained in each GCAM LAC region). Key inputs which
drive model results include socioeconomic assump-
tions (population, labor participation rates, and labor
productivity growth rates for each geopolitical region)
and representations of the physical world (resources,
biophysical processes like net primary productivity),
technologies, and policy. In each model period, the
model solves for the equilibrium prices and quantities
of various energy, agricultural, and greenhouse gas
(GHG) markets at either the global or regional level.
GCAM tracks emissions of 24 GHGs and air pollutants
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Table 1. Scenario design.
Scenario 2016-2020 2021-2030 Beyond 2030
NDCs-to-2 °C Copenhagen NDCs Global cumulative CO, emissions budget (2011-2100) of 1000 GtCO,
NDCs-to-1.5 °C Copenhagen NDCs Global cumulative CO, emissions budget (2011-2100) of 400 GtCO,
Straight-to-2 °C Copenhagen Global cumulative CO, emissions budget (2011-2100) of 1000 GtCO,
Straight-to-1.5 °C Copenhagen Global cumulative CO, emissions budget (2011-2100) of 400 GtCO,

endogenously based on activity in the energy, agri-
culture, and land-use systems (supplementary note 1).
The model tracks electricity generation by technology
vintage (supplementary note 2), which allows the
quantification of stranded assets in monetary terms.

2.2.Scenarios

We explore four global GHG mitigation scenarios to
assess the implications of the Paris Agreement on
stranded assets in LAC (table 1). These scenarios vary
in terms of near-term and long-term mitigation
stringency. To represent the Paris Agreement’s long-
term temperature goals, we constrain the cumulative
CO, emissions budgets over the century (2011-2100)
to levels that are consistent with limiting mean global
surface temperature increase to 2 °C (1000 GtCO,) or
1.5°C (400 GtCO,) [45]. Country-level NDCs are
aggregated to the GCAM region level in a manner
consistent with previous studies [46] (supplementary
note 3; supplementary table 2). Our representation of
the NDCs assumes economy-wide mitigation, imple-
mented through a carbon price. Real-world measures
will differ from this approach. Regardless, our results
are meant to be illustrative and our idealized imple-
mentation is sufficient to illustrate the key points
raised in this paper. In the long-term, the regional
allocation of emissions within the emissions budget is
based on global least-cost mitigation and can vary
across scenarios.

In the Straight-to-2 °C and Straight-to-1.5 °C sce-
narios, countries are assumed to achieve their Copen-
hagen pledges [46] through 2020 before pursuing
least-cost mitigation efforts (as implemented by a glo-
bal carbon price) starting from 2021 to meet the emis-
sions budgets. In contrast, in the NDCs-to-2 °C and
the NDCs-t0-1.5°C scenarios, the same emissions
budgets are assumed to be achieved while countries
mitigate according to their NDCs until 2030, after
which global least-cost mitigation is employed. Since it
has been demonstrated that the NDCs collectively
produce higher emissions than global least-cost miti-
gation pathways [47, 48], the Straight-to scenarios pro-
vide more flexibility to act earlier in decarbonizing the
economy and minimize overall financial implica-
tions [6].

2.3. Estimation of monetary value of stranded assets
GCAM tracks electricity generation by technology
vintage. Generation in a vintage’s initial year of
operation represents full utilization and the generation

for a vintage can never exceed full utilization. If a
technology cannot cover its operating costs, it is retired
before the end of its lifetime. We employ a logistical
method to retire power production capacity when
variable costs approach the price received for power.
An s-curve function defines the fraction of power
plants which must retire when the variable cost of
operation exceeds the market price of electricity
(supplementary note 2). These retirements are tracked
as areduction of the vintage’s generation capacity.

Our estimate of the value of retired production
capacity is based on the original investment to bring
the capacity on line and its expected physical lifetime
at the time of installation, as well as the fraction of the
vintage retired. The cost to bring the vintage of capital
on line is the original overnight capital cost (supple-
mentary table 3). The financial value of installed capa-
city is assumed to decline linearly with time from its
initial overnight capital cost. That is, the economic
value of the capital stock in subsequent years is the ori-
ginal capital cost times the fraction of the capital
stock’s foregone useful life (supplementary figure 2).
In other words, the foregone value of a prematurely
retired power plant is calculated as the total capital
cost of the asset times the fraction of expected (physi-
cal) lifetime (supplementary table 4) foregone due to
premature retirement. This can be expressed as:

SV = OCC " ((EL — AL)/EL), where:
SV = stranded value,

OCC = overnight capital costs,

EL = expected lifetime, and

AL = actual lifetime.

Our methodology extends the one developed by
Johnson et al [23] by applying asset depreciation.

3. Results

3.1. CO, emission pathways

Energy and industry CO, emissions continue to rise
until 2030 in the NDCs-#0-2 °C and NDCs-to-1.5°C
scenarios, both globally and in LAC (figure 1). Globally,
emissions in the NDCs scenarios are 17% and 77%
higher than the Straight-to-2 °C and Straight-to-1.5 °C

3



Environ. Res. Lett. 15 (2020) 044026

P Letters

Global

Reference

50

40

30

20 Straight-to-1.5°C

NDCs-to-1.5%C

Global energy and industry CO2 emissions [GtCO,]

Energy and Industry Total

Straight-to-2°C

030
035
040
045

2015
2020
2025

2010

a a a a

i

050

-

are explored in section 4: Sensitivity analysis.

2
£ Reference
5 f
[=} 2
- 4
3 g1s
D 5
o
70} 8
B 9]
i 510
z g
s
R g i o
g s Straight-to-1.5 Straight-to-2
=2 £
= =
|33 s
o]
= 20
= 2 NDCs-to-1.5°C
&}
-5
o w = . o - - "
S 3 g g P P g 3
& & a a & =1 b t]

050

o

Figure 1. Global (A) and Latin America and Caribbean (B) CO, emissions from energy and industry across all model scenarios. Global
(C) and Latin America and Caribbean (D) electric power sector CO, emissions across all model scenarios. Negative emissions come
from bioenergy with carbon capture and sequestration (BECCS; see supplementary note 5). Scenarios in which BECCS is unavailable

LAC

Reference

Straight-to-

= 1.0
> e
260.5
3
5
v 0.0
< NDCs-to-1.5°C
-0.5
1.0
= w = wvy S wv) S vy =3
= = a a o Q S p- & pe]
a a & a a Q & a a

Reference

o

-

iv

It
o

e
o

. LAC electric power sector emis:

S
»

=)
o

2010
2015
2020
2025
2030
2035
2040
2045
2050

scenarios in 2030; in LAC, this emissions gap is 18%
and 62%, respectively (see supplementary note 4 for a
discussion of LAC Emissions Pathways). These path-
ways are consistent with previous findings that there
is a substantial gap globally between the NDC pledges
and least-cost emissions pathways [47—49]. The higher
near-term emissions in the NDCs scenarios entail
steeper reductions beyond 2030, since the NDCs and
the Straight-to scenarios are constructed to achieve
the same emissions budget over the century. The near-
term trend and emissions gap are similar in the power
sector, which fully decarbonizes by 2050 in each
mitigation scenario (see supplementary figure 4 for
information on the LAC power sector in the Reference
scenario).

Itis notable that LAC reaches net-negative energy
and industry CO, emissions by 2050 in both of the
1.5 °C scenarios, while global emissions in those sce-
narios remain positive through mid-century. This
result is influenced by the use of a uniform global car-
bon price to achieve the cumulative emissions

budget. Under such a regime, emission-reduction
efforts are directed toward lowest cost, irrespective of
the source of emissions. Since LAC’s energy system is
presently less carbon-intensive than the average for
the rest of the world, it is able to reach net-zero emis-
sions more quickly than regions which have more
carbon-intensive infrastructure already locked in
place. Negative emissions come from bioenergy with
carbon capture and sequestration (BECCS); because
LAC has a higher share of bioenergy in primary
energy consumption than the rest of the world of the
world historically, it tends to deploy BECCS more
quickly at a given carbon price in our modeling fra-
mework. However, the potential for large-scale
BECCS deployment is highly uncertain for a variety
of reasons [50]; the sensitivity analysis in section 3.4
includes scenarios in which CCS (and therefore
BECCS) is unavailable. (For further discussion on
LAC emissions pathways and the role of BECCS,
see supplementary notes 4 and 5.)

4



10P Publishing

Environ. Res. Lett. 15 (2020) 044026

B Letters
- Straight-t0-2°C NDCs-to-2°C
: 450
NEW INSTALLATIONS NEW INSTALLATIONS
350
® Geothermal
250
2 = Solar
3 150 _—
g - ! 5 = Wind
g 50 ” LR L
g - = m R 2 s e Hydro
-50
PREMATURE RETIREMENTS PREMATURE RETIREMENTS " Nuclear
-150 -150 ) )
g & 2 5 % % 8 g & 2 5 g % 8 #Biomass with CCS
S S b= =3 < = = S b= b= = b= < b=
S &8 § & 8§ & & & & & & & & &
& - & - ) - ) - & - & - &
2 3 8§ =z 28 2 3 58 = = : "
s 8 § 8 8 & 2 s &8 § 8 8 & 2 = Biomass without CCS
& .
. Straight-to-1.5°C - NDCs-to-1.5°C < Gas with CCS
. NEW INST TIONS N NEW INSTALLATIONS 8
NEW INSTALLATIONS EW INSTALLATIONS # Gas without CCS
350 —
# Oil with CCS
e ® Oil without CCS
E 2 ——
5% NN N Coal with CCS
¢ ,%!!ag Wl 1
£F 50| PRK KR — & ® Coal without CCS
S e 2 P [ ; NN oal without
= £ -%%wm“m o AN 0 - DN
=z
3 50
PREMATURE RETIREMENTS PREMATURE RETIREMENTS
-150 -150
s w2 9w = 9w o s v 2 9w 2 w 2
& & 2 2 %8 % 8 S 4 2 45 % % 8
= = = = =3 =3 = = = =3 = = = =
§ 8§ § & § 8§ 7 § & § § § & §
2 3 8 =z &2 3 £ 3 & =z & 3 ¥
& &8 &8 & &8 & & & &8 &8 & & & =&
Figure 2. New Installations and Premature Retirements (negative investment values) by Scenario, Period, and Technology in the LAC
Power Sector. Bars represent cumulative additions/retirements over a five-year model period. See supplementary figure 5 for
country-level results.

3.2. Stranded assets and investments in the LAC
power sector

The four mitigation scenarios are characterized by a
major transformation of the energy system by 2050
(supplementary figure 3), including increased energy
efficiency and conservation, a transition from emitting
fossil-fuel technologies (such as oil and gas power and
petroleum based transportation) to low- and non-
carbon emitting technologies (including renewable
electricity, carbon capture and sequestration, and
liquid biofuels), and a shift in the type of investments
throughout the energy system.

Here, we focus on stranded assets and investments
in the power sector, an important sector in the context
of climate change mitigation [4], as a conservative
measure of the scale and value of stranded assets in
LAC. Across the mitigation scenarios explored in this
study, between 60 GW (Straight-to-2 °C) and 128 GW
(NDCs-to0-1.5 °C) of fossil-fuel power plants are pre-
maturely retired before the end of their physical life-
times in the LAC power sector from 2021 to 2050
(figure 2; supplementary table 5). These amounts are
equivalent to 15%—-33% of the total installed capacity
in 2015 in LAC (approximately 393 GW) [51]. Since
the NDCs-t0-1.5 °C scenario requires the fastest
reductions in CO, emissions, the magnitude of stran-
ded assets in that scenario is also greatest, resulting in
nearly 50% more stranding than the Straight-to-1.5 °C

scenario and more than double the stranded capacity
observed in the Straight-to-2 °C scenario. Most of this
stranding occurs between 2031 and 2035, when LAC
energy and industry emissions are reduced by nearly
75%. Over 80 GW of capacity is prematurely retired
over this five-year period.

Natural gas and oil power plants without carbon
capture and sequestration storage (CCS) represent the
largest fraction of prematurely retired capacity in our
scenarios in LAC. In our scenarios, natural gas without
CCS accounts for about 45% of stranded capacity in
the NDCs-t0-2 °C scenario and about 54% of stranded
capacity in the NDCs-t0-1.5 °C scenario, calling to
question natural gas’s role as a ‘bridge fuel’ [52]. To
meet the growing demand for electricity, between 751
and 967 GW of new capacity are installed during the
30 year period from 2021 to 2050 (figure 2). These
capacity additions are roughly 1.9-2.5 times the total
electricity generation capacity in LAC in 2015 [51, 53].
As anticipated, scenarios with the 1.5 °C cumulative
emissions budget require more capacity additions
than the 2 °C scenarios. This is because achieving the
more stringent budget in the 1.5 °C scenarios requires
the electricity sector to both (1) decarbonize faster
by replacing carbon-intensive plants with new low-
carbon capacity and (2) produce more electricity
overall, so that end-use sectors can reduce emissions
by switching their energy use to electricity.
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Similarly, the NDCs scenarios require more new
installations overall than the Straight-To scenarios,
although the timing of these installations is delayed.
Greater near-term mitigation spreads the new installa-
tion requirements more evenly across time; low-
carbon power installations in the near-term both lower
near-term emissions and reduce the rate at which emis-
sions must be curtailed post-2030 (figure 1), limiting
the need for greater investments post-2030 to ‘catch up’
with the cumulative emissions budget [54].

3.3. Stranded capacity and investment costs

An assessment of the costs associated with these
premature retirements and new installations helps
illuminate the economic implications of climate
change mitigation. Scale is the primary driver of
investment costs, with each scenario averaging about
$2.5-2.7 billion per GW of new generation capacity
(figure 3). Investment costs for the Straight-to-2 °C
scenario are the lowest ($1.9 trillion across LAC
between 2021 and 2050; see supplementary table 6),
while those for the NDCs-to-1.5 °C scenario are the
highest (nearly $2.6 trillion). These results are consis-
tent with the insights from figures 1 and 2—while the
NDCs are insufficient to limit warming to 2 °C, they
imply even more challenges for limiting warming to
1.5°C [7]. Overall, investment requirements in the
NDCs-10-1.5 °C scenario represent about 0.8% of

LAC’s projected (exogenously specified) GDP from
2021 to 2050, and reach as high as 2.1% of GDP for the
2031-2035 period.

Similarly, the costs of stranded capacity (hereafter
referred to as ‘stranding costs’; see methods) are high-
est in the NDCs-to-1.5 °C scenario, with cumulative
costs of $90 billion between 2021 and 2050 (figure 4).
These costs are two-thirds higher than the Straight-to-
1.5 °C scenario and more than double the costs in the
Straight-to-2 °C scenario. In contrast, the difference in
stranding costs between the Straight-to-2 °C and
NDCs-t0-2 °C scenarios is about 37% ($13 billion
USD) over the course of 30 years. For the 1.5 °C sce-
narios in particular, the timing of asset stranding is
driven by their vastly different emissions pathways
(figure 1). While the Straight-to-1.5°C scenario
requires more mitigation in the near-term, the NDCs-
t0-1.5 °C scenario requires a rapid decline in emis-
sions post-2030. This in turn results in much more
dramatic stranding of assets in the NDCs-t0-1.5 °C
scenario compared to the Straight-to-1.5 °C scenario.
In other words, the value of strengthening near-term
ambition is even greater for a 1.5 °C temperature tar-
get[10].

An interesting result from our analysis is that the
cost of stranding coal technologies is the greatest
across scenarios, even though these technologies make
up a relatively small percentage of the total capacity
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stranded (figures 4, 2). This is because (1) coal power
plants are more capital intensive than gas and oil
plants, and (2) coal power plants are assumed to have
longer lifetimes (60 years) than gas and oil plants
(45 years) and hence the economic value of coal power
plants depreciates slower than gas and oil plants. In
addition, oil with CCS plants contribute significantly
to stranding costs for the 1.5 °C scenarios between
2041 and 2050 because not only are these plants capital
intensive, but they are also relatively new. Hence,
although a small amount of capacity is retired, the
plants have comparably large economic value when
their operations cease.

3.4. Sensitivity analysis

To assess the extent to which our estimates of power
sector investment and stranding costs are influenced
by key modeling parameters, we conduct a sensitivity
analysis on assumptions about (1) political willingness
to avoid stranded assets, (2) technology availability,
and (3) the role of land-use change (LUC) in mitiga-
tion (table 2). In total, all combinations of these
assumptions result in 36 sensitivity cases (18 cases per
temperature target).

Different sensitivity cases result in different invest-
ment and stranding outcomes (figure 5, supplementary
figure 6) and CO, emissions pathways (supplementary
figure 7). For example, increased political willingness to

avoid stranded assets reduces power sector stranded
asset costs by 27 billion USD over the twenty-year per-
iod from 2031 to 2050 (NDCs-to-2 °C), holding all
other parameters at their central assumption values
(figure 5). However, increased stranding avoidance
in the power sector shifts emissions mitigation to
other sectors such as refining (supplementary figure 8)
and requires higher carbon prices (17% in 2050) to
achieve emissions mitigation goals (supplementary
table 8). This heightened refining sector mitigation in
turn requires a significant increase in biofuels, intensi-
fying the competition for cropland and raising food
prices (by 9% in 2050; see supplementary table 9).
Although conducting a detailed evaluation of the
implications of food price increases for consumers is
beyond the scope of this study, our results suggest that
avoiding stranding in the energy sector could have
important implications for other sustainable develop-
ment priorities.

Additionally, our analysis suggests that the NDCs-
t0-1.5 °C scenarios are not feasible in cases with lim-
ited technology availability, in particular, without CCS
technologies (supplementary figure 6). This is because,
by the time the current NDCs are implemented in
2030, cumulative global CO, emissions are already
300 GtCO, higher than the century-wide 1.5 °C bud-
get (supplementary figure 7). Without CCS and hence
CO, removal from bioenergy with carbon capture and
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Table 2. Sensitivity scenarios considered in this study. See supplementary table 7 for details about implementation in GCAM.

Sensitivity parameter Sensitivity scenario Description Regional application
Political willingness to Mid Avoidance Assumes medium premature asset retirement in the Global
avoid stranded assets” power sector in response to changing profit margins
for utilities (Central Assumption).
High Avoidance Assumes low premature asset retirement in the power Global
sector in response to changing profit margins for
utilities.
Technology availability Full Tech Assumes that the full suite of power sector technologies ~ Global
is available globally (Central Assumption).
No CCS Assumes no deployment of carbon capture and storage Global
technologies.
NoCCSandNoNew  Assumes no deployment of carbon capture and storage No CCS global; no new
Nuclear technologies globally, and no new deployment of nuclear in LAC only
nuclear technologies in LAC.
Role ofland-use in LowLUC Assumes low mitigation in the land-use sector through Global
mitigation lower price signal on emissions from land-use and
land cover change.
MidLUC Assumes medium mitigation in the land-use sector Global
through medium price signal on emissions from
land-use and land cover change (Central
Assumption).
High LUC Assumes high mitigation in the land-use sector through ~ Global

high price signal on emissions from land-use and
land cover change.

* Very high stranding avoidance assumptions (no stranding allowed in the power sector) was found to be infeasible within the GCAM

modeling paradigm.

sequestration (BECCS; supplementary note 5), the
level of net-negative emissions needed in the second
half of the century to bring cumulative global CO,
emissions back below the 1.5 °C budget by 2100 is
simply not feasible in the GCAM modeling paradigm.
While this finding about the importance of CCS for
1.5°C scenarios is consistent with recent studies
[55, 56], it is also important to note that all of the

feasible NDCs-to-1.5 °C scenarios in this study imply a
temporary overshoot of the 1.5 °C temperature target,
since the emissions budget is always exceeded before
being met by the end-of-century.

While limited technology availability renders the
NDCs-t0-1.5 °C scenarios infeasible within our mod-
eling paradigm, the NDCs-t0-2 °C scenarios were
found to be feasible, albeit at higher costs. Reducing




10P Publishing

Environ. Res. Lett. 15 (2020) 044026

technology availability from Full Tech to No CCS
increases power sector stranded asset costs
(2031-2050) by $16 billion (figure 5). Despite these
higher stranding costs, power sector CO, emissions
remain higher in the No CCS sensitivity cases com-
pared to their Full Tech counterparts. Further, with
CCS unavailable, power sector mitigation cannot be
easily displaced to the refining sector. Instead, addi-
tional mitigation effort in LAC is shifted from the
energy system to the land system, which results in food
price increases of 44% (in 2050) due to increased com-
petition for land for afforestation [57, 58]. Mitigation
that cannot be shifted to the land sector is accom-
plished by energy efficiency and conservation, with
primary energy consumption, final energy consump-
tion, and passenger vehicle miles traveled reduced
23%, 11%, and 7% respectively in the No CCS case
compared with the Full Tech case in 2050 (supplemen-
tary figure 9, supplementary table 10).

Furthermore, while changes to the role of land-use
in mitigation tend to have small average impacts on
power sector stranding costs in LAC (figure 5), the
range of potential impacts is fairly large (supplemen-
tary figure 10). Shifting to a high role for LUC in miti-
gation (High LUC) can either increase or decrease
stranding costs, depending on assumptions about
technology availability. Increasing the role of land-use
in mitigation results in a shift towards afforestation
and away from bioenergy production (supplementary
figure 11). With full technology availability, this
decreased availability of bioenergy feedstocks limits
the role of BECCS as a mitigation strategy (supple-
mentary figure 11) in both the refining and power sec-
tors. While increased afforestation means that less
emissions reductions are required of the energy system
overall, a greater share of energy system emission
reductions must come from the power sector in the
High LUC mitigation cases, because refining (and
end-use sectors which consume a large amount of
liquid fuels) have fewer mitigation options without
BECCS. More carbon-intensive power plants are
forced to prematurely retire, increasing stranding
costs, and more low-carbon generators are installed to
compensate for these premature retirements and to
electrify end-use sectors with fewer low-carbon liquid
fuels available. Conversely, with limited technology
availability, bioenergy is a less important mitigation
strategy to begin with; increasing the role of LUC in
mitigation helps shift emissions reductions away from
the energy system and results in lower stranding costs.

4. Discussion

Our analysis demonstrates that although more than
half of LAC’s electric power is generated from renew-
able sources [33, 34], power sector stranded assets are
an important issue in LAC. Achieving the long-
term goals of the Paris Agreement could result in

P Letters

pre-mature retirement of power sector capital worth
37-90 billion 2010 USD over a thirty-year period,
depending on the decarbonization pathway. These
costs represent huge potential losses for a relatively
narrow group of stakeholders and coincide with
substantial new capacity investment requirements.

Our study also shows that strengthening near-
term mitigation effort could have important implica-
tions for minimizing stranded asset and investment
costs in LAC. Even for the 2 °C temperature target, in
which LAC’s NDC commitments put the region closer
to its least-cost 2 °C emissions pathway, stranded asset
and investment costs are reduced by 27% (13.3 billion
2010 USD) and 3% (54 billion 2010 USD) by 2050 in a
scenario in which the NDCs are assumed to be
strengthened to follow globally cost-effective path-
ways. The NDCs emissions gap, and the potential for
reducing investment and stranding costs, are much
greater for a 1.5 °C temperature target. These findings
reinforce the findings of global analyses that near-term
investment decisions will have important economic
implications in the mid-to-long-term [6], even in a
developing region such as LAC where power-sector
emissions are currently low. Finally, our sensitivity
analysis demonstrates that power sector stranding
outcomes are influenced by the availability of low-car-
bon technologies (such as CCS), the role of other sec-
tors in mitigation (such as land-use), and political
avoidance of stranded assets. Depending on how these
factors affect the role of the power sector in mitigation,
they could displace mitigation effort into other sectors
and negatively impact consumers.

5. Conclusions

This study highlights the value of regional analyses
using integrated tools with regional, sectoral, and
technological detail to inform decision-making about
decarbonization and explore the implications of
different policy choices. Additionally, our analysis
demonstrates the need for better investment planning
consistent with global climate goals. Our methodology
can be adapted to other sectors and regions, for
example, oil refining and gas processing infrastruc-
ture. Our study also opens several interesting avenues
for future research, such as exploring the extent to
which it is possible to avoid stranded assets while still
achieving the Paris Agreement goals, and the interac-
tion between early mitigation action as a strategy to
reduce stranded assets with other key social, technol-
ogy, and policy uncertainties. Such assessments can
provide valuable quantitative information about inter-
actions between investment decisions and climate
targets, which governments can incorporate into their
planning processes from an early stage.
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