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Abstract
Decadal climate prediction, where climatemodels are initializedwith the contemporaneous state of
the Earth system and run for a decade into the future, represents a new source of near-term climate
information to better informdecisions and policies across key climate-sensitive sectors. This paper
illustrates the potential usefulness of such predictions for building a climate service for agricultural
needs. In particular, we assess the forecast quality ofmulti-model climate predictions in estimating
two user-relevant drought indices, Standardized Precipitation Evapotranspiration Index (SPEI) and
Standardized Precipitation Index (SPI), atmulti-annual timescales during European summer.We
obtain high skill for predicting five-year average (forecast years 1–5) SPEI across Southern Europe,
while for the same forecast period SPI exhibits high and significant skill over Scandinavia and its
surrounding regions. In addition, an assessment of the added value of initialized decadal climate
informationwith respect to standard uninitialized climate projections is presented. Themodel
initialization improves the forecast skill over Central Europe, the Balkan region and Southern
Scandinavia.Most of the increased skill foundwith initialization seems to be due to the climate
forecast systems ability to improve the extended summer precipitation and potential evapotranspira-
tion forecast, as well as their ability to adequately represent the observed effects of these climate
variables on the drought indices.

1. Introduction

Europe has experienced a series of extreme summer
droughts since the beginningof the 21st century (Spinoni
et al 2019). For instance, the year 2018 was characterized
by one of the worst droughts recorded in Europe,
particularly over theNorthern part of the continent. This
event has also been identified as the sixth in a series of
extreme summer drought that began in 2003 with heat
waves across the entire European continent (Fink et al
2004). The series continued in 2006 over the Baltic states
(Tammets 2007), 2007 in Aegean countries (Michaelides
and Pashiardis 2008), 2011 over western parts of Europe
(Kendon et al 2013) and in 2015 over most parts of the
Mediterranean region aswell as over Central and Eastern
Europe (Ionita et al2017).

The agriculture sector has been hit particularly
hard by these recurrent drought conditions: crop fail-
ure, low productivity and pasture losses have all con-
tributed to severe economic losses during those years
(Ding et al 2011). Because the impact of severe drought
is expected to increase over the upcoming decades due
to anthropogenic climate change (Füssel et al 2017,
Spinoni et al 2018), there is a need for effective plan-
ning and adaptive actions to reduce the impact and the
amount of related losses at all timescales relevant to
decision-makers. Consequently, there has been a
growing demand amongst stakeholders in the agri-
cultural sector to gather, assess and tailor climate sour-
ces that can provide practical and actionable
information (Bruno Soares et al 2018), in particular at
themulti-annual timescale.
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Until recently, the only source of near-term (from
one year to a decade in the future) climate information
available to users were climate projections (Taylor et al
2013, Spinoni et al 2015). These projections provide,
under a plausible emission scenario of greenhouse
gases, possible evolutions of the Earthʼs climate system
for the coming decades. The evolution of the climate
system represented in such simulations is solely driven
by prescribed changes in the atmospheric composition
and other external forcings. Recently, initialized dec-
adal climate predictions have become available as a
second source of near-term climate information.
These decadal predictions are initialized with observa-
tion-based data and then run for a decade under the
influence of contemporaneous changing external for-
cings, similarly to climate projections. The evolution
of the climate system in this case is impacted by both
internally generated and slowly varying natural varia-
bility and externally forced components (Meehl et al
2009, Doblas-Reyes et al 2013a, Meehl et al 2014,
Smith et al 2019). A clear benefit of this new source of
information is the potential to provide reliable and
robust climate outlooks on a multi-annual timescale
compared to long-term climate projections or clima-
tological forecasts (Caron et al 2015,Hewitt et al 2017).

Although there are exceptions (Kruschke et al
2014, 2015, Camp and Caron 2017, Caron et al 2018),
most of the studies that evaluated initialized decadal
predictions tend to assess the predictive skill and the
robustness of essential climate variables such as near-
surface temperature and precipitation both at the glo-
bal (e.g. Corti et al 2012, van Oldenborgh et al 2012,
Doblas-Reyes 2013b, Smith et al 2018) and local scale
(e.g. Matei et al 2012, Mehrotra et al 2014, Mohino
et al 2016). Over Europe, a number of studies have
found skill in predicting mean summer temperature
(Müller et al 2012, Mieruch et al 2014), summer pre-
cipitation (Guemas et al 2015, Dunstone et al 2018,
Yeager et al 2018) as well as extremes of both
daily temperature and precipitation (Eade et al 2012,
Hanlon et al 2013, 2015) using different initialized
forecast systems. These studies found a significant skill
at predicting the essential climate variables on amulti-
annual timescale and generally agree that a significant
portion of that skill is linked to the long-termwarming
trend associated with the increase in anthropogenic
greenhouse gases, although the relative influence of
natural variability and external forcings on the forecast
skill varies with regions.

While essential climate variables are useful in
indirectly accounting for the evolution of the drought
conditions (Wilhite 2000, Taylor et al 2013), drought
assessment studies have traditionally relied on a vari-
ety of indices, which themselves rely on essential
climate variables, as proxies for a more realistic repre-
sentation of the drought conditions (Palmer 1965).
Skilful predictions of such indices could be highly
valuable for decision-makers by, for example, provid-
ing risk managers with additional tools to assess the

possible evolution of drought conditions. Up until
now, little attention has been given to the evaluation of
drought conditions using drought indices in decadal
predictions and, particularly, on the added value of
initialized predictions over uninitialized climate simu-
lations. An exception to this is a recent study by Paxian
et al (2019) who analysed the predictive skill of a fore-
cast system at forecasting various 12 month integrated
drought indices at the global scale. However, to the
best of our knowledge, no study has yet assessed the
regional skill of decadal prediction systems at forecast-
ing the seasonal evolution in drought conditions using
proxy drought indices at themulti-annual timescale.

In this context, this work aims at assessing the pre-
dictive skill of initialized decadal predictions at fore-
casting summer drought conditions over Europe on a
multi-annual timescale using the SPEI and SPI indices
integrated over a 6 month period as well as their indi-
vidual components in order to assess to what extent
these components contribute to the overall skill. We
also investigate the improvement in the skill due to
the initialization of the climate models. These climate
models are introduced in section 2 along with
the description of the bias-adjustment technique, the
steps to compute the drought indicators and the fore-
cast quality measure used for this assessment.
Section 3 presents the predictive skill of the initialized
decadal prediction and the added value it holds over
uninitialized simulations. We conclude with some
final remarks in section 4.

2.Methodology

2.1.Data
This study uses a comprehensive set of decadal
hindcasts from six different decadal forecast systems
that were produced as part of the Coupled Model
Intercomparison Project Phase 5 (CMIP5; Taylor et al
2012) and the European Unionʼs Seventh Framework
Programme for Research (FP7)—SPECS project
(Matei et al 2012, Caron et al 2018), to build a large
multi-model ensemble forecast. A list of decadal
forecast systems, the number of realizations, and the
spatial resolution for each individual model is pre-
sented in table 1.

For each forecast system, we use two different sets
of experiments. The first set, referred to as ‘INIT’, cor-
responds to 10 year initialized hindcasts that were run
by explicitly prescribing the contemporaneous state of
the climate system at the start of the simulation. These
hindcasts were initialized every year from 1960 to 2005
either on 1 November or the following 1 January
depending on the system.However, to simplify the con-
struction of largemulti-model ensemble, we discard the
first two months when the forecast system is initialized
inNovember. The second set, referred to asNoINIT’, is
a corresponding ensemble that is not initialized and
which is used as a reference to investigate the impact of
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initialization. The non-initialized data comes from the
historical simulations up to 2005 and the RCP4.5 sce-
nario thereon. Both ensembles include changes in nat-
ural and anthropogenic radiative forcings, derived from
observations until 2005 and from the CMIP5 RCP4.5
scenario thereafter. A total of 44 members are available
for INIT and 46 members for NoINIT simulation.
However, in order to make a fair assessment of the
impact of initialization, we restrict the large multi-
model ensembles such that they have an equal number
of members for each model (the number of members
for each model is chosen as the minimum of INIT or
NoINIT). Therefore, only 41 members, i.e. the first
10,5,10,10,3,3 ensemble members from the CanCM4,
the EC-Earth v2, the GFDL-CM2p1, the HadCM3, the
MIROC5 and theMPI-ESM-LR forecast system respec-
tively, are used to construct the multi-model ensemble
forecast.

To evaluate these hindcasts, we use GHCN-CAMS
Version 2 (Fan and van denDool 2008) as observational
reference for near-surface temperature and GPCCVer-
sion 7 (Schneider et al 2018) for precipitation. GHCN-
CAMSVersion2 is a gridded dataset,where the temper-
ature data are taken from GHCN version 2 (Peterson
and Vose 1997) and CAMS (Janowiak 1999). This data-
set is available on a global 2.5°×2.5° grid from1948 to
near present. GPCC Version 7 provides monthly totals
of precipitation from 1901 to near present on a global
0.5°× 0.5° grid. These two datasets are selected due to
their temporal and geographical coverage and their spa-
tial resolution.

In order to allow for the comparison between
simulations and observations, the values of the climate
variables are interpolated using a conservative
approach, from their original grid onto a 2.5° latitude
by 3.75° longitude grid, which is identified as the coar-
sest grid among the model and reference dataset con-
sidered here.

2.2.Data preprocessing
Predicted climate variables such as temperature and
precipitation that are used in this assessment suffer
from systematic errors. This causes the forecast
systemʼs climatology to be different to that of the
observed (Doblas-Reyes et al 2013b). In this study, the
lead-time dependent biases in temperature and pre-
cipitation are adjusted using a simple mean bias-
adjustment technique (as recommended by ICPO
2011) in leave-one-out cross-validation mode to
emulate the real-time operational forecast conditions
where the observed state of the future climate system is
unavailable (Torralba et al 2017).

After the bias adjustment, the multi-model
ensemble mean is computed assigning equal weights
to themean of each individual forecast system.

2.3. Computation of agro-climatic indices
We assess the skill of climate models at forecasting
changes in European summer drought conditions over
the forecast years 1–5 using two drought indices:
Standardized Precipitation Index (SPI; Mckee et al
1993) and Standardized Precipitation Evapotranspira-
tion Index (SPEI; Vicente-Serrano et al 2010). These
indices are chosen primarily due to their widespread
acceptance by the agricultural user community as a
representative of drought conditions at the European
level in recent years (Spinoni et al 2015). SPI is
estimated based on monthly precipitation (P) and
accounts for drought events induced by the lack of
rainfall, whereas the SPEI uses monthly climatic water
balance (defined as the difference between monthly
precipitation and potential evapotranspiration (PET))
and as such also incorporates the effect of temperature
changes on the evolution of drought events. We target
our study on the summermonths of July to September
specifically because drought conditions during this
period can severely impact crop production over

Table 1.Models used formulti-model analysis.

Ensemblemembers

Model Forecast centre Reference INIT NoINIT Resolution

CanCM4 CanadianCentre for ClimateModelling and

Analysis, Environment andClimate

ChangeCanada

Fyfe et al (2011),
Merryfield et al (2013)

10 10 2.8°

EC-Earth v2 Barcelona Supercomputing

Centre, Spain

Hazeleger et al (2010, 2013),
Du et al (2012)

5 10 1.1°

GFDL-CM2p1 Geophysical FluidDynamics

Centre, USA

Delworth et al (2006),
Yang et al (2013)

10 10 2°×2.5°

HadCM3 MetOfficeHadley Centre, UK Smith et al (2013) 10 10 2.5°×3.75°
MIROC5 University of Tokyo,National

Institute for Environmental

Studies, and JapanAgency for

Marine-Earth Science and

Technology, Japan

Watanabe et al (2010) 6 3 1.4°

MPI-ESM-LR Max Planck Institute for

Meteorology, Germany

Pohlmann et al (2013) 3 3 1.9°
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Europe (Turco et al 2017, Zampieri et al 2017, Ceglar
et al 2018).

The computation of the drought indices is per-
formed in two steps: accumulation and standardiza-
tion. First, for each index, the monthly mean values of
the climate variables (precipitation for SPI, and the
difference between precipitation and PET for SPEI)
are summed over six months (including the target
month), which is commonly referred to as the accu-
mulation period. In this assessment, the six-month
accumulated precipitation and PET values are referred
to as P6 and PET6 respectively. For instance, the P6
value for the month of July is obtained as the sum of
estimated February to July precipitation values for a
specific year. As we aim to analyse the skill of the fore-
cast systems at the multi-annual timescale, the accu-
mulated forecast and its corresponding observed
values are averaged over five years for each summer
month. For example, the multi-annual average of
accumulated precipitation (forecast years 1–5) for the
month of July of the forecast initialized on January
1961 is the average of the 1961–1965 July accumulated
values, and for the forecast initialized on January 1962,
the average is obtained with the 1962–1966 July accu-
mulated values, and so on. We choose to use a five-
year average as it has been widely accepted to poten-
tially remove a large fraction of the interannual varia-
bility present in the decadal climate information
(García-Serrano and Doblas-Reyes 2012, Goddard
et al 2013). In addition, it also holds high potential to
support the users in making strategic decisions and
manage their risks (for e.g. associated with agricultural
production, market prices and disaster response) in
the near future (Bruno Soares et al 2018).

The multi-annual averaged data is then fitted to a
suitable parametric probability distribution and trans-
formed into a standardized series (with mean=0 and
standard deviation= 1) (Mckee et al 1993, Stagge et al
2015), where the standardized value is referred to as
SPI6 and SPEI6. We use two-parameter gamma dis-
tribution to transform the multi-annual averages of
accumulated precipitation to standardized units for
obtaining SPI6, and a three-parameter shifted log-
logistic distribution is used to fit the climate balance
values for SPEI6. The choice of the parametric prob-
ability distribution are verified and the assumption was
shown to be valid over large parts of Europe (for e.g.
Stagge et al 2015, Vicente-Serrano and Beguería 2016).
For this assessment, despite the availability of several
approaches (see, Beguería et al 2014) to estimate
PET, we choose the classical temperature-based
Thornthwaite method (Thornthwaite 1948), owing to
its simplicity and limited data requirements. The para-
meterization used for estimating land-surface evapo-
transpiration using this approach is based solely on
monthly mean temperatures and latitude coordinates,
the latter variable being used to calculate themaximum
amount of sunshine duration. A detailed description of
each step is presented in the supplementary material is

available online at stacks.iop.org/ERL/14/124014/
mmedia.

2.4. Forecast quality assessment
In this study, we use the standard Pearson correlation
coefficient to assess the skill of the ensemble mean at
forecasting the SPEI6 and SPI6 at the multi-annual
timescale. The correlation coefficient measures the
linear relationship between the forecasted and
observed index time series. Two different verification
measures are employed to assess the skill improvement
due to initialization of the decadal forecast system:
correlation difference and residual correlation. The
former measure is the absolute difference in correla-
tion values of the INIT and NoINIT hindcasts against
observation. It is the most commonly used skill
measure to assess the contribution of the internally
generated climate variability component to the multi-
annual predictive skill (Siegert et al 2017). However, it
has been pointed out by some studies (Siegert et al
2017, Smith et al 2019) that using correlation differ-
ence for two highly correlated hindcasts underesti-
mates the impact of initialization. Therefore, in order
to determine whether initialization adds any addi-
tional information compared to the uninitialized
forecast in the areas where both INIT and NoINIT
return high correlation values, we apply the residual
correlation methodology recently suggested by Smith
et al (2019). In this approach, the residuals of INIT and
observed index time series are correlated after linearly
regressing out theNoINIT ensemblemean.

We consider a correlation or a correlation differ-
ence significant only if it reaches the 95% confidence
level. For correlations, this is computed by performing
a one-tailed t-test, after a Fisher Z-transformation
whereas the statistical significance of correlation dif-
ferences is estimated using a modified Fisher transfor-
mation as described in Siegert et al (2017), to account
for the dependence of sharing the same observations
in computing INIT and NoINIT correlation coeffi-
cients. In both cases, we also take into account the
autocorrelation of the hindcast and the observational
time series by computing an effective sample
size, which represents the number of independent
data points in the time series (Von Storch and
Zwiers 2001). In highly autocorrelated time series
(such as those used here), the effective sample size is
noticeably lower than the total sample size. This last
step is necessary in order to avoid systematically over-
estimating the significance of the correlation (Von
Storch andZwiers 2001, Guemas et al 2014).

3. Results

3.1. Predictive skill of drought indices
This section presents the forecast quality assessment of
multi-annual averages of the drought indices for the
forecast years 1–5 over Europe and illustrates the
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improvement in skill due to initialization by compar-
ing INIT to NoINIT. The multi-model ensemble-
mean correlation, which is the forecast skill metric
used, of the forecasted SPEI6 with INIT against the
observed SPEI6 time series for July, August and
September is shown in figures 1(a)–(c). Initialized
decadal simulations yield positive skill over most of
Southern Europe. The rest of the European region
generally returns non-significant correlation for any of
the threemonths, except over Central Europe.

Figures 1(d)–(f) shows the difference in correlation
between initialized and uninitialized simulations for the
regions where initialized forecasts return positive skill.
It shows significant improvement (dotted red coloured
areas) over most of Central Europe and the Balkan
region for all three summer months. Figures 1(g)–(i)
presents the residual correlation wherein the residuals

of initialized and observed SPEI6 time series are corre-
lated after linearly regressing out the ensemble mean of
NoINIT.With this technique, we notice that the benefit
derived from initialization is also found over large parts
of Southern Europe: the skill over Italy, Turkey and the
Balkan region are found to have improved for all the
summermonths, improvementwhichwas not detected
with a simple correlation difference (grids cells with
open circles infigures 1(g)–(i)).

Figures 2(a)–(c) presents the ensemble-mean cor-
relation between INIT and observed SPI6 time series
for the three summer months. It shows positive skill
over the Scandinavian region and over Central Eur-
ope, especially in July. Figures 2(d)–(f) shows the
impact of initialization of the decadal forecast system
in predicting SPI6. The skill over the Balkan region
and Italy stand out as having significant improvement

Figure 1.Multi-model ensemble-mean correlation coefficients of the forecasted SPEI6 against the observed SPEI6 for the summer
months (July–September) averaged over forecast years 1–5. Thefirst row corresponds to the correlation of the initialized decadal
simulations (INIT)while the second row shows the difference in correlation between initialized and uninitialized climate simulations
(INIT-NoINIT). The third row corresponds to the correlation of residual between INIT hindcasts and observational reference SPEI6
time series obtained by linearly regressing out theNoINIT ensemblemean. The open circle represents the regionwith correlation
difference between−0.2 and 0.2. For the second and third row, the impact of initialization is only shown for the regions exhibiting
positive correlation values with INIT.Dotted grid boxes represent values statistically significant at 95% confidence level for SPEI6.
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due to initialization in this case. The significant
improvement, which is not trivial and occurs where
some of the largest cereal producers in Europe are
located, is clearly visible over these regions for July and
August, if somewhat less so in September.We also pre-
sent the residual correlation of the observed and initi-
alized hindcasts SPI6 time series (figures 2(g)–(i)). The
improvement in predictive skill of SPI6 due to initi-
alization is found to be more limited in this case, with
most of the improvement being relatively modest and
concentrated over Central Europe and southern
Scandinavia.

However, it is important to note that the precipita-
tion based indices such as SPI6 are formulated based on
two primary assumptions: (1) the variability of the
observed precipitation is higher than that of other cli-
mate variables such as temperature and potential eva-
potranspiration, (2) the other variables show no
significant trend over the region considered (Vicente-
Serrano et al 2010, 2012). We found the accumulated
precipitation to exhibit higher variability in comparison
to accumulated temperature and PET6 (figure S1). On

the other hand, the observed trend in temperature and
PET6 are non-negligible in comparison to the pre-
cipitation (figure S2). This indicates that the assump-
tions are only partially valid and therefore a more
detailed assessment on how strongly the drought evol-
ution is related to a deficit in the rainfall amounts is
required before using SPI6, irrespective of the positive
skill detected over several parts of Europe.

3.2. Assessment of individual components of the
drought indices
Assessing the contribution ofmulti-annual averages of
6 month accumulated potential evapotranspiration
(PET6) and precipitation (P6) values to the skill
obtained by SPEI6 and SPI6will help in understanding
the reason behind the predictive skill over the areas of
interest. As a first step, an evaluation of the predictive
skill of the accumulated climate variables (P6 and
PET6) is performed. Then, the relation between the
accumulated climate variables and the drought indices
(SPEI6 and SPI6) is illustrated, both in the observation

Figure 2. Same asfigure 1 but for the Standardized Precipitation Index (SPI6).
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and modelled climate. These assessments are solely
presented for the month of July for the sake of
illustration. Themain conclusions remain valid for the
months of August and September (see, figures S3–S6).

Figure 3(a) displays the ensemble mean correla-
tion of accumulated PET6 averaged over the forecast
years 1–5 between INIT and the observational refer-
ence time series for the month of July. For a specific
year, PET6 of July is obtained as the sum of estimated
February to July PET values. Initialized decadal simu-
lations show statistically significant positive skill over
most of the domain. The high skill in PET6 is found to
be inherited from the skill in predicting near-surface
temperature over Europe (not shown), as the temper-
ature-based Thornthwaite approach is used to com-
pute the monthly potential evapotranspiration in this
assessment. Initializing the decadal forecast system is
found to have onlymarginally increased the PET6 pre-
dictive skill (figure 3(b)), which suggests that most of
the skill in PET6 is indirectly due to the long-term glo-
bal warming trend.However, as previously stated, cor-
relation differences between two highly correlated
hindcasts (such as the accumulated summer PET6
values obtained from both INIT and NoINIT simula-
tion) underestimates the impact of initialization. So,
we present the residual correlation in figure 3(c).

Statistically significant positive residual correlations of
accumulated PET6 for the month of July can be found
over several parts of Europe, thus highlighting the
positive impact of initialization on the predictive skill
of PET6 over that region despite the absence of sig-
nificant differences in correlation.

Figure 3(d) presents the ensemblemean correlation
of forecasted P6 time series against the observational
reference for the month of July averaged over the fore-
cast years 1–5. The skill in predicting P6 is much lower
in comparison to PET6 over most parts of the domain.
Positive skill is found almost exclusively over Scandina-
via andNorthernCentral Europe. Figure 3(e) shows the
differences in the correlation between INIT and NoI-
NIT simulations. There are positive and significant cor-
relation differences over Italy and the Balkan region. In
contrast to PET6, the residual correlation of P6 shows
more limited improvement due to initialization (grids
with open circles infigure 3(f))overCentral Europe and
Southern Scandinavia.

To enhance our understanding of the effect of the
individual accumulated climate variables (PET6 and
P6) on SPEI6, the correlation of the observed and fore-
casted SPEI6 with the corresponding climate variables
are presented. The observed response of SPEI6 to PET6
and P6 for the month of July is shown in figures 4(a)

Figure 3.Multi-model ensemble-mean correlation coefficients of the accumulated PET6 (top) andP6 (bottom) forecasts against the
corresponding observational reference time series for themonth of July averaged over forecast years 1–5. The first column
corresponds to the correlation of the initialized decadal simulations (INIT)while the second column show the difference in correlation
between initialized and uninitialized climate simulations (INIT-NoINIT). The third column corresponds to the correlation of residual
between INIT hindcasts and observational reference time series obtained by linearly regressing out theNoINIT ensemblemean. The
open circle represents the regionwith correlation difference between−0.2 and 0.2. Dotted grid boxes represent values statistically
significant at 95% confidence level for PET andprecipitation.
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and (d) respectively. Over the lower latitudes, the corre-
lations are found to be of similar magnitudes for PET6
and P6, while at higher latitudes, the influence of P6
generally seems to dominate, which implies that PET6,
and incidentally temperature, has less of an impact on
drought condition at higher latitudes.

To assess whether this relationship is captured by
the decadal forecast system, a similar calculation is
repeated using the initialized and uninitialized hind-
casts (figures 4(b), (e) and (c), (f), respectively). It is
found that the relative influence of PET6 (compare
figures 4(a), (b)) and P6 (compare figures 4(d), (e)) on
SPEI6 seems to be reasonably well captured by the
initialized simulation over the lower latitudes while at
higher latitudes, the influence of PET6 (P6) on SPEI6
index seems to be more (less) pronounced. Similar
responses were found using NoINIT (figures 4(c) and
(f)), with a noticeable difference over Central Europe,
where we detect a spurious positive correlation
between SPEI6 and PET6 inNoInit.

3.3. Contribution of PET6 andP6 to the total skill of
drought indices
By comparing the forecast quality of the accumulated
climate variables and the influence of these variables
on SPEI6, the reason behind the overall SPEI6 skill can
be better understood. From this comparison, we
found that two factors have significantly contributed

to the positive skill in forecasting SPEI6 (month of
July, i.e.figure 1(a)), particularly at the lower latitudes.

• The high predictive skill exhibited by the forecast
systems in predicting P6 and PET6 (figure 3).

• The systemʼs ability to represent adequately the
relative influence of the accumulated climate vari-
ables on SPEI6 (compare figures 4(a) and (d) with
figures 4(b) and (e)).

On the other hand, despite positive skill at predict-
ing PET6 (figure 3(a)) and P6 (figure 3(d)) over higher
latitudes, particularly over Scandinavia, the inability of
the model to adequately represent the relative influ-
ence of these accumulated climate variables on SPEI6
have potentially lead to low skill in predicting SPEI6 in
those regions. For instance, at higher latitudes, the
observed SPEI6 seems to be dominated by the varia-
bility in accumulated precipitation compared to PET6,
whereas with the initialized decadal prediction, an
overestimation of the influence of PET6 on SPEI6 has
masked the impact of observed accumulated pre-
cipitation in those regions (compare figures 4(a), (d)
with (b), (e)). This shows the importance of correctly
identifying the relative influence of both PET6 and P6
on the drought index based on thewater balance.

The improvement in the predictive skill of SPEI6
due to initialization (the month of July in figure 1(b))
over Central Europe is linked to improved predictive

Figure 4.Correlation of observed SPEI6 versus six-month accumulated PET (a) and precipitation (d) for themonth of July. (b), (e)
and (c), (f) as (a), (d) but for the initialized and uninitialized ensemblemean hindcasts respectively. Dotted grid boxes represent values
statistically significant at 95%confidence level.
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skill of PET6 and P6 (figures 3(c), (e) and (f)), and a
better representation of the respective influence of
PET6 and P6 on SPEI6 by INIT in comparison toNoI-
NIT (figure 4). As for SPEI6, by comparing the skill of
SPI6 against precipitation for the month of July
(figures 2(a), (d), (g) and 3(d), (e), (f)) with initialized
decadal simulations, the contribution of the precipita-
tion prediction skill to the total SPI6 skill and their
improvement over NoINIT can be clearly linked to the
forecast systems ability to predict six-month accumu-
lated precipitation values since SPI6 is entirely depen-
dent on this single variable. These assessments were
repeated for the months of August (figures S3 and S5)
and September (figures S4 and S6), and the primary
outcomes remained unchanged.

4.Discussion and conclusions

This work explores the ability of initialized decadal
forecast systems at predicting drought conditions over
Europe, an important first step in determining whether
these products can provide useful, and ultimately
actionable, information to stakeholders in the agricul-
tural sector, a sector that has been identified as one of
the most vulnerable to climate-related risks (Bruno
Soares et al 2018). In particular, we have assessed the
forecast quality of amulti-model ensemble of initialized
decadal hindcasts constructed with systems produced
within the context of CMIP5 and of the FP7 SPECS
project to predict two agro-climatic indices (SPEI6 and
SPI6) for the summer months of July–September. In
parallel, we compared the initialized experiments with
the uninitialized historical simulations in order to
address the relative roles of initialization and external
forcing inprovidingmulti-annual predictive skill.

The results show significant skill in predicting five-
year averages (forecast years 1–5) over several parts of
the domain. Interestingly, higher skill is found for
SPEI6 over Southern and Central Europe while SPI6
exhibits higher skill over the Scandinavian region and
Northern Europe more generally. Investigation of the
individual components of these indices revealed that
the predictive skill of the considered indices primarily
relies on two factors: (1) the forecast systems ability to
predict the climate variables that are used to compute
both the indices; (2) the ability of the climate forecast
systems to capture the observed influence of each
component on the corresponding drought indices.

The different level of skill of the two drought indi-
ces over different regions (figures 1 and 2) can be
exploited to create a tailored product for decision-
makers. A combinedmap based on themaximum cor-
relation coefficients of SPEI6 or SPI6 (figure 5), as an
illustration, could be valuable for decision-makers and
inform them about the drought index that returns the
largest skill over a given area. However, we highlight
that the studied drought indices are developed for dif-
ferent purposes and aim at capturing varied features of
drought events (Mishra and Singh 2010). For instance,
the usage of precipitation based SPI6 index are only
appropriate in specific regions, where the evolution of
drought primarily relies on the temporal variability in
precipitation (Mckee et al 1993) and therefore, care
should be takenwhile using SPI6 as a stand-alone indi-
cator for assessing drought conditions, despite the
maximum positive correlation values found over sev-
eral parts of Europe.

By assessing the differences of skill obtained with
initialized and uninitialized hindcasts, initialization
was found to improve the skill over Central Europe for
SPEI6, whereas SPI6 exhibited improved skill over the

Figure 5.Maximumpositive correlation values among the considered drought indices with initialized decadal prediction (first
column) during the summermonths (July–September) over the European region. Green and blue colour indicate themaximum
correlation obtainedwith the SPEI6 and SPI6 respectively. The second columnpresents the (positive) correlation difference between
the best performing drought index in the initialized forecasts and the best performing drought index in the uninitialized forecasts (left
and right column, respectively). Negative correlations appear inwhite. For the third column, the colour is that of the Init ensemble.
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Balkan region. However, this approach has shown to
systematically underestimate the impact of initializa-
tion over the regions, where both initialized and unin-
itialized forecast are able to capture the common
signals that arise due to external forcings (i.e. grids
with low correlation difference in figures 1(d)–(f),
2(d)–(f)). To account for this, a residual correlation’
approach (Smith et al 2019) was used. With residual
correlation, we illustrate a marginal improvement in
skill over the Balkan region for SPEI6 and over Central
Europe and Southern Scandinavia for SPI6. This high-
lights further benefits of initialization over the regions
where simple correlation difference failed to showcase
any improvement in skill.

This study is the first to assess the multi-year pre-
dictive skill of seasonally varying drought conditions over
Europe. The encouraging results presented here suggest
further analyses. For instance, several studies that have
assessed the impact of choosing a particular parametric
probability distribution for computing the drought indi-
ces (Stagge et al 2015, Vicente-Serrano and Beguería
2016) and the influence of different methods to estimate
PET (Beguería et al 2014) have pointed out that different
choices leads to varied estimates of drought frequency
and severity in some regions over Europe. Therefore,
exploring other advanced techniques of PET estimation
and standardization procedure could potentially
improve our results. In addition, evaluating SPEI and
SPI at different user-relevant spatio-temporal scales
(Vicente-Serrano et al 2012), investigating different
multi-model approaches (Delsole et al 2013,Mishra et al
2018) and applying downscaling strategies (Reyers et al
2015, Benestad et al 2019) to provide reliable informa-
tion at a more local scale are all different avenues which
we are currently considering exploring in future analyses.
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