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Abstract
Climatemodels suggest a rapid increase of extremely hot days in coming decades. Coolmarine air
currently ventilates extreme heat in populous coastal regions, diminishing its impacts, but howwell
climatemodels capture this effect is uncertain.Here we conduct a comprehensive observational
analysis of coastal extreme-heat ventilation—its length scale,magnitude, and regional patterns—and
evaluate two ensembles of downscaled global climatemodels along the easternUS coast.Wefind that
coastal areas are 2 °C–4 °C cooler than∼60 km inland, resulting in reductions near 50% in population
exposure to temperatures above 35 °C. Large seasonal and inter-regional variations are closely linked
with land-sea temperature contrasts. High-resolutionmodels underestimate coastal cooling by 50%–

75%, implying that substantial and spatiotemporally varyingmodel bias correction is necessary to
create accurate projections of coastal extreme heat, which is expected to rise considerably with
anthropogenic forcing. Our results underline the importance of regionally- and observationally-based
perspectives for assessing future extreme heat and its impacts, and for positioning effective heat-risk
management for communities and jurisdictions that span coast-to-inland areas.

1. Introduction

Extreme heat can have multiple and severe impacts in
temperate and subtropical regions (Miller et al 2008,
Dunne et al 2013, Horton et al 2016, Mora et al 2017).
Fine-scale processes, such as local ocean-atmosphere
or land-atmosphere interactions, often play a crucial
role in climate extremes (Diffenbaugh et al 2005,
Lebassi et al 2009). Such interactions prevail in coastal
areas, which frequently experience warm-season day-
time cooling. Well-defined sea breezes occur where
the coast-to-inland temperature difference is large,
but coastal coolingmay be observed in the absence of a
sea breeze as well (Lebassi-Habtezion et al 2011, Meir
et al 2013).

Several previous studies have noted the impor-
tance of sea breezes and coastalmoderation of extreme

temperatures for ameliorating heat and pollution in
coastal areas of Southern California (Clemesha et al
2018) and New York (Melecio-Vázquez et al 2018).
Regional analyses have found important regional het-
erogeneity in projected future changes in these effects
(Zhao et al 2011). However, no studies have focused
directly on surveying coastal moderation of extreme
high temperatures, nor how that influences popula-
tion exposure. In addition, complex interacting atmo-
spheric and marine processes make regional
generalizations and comparisons difficult. Therefore,
establishing a comprehensive and region-specific
observational basis for coastal extreme-heat modera-
tion is crucial for better understanding its spatial pat-
terns and evaluating large projected increases in
extreme heat (Gao et al 2012, Zobel et al 2017). Recent
work on US temperature extremes has used global
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climate models (GCMs) or reanalysis datasets that are
too spatially coarse to resolve coast-to-inland temper-
ature gradients and, consequently, the coastal-cooling
phenomenon (Thibeault and Seth 2014, Wuebbles
et al 2015, Ashfaq et al 2016, Papalexiou et al 2018);
studies that do use high-resolution products typically
take a broader view in their analysis (Gao et al 2012,
Ning et al 2015, Zobel et al 2018). For those projec-
tions that rely on absolute temperature thresholds,
bias corrections are necessary and often implemented,
but there has been little analysis of how such correc-
tions alter the picture of coastal exposure to
extreme heat.

As heat extremes rapidly increase (Horton et al
2016), coastal moderation of extreme heat is para-
mount to understand and quantify, particularly its
potential changes in a warming climate. This coastal
moderation affects the heat exposure of about 50 mil-
lion people in the eastern US alone, and nonlinear
increases in health and economic impacts at the hot-
test temperatures make even small reductions mean-
ingful (Wu et al 2014, Coffel et al 2018, Coffel et al
2019). Accurate assessment of the spatial footprint of
future heat extremes is essential to local- and regional-
scale efforts tomanage heat exposure and its risks, as it
enables financial, educational, medical, and other
resources to be allocated according to need. For jur-
isdictions which include both coastal and inland com-
munities, ongoing management of heat risks will
necessarily need to be informed by the present magni-
tude of coastal cooling, as well as its future changes.

Here we conduct a systematic analysis of the extent
to which historical heat extremes are moderated by
marine influences in the eastern US, focusing on the
60 km wide coast-to-inland swath along the Atlantic
and Gulf coasts. Using station and gridded observa-
tions, we analyze regional patterns of coastal cooling
over the recent historical record to position our con-
sideration of how projections of future heat extremes
must be adjusted, due to the above-described model
challenges, to reflect their true spatial distribution in
coastal and near-coastal zones.

2.Methods

2.1.Observational data
We use historical daily-maximum temperature [Tmax]
data for 1981–2015 from the 4 km resolution para-
meter regression on independent slopes model
(PRISM) (Daly et al 2008). PRISM takes station data as
input and processes it using terrain- and coast-aware
interpolations to produce a best-estimate gridded
product (Daly et al 2003). In the eastern US PRISM
employs a coastal-advectionmodel that assumes a grid
point’s coastal influence is a function of distance from
the coast, with bays and inlets treated as transition
zones and terrain effects assumed negligible. Stations
with similar coastal influence are weighted more
heavily when computing grid point variables. Gridded
4 km resolution data is sufficient for capturing coastal
cooling as observed fromweather stations (Novak and
Colle 2006, Lebassi-Habtezion et al 2011), a validation
we also perform using the Global Surface Hourly and
Global Historical Climatology Network-Daily datasets
(Menne et al 2012). We conduct temperature-gradient
and population-exposure analyses (see sections 2.4,
2.5) for seven regions (table 1,figure 1).

2.2.Model data
We employ data from two ensembles of daily-resolu-
tion downscaled GCMs (table S1 is available online at
stacks.iop.org/ERL/14/114002/mmedia). From a
dataset produced by Zobel et al (2017, 2018), we use an
ensemble of five GCM model variants dynamically
downscaled with the Weather Research and Forecast-
ing (WRF) model to 0.1° (∼11 km) resolution (here-
after referred to as the WRF ensemble). These data are
for 1995–2004 (historical) and 2085–2094 (future,
RCP8.5). From the localized constructed analogs
(LOCA) project (Pierce et al 2014, 2015), we use a
statistically-downscaled (∼6 km resolution) ensemble
of historical runs (1981–2005) and future projections
for the high-emissions RCP8.5 scenario (2075–2099)
for 14 GCMs (Meinshausen et al 2011). These 14
models are selected to span much of the range of the
full CMIP5 suite while maintaining a variance that
enables greater comparability with theWRF ensemble;

Table 1. (Columns 1 and 2)The number of coastal grid points and regional hot days resulting from the PRISManalysis. The total number of
points comprising each regional distribution is thus the product of these two columns. (Column 3) Summary of themeans of the coastal-
cooling intensity calculation discussed in the text. Intensity ranges span the 5th–95th percentiles of the distribution,making the cooling
significant based on a two-tailed t-test.

Region Coastal gridpts Regional hot days Mean intensity (°C)

NorthernNewEngland 95 561 4.52 (1.81–7.36)
New Jersey andDelmarva 49 529 2.69 (0.49–5.35)
Carolinas andGeorgia 116 540 2.24 (0.31–4.44)
Florida Peninsula, Atl Coast 105 462 2.07 (0.35–4.04)
Florida Peninsula, Gulf Coast 59 484 1.88 (0.35–3.91)
Central Gulf Coast 182 458 2.42 (0.52–4.61)
Texas 104 404 3.69 (1.29–6.55)
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however, other model choices may produce slightly
different results.

2.3.Defining coastal and inland areas
To ensure accurate comparison among gridded pro-
ducts, we match grid points based on their region and
distance from themodel-defined coastline, rather than
by their absolute geographical location. We focus our
analysis on coastline sections where coastal weather
stations face the open ocean and that do not have bays
or estuaries larger than 50 km in width, as these can
introduce complex weather patterns that could con-
found the coastal cooling effects we seek to identify
(Novak and Colle 2006). Terrain-complexity concerns
also motivate our focus on the eastern US, where
terrain variations are small within 100 km of the coast.
For each section of coastline we define an ‘inland’ area
located 60 km away, perpendicular to the local coast-
line direction. This 60 kmdistance is far enough inland
to be beyond the reach of daytime coastal effects
(Finkele 1998, Hu and Xue 2016), and small enough
that differences due to synoptic-scale weather condi-
tions areminimized.

2.4.Defining hot days and coastal cooling
We focus on characterizing coast-to-inland temper-
ature differences rather than attempting to attribute
such differences to driving processes, such as sea
breezes, clouds, or precipitation.We define hot days as
the top decile of dailyTmax in thewarm season (defined
as May–September), based on a daily grid point

climatology temporally smoothed with a Gaussian
filter—a common method for avoiding spurious day-
to-day variations (Freychet et al 2018). For each region,
‘regional hot days’ are then defined as those for which
>50% of regional inland grid points are experiencing
a hot day, following Smith et al (2013).

We calculate the ‘coast-to-inland temperature dif-
ference’ on a regional hot day as the difference
between dailyTmax along the coast (averaged over each
set of three adjacent coastal grid points within that
region) and daily Tmax 60 km inland (averaged over
each set of three corresponding inland grid points).
We define the magnitude of coastal cooling for each
regional hot day as being proportional to this coast-to-
inland temperature difference. We choose to quantify
the coastal-cooling magnitude in this way because
temperature does not always steadily increase moving
inland (figure S1). Instead, the temperature gradient
can be nonmonotonic. To this end, we define ‘coastal-
cooling intensity’ as equal to 75% of the coast-to-
inland temperature difference (figure S1). Selecting a
percentage higher (lower) than 75% results in a larger
(smaller) value of coastal-cooling intensity, but does
not affect the regions relative to one another according
to our sensitivity analysis (figure S2). Averaging over
many grid points and hot days (table 1) allows for sta-
tistically robust conclusions.

2.5. Populations and avoided exposure
We estimate coastal populations using the 1 km
resolution Gridded Population of the World dataset

Figure 1. (a)Regions used in this study. Symbols indicate locations of inland (stars) and coastal (circles) stations used as verification for
PRISM,with coastal stations offset for visibility. Heavy colored linesmark sections of coastline incorporated into the PRISM regional
averages, as described in section 2.3. (b)–(h)Differences between inland and coastal dailymaximum temperature in PRISMon
regional hot days (left, top 10%) and all other days (right, bottom 90%). Green squares indicate themedian of differences between the
three inland-coastal station pairs for each region.
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(CIESIN 2016); our estimate of 50 million people
within 60 kmof the Atlantic andGulf coasts aligns well
with previous reports (Wilson and Fischetti 2010). To
assess the benefits of coastal cooling, we estimate the
avoided exposure to extreme heat due to coastal
cooling. We calculate avoided exposure by assuming
that Tmax at 60 km inland represents a counterfactual
case for the coast—that is, what coastal temperatures
would have been if not for coastal-cooling effects—
and take its difference from the actual coastal temper-
ature. We multiply this difference by the grid point
population and define it as the avoided population-
weighted extreme-heat exposure.

To assess the effect of model bias on projected
extreme-heat exposure in coastal regions, we calculate
two cases of population exposure to daily maximum
temperatures >35 °C. The first case is a best estimate
where we bias-correct theWRF and LOCAprojections
with PRISM observations by adding the model-
derived 21st-century changes to the PRISM climatol-
ogy. In the second case, the model projections are not
bias-corrected. For both cases, we decompose the
future changes in population exposure into two com-
ponents: the contribution from changes in mean tem-
peratures, and the contribution from changes in the
coast-to-inland temperature gradient. We do this by
generating an additional coast-to-inland temperature
profile with the historical gradient but the futuremean
temperature. The mean-change contribution is
obtained by comparing the historical temperature
profile with this artificial one, while the gradient-
change contribution is estimated by comparing the
artificial profile with the future profile. In all cases, we
assume that populations are fixed in size and spatial
distribution.

3. Results

3.1. Characterization of observations
High-resolution, spatially complete PRISM data
reveals that coastal daily-maximum temperatures are
suppressed by several degrees Celsius relative to nearby
inland areas (figure 1), in agreement with previous
studies over more limited domains in the eastern US
(Meir et al 2013, Melecio-Vázquez et al 2018). These
coastal-cooling intensities differ considerably across
regions—median values range from around 2 °C for
the Southeast US to near 3.5 °C for Texas and 4 °C for
NorthernNew England (figure 1).Within each region,
large temporal variability in coastal-cooling intensity
exists; however, each region’s interquartile range is
only 1 °C–2 °C, allowing for the differences between
the largest and smallest coastal-cooling-intensity
regions to be statistically significant at the 95% level.

A positive land-sea temperature contrast exists in
all regions during summer, and in both seasonal and
regional terms, it is closely associated with the coastal-
cooling intensity (figure 2). This finding is consistent

with the land-sea contrast being a known driver of
ephemeral sea breezes (Lebassi-Habtezion et al 2011,
Sequera et al 2015). The coastal-cooling effects we
identify are consistently present on nearly all hot days
(figure 1), however, underscoring their importance in
reducing extreme-heat exposure.

Comparing the distributions of PRISM and
GHCN-station-derived coastal-cooling intensities
using quantile-quantile plots, we find PRISM exhibits
biases for days with coastal cooling greater than 10 °C
and also for coastal warming (figure S3). These appear
to be related to PRISM’s data interpolation, mani-
fested particularly in a poor representation of days
with fast-changing synoptic conditions and large
coast-inland temperature differences. (We consider
differences between PRISM and stations inmore detail
in the Discussion.) However, PRISM biases are less
than about 1 °C–1.5 °C for coastal-cooling values in
the 0 °C–5 °C range, which comprise the majority of
hot days—ensuring the validity of our subsequent
analyses and conclusions for these days.

Together, these results emphasize three important
aspects of observed extreme heat in coastal areas.
Firstly, for themajority of days, PRISM gridded clima-
tology captures the cooling magnitudes from more-
targeted station data, suggesting that PRISM is an
appropriate observational basis against which to eval-
uate downscaled models (figure 1); secondly, the
coastal-cooling phenomenon is present on nearly all
warm-season days and across regions (figure 1); and
thirdly, the magnitude of observed warm-season
coastal cooling is highly regionalized, in part because it
is closely associated with the magnitude of regional
land-sea contrasts (figures 1, 2).

3.2. Evaluation of downscaledGCMs
Compared to PRISM, the LOCAandWRFdownscaled
products ubiquitously underestimate observed coastal
cooling: their typical mean cooling is 0.5 °C–2 °C, at
least a factor of two (and up to a factor of 10) smaller
than observed (figure 3). These model biases in the
coast-to-inland temperature gradient are large, and
consist of two primary types (figures S4, S5): a mean
temperature bias at each grid point and a temperature-
gradient bias concerning the difference between
coastal and inland grid points (figure 3). Over the
historical period, LOCA’smean coast-to-inland temp-
erature gradient is no more than about 1 °C (figure 3),
suggesting that statistical downscaling does not suffi-
ciently correct for the inability of the coarser parent
model to represent the fine-scale coastal processes
governing this gradient. Additionally, the LOCA
methodology depends on using land-based stations to
form analogs (Pierce et al 2014). As these stations are
located on land, and few are near the coast, the LOCA
reference points are tied to locations with little marine
influence. This separation between the majority of
LOCA stations and the coast makes the downscaling
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procedure less likely to capture the coastal-cooling
effects we explore here despite its improved
resolution.

Close to the coast, the dynamically-downscaled
WRF ensemble performs somewhat better, reprodu-
cing the majority of the modest coastal-cooling effect
for the Gulf Coast regions (figures 3(e)–(g)), but miss-
ing the large cooling magnitudes in other regions
(figures 3(a)–(d)). The WRF ensemble is more skillful
than LOCA for the Texas coast-to-inland temperature
gradient, perhaps a function of WRF representing
coastal atmospheric processes that are absent from the
coarser global models that are the basis for the LOCA
downscaling. Both products remain at a resolution
where their ability to represent fine-scale coastal cool-
ing is likely muted relative to observations (see
Discussion).

The two ensembles point to a greater future
increase in extreme heat at inland locations relative to
the coast, amounting to a modest (∼0.5 °C) strength-
ening of the coastal-cooling effect across all regions
(figure 3). Even with such coastal-cooling increases,
only the WRF future projections approach the magni-
tude of coastal cooling present in the historical obser-
vations, and only for the southernmost regions.

3.3. Population exposure
To understand how coastal cooling (and its model
representation) influences future extreme-heat
impacts assessments, we consider how models and
observations vary in their estimated human exposure
to extreme heat. Observationally, we find that, com-
pared to the counterfactual case where temperatures

in the coastal swath are identical to those 60 km inland,
coastal cooling reduces present-day eastern-US popu-
lation-weighted exposure to temperatures above 35 °C
by more than half for locations within 20 km of the
coast (figure S6). The greatest reductions occur closest
to the coast and for the highest temperatures—for
example, 40 °C almost never occurs anywhere along
the immediate coast. Over the entire 60 km coastal
swath and all regions considered, observed annual
exposure to 35 °C heat is about 200 million person-
days, or 4 d per person, versus 7 d per person in the
counterfactual case, consistent with other findings
(Jones et al 2015).

If we bias-correct the LOCA and WRF ensembles
with PRISM observations to provide a best estimate of
future changes in coastal extreme heat, population
exposure to 35 °C extreme heat nearly triples by 2100
under a high-emissions scenario, to∼650 million per-
son-days (figure 4(a)). The models also project an
intensification of the coast-to-inland temperature gra-
dient (figure 3), which could serve to partially counter
the increased population exposure projected from
mean temperature changes. As such, we decompose
the change in population exposure to extreme heat
into two components: one due to the mean warming
across the 60 km coastal swath, and one due to the
change in the temperature gradient within that swath.
We find that the effects of mean warming dominate,
with the model-projected increase in coastal cooling
having a comparatively small effect (figure 4(a)).

Due to theirmean bias and relatively weak temper-
ature gradients, models effectively systematically
understate the magnitude of coastal cooling, thereby

Figure 2.Correlation betweenmean land-sea contrast on regional hot days (ordinate) andmean corresponding coastal cooling
(abscissa). Colors represent regions, forwhich the seasonal evolution ofmonthly averages fromMay to September is indicated by the
arrows. As noted in the text, the correlation across all regions andmonths is 0.67, or 0.88 excluding Texas.
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Figure 3.Meanmaximum temperatures within the 60 km coastal swath on regional hot days, expressed relative to the coastal
temperature as represented by each product. For the historical period, we plot data only for the overlapping period of record,
1995–2004: 4 kmPRISM (black), 6 kmLOCA (solid orange), and∼11 kmWRF (solid green). Future projections under the RCP8.5
emissions scenario for 2075–2099 are dashed.
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overestimating coastal extreme heat (figure 3). We
next investigate the characteristics of the bias correc-
tion that it is necessary to implement in order for
models’ future coastal extreme-heat risk estimates to
be accurate. We recalculate population extreme-heat
exposure, without bias-correcting the LOCA and
WRF ensembles. We decompose the effects of the two
different sources of model bias—the mean change (T
bias) and the gradient bias (∇ bias)—on estimated
population exposure (figure 4(b)). This decomposi-
tionmakes clear that, in both ensembles, a weak coast-
to-inland temperature gradient causes up to a 15%
overestimate of late-21st-century population exposure
to extreme heat within 16 km of the coast, though
these effects become smaller further inland (solid bars
in figure 4(b)). Mean-temperature biases (hatched
bars) vary from moderately positive to strongly nega-
tive, the latter being about 50% of the projected chan-
ges. Members within each ensemble generally agree
well, as indicated by the cross-model standard
deviations.

4.Discussion and conclusions

The consistency of the coastal cooling that we observe
acrossmostwarm-season days, in all regions (figure 1),
leads us to propose that sea breezes are only part of a
larger set of phenomena that determine themagnitude
and inland extent of coastal cooling. Morning fog,
midday clouds, a weak and ill-defined sea breeze, or a
shallow coastal inversion layer are some of the
alternative possibilities for propagation mechanisms,
although investigating their contributions will require
significant future research to determine how they may
vary by region, season, or time of day. We find that
latitudinal differences in mean cooling intensity are
well-correlated with regional and seasonal land-sea
temperature contrasts (r=0.67) (figure 2); as the
land-sea contrast decreases over the summer, so does
the associated cooling effect. This correlation rises to
0.88 when Texas is excluded, indicating that it exhibits
a markedly different behavior, which we propose to
explain by noting that the Texas coast experiences
strong low-level onshore flow due to the North
Atlantic subtropical high during summer (Liang et al

Figure 4. (a)Contributions of changes inmean temperature (hatched) and in coast-to-inland-temperature-gradient steepness (solid
shading) to future population exposure to extreme heat in the LOCA (orange) andWRF (green) ensembles. Changes are calculated
using bias-corrected values to allow formeaningful comparability. Error bars indicate a cross-model uncertainty of± one standard
deviation from themean. (b)As in (a) but for contributions frommodel biases affecting the population-exposure projections. The
sumof (a) and (b) returns the nonbias-corrected projections of the two ensembles.
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2006, Hu and Xue 2016). Prior results have also
described deep inland infiltration of marine air under
persistent onshore-flow conditions (Arritt 1993, Gil-
liam et al 2004,Misra et al 2011).

As some of the only high-resolutionmulti-decadal
simulations spanning the entire eastern US, the LOCA
andWRF ensembles have a spatial comprehensiveness
that enables estimation of the degree to which down-
scaled products overstate coastal extreme heat in both
current and future climates. Our analysis suggests that
this overstatement is considerable (several degrees
Celsius), particularly for the large observed temper-
ature gradients within 10–20 km of the coast in New
England (figure 3), meaning that heat-exposure ana-
lyses using high-resolution downscaled ensembles
nonetheless require observationally based bias correc-
tion to avoid major biases in heat exposure. For coar-
ser-scale model output, bias correction is even more
important; our results contextualize and evaluate this
correction, which is implemented as a common
remedy for their insufficient representation of coastal
temperature gradients.

While a significant part of the downscaled pro-
ducts’ bias is likely attributable to their coarser spatial
resolution relative to PRISM, several pieces of evi-
dence suggest the importance of additional factors.
Firstly, the LOCA and WRF ensembles (6 km and
∼11 km resolution, respectively) are more similar to
each other than to 4 km PRISM; secondly, their biases
vary substantially between regions; and thirdly, the
WRF ensemble generally exhibits less bias than LOCA
despite its coarser spatial resolution. Such large and
pervasive model biases are observed in other US
coastal areas (Lebassi et al 2009, Wang and Kota-
marthi 2014), though often varying considerably by
region.

Therefore, an essential question that this study rai-
ses concerns the origin of the model biases that we
have identified for the coast-to-inland temperature
gradients. The accuracy of these gradients is crucial for
assessing the magnitude and location of present and
future extreme heat exposure, and thus for climate risk
management (Kunreuther et al 2013). Statistically
downscaled products, such as the LOCA ensemble, are
sensitive to GCM physics and weather-station bound-
ary conditions, whereas dynamically downscaled pro-
ducts, such as the WRF ensemble, are sensitive to
high-resolution model physics and GCM boundary
conditions. Our investigation suggests that dynamical
downscaling may be better suited to capture coastal
cooling, given the importance of sub-grid-scale, sub-
daily dynamics. Nevertheless, statistical downscaling
that incorporates sufficient marine observations could
also strongly aid in reducing the persistent biases of
dynamical models, whatever their resolution. Quanti-
fying the biases associated with each strategy, and their
variation according to location, season, and synoptic-
scale meteorological pattern, is critical for making fur-
ther progress in extreme-heat projections, especially

because the choice of downscalingmethod is the single
largest source of uncertainty for high-resolution cli-
mate projections (Li et al 2012, Xie et al 2015, Zhang
and Soden 2019). This likely would encompass study-
ing the parameterizations of sub-grid-scale processes
in eachGCMand in regionalmodels such asWRF.

However, the modest intermodel spread in coastal
cooling (figures S7, S8) suggests that selecting parent
models on the basis of skill in representing important
physical processes—the strategy proposed by Maraun
et al (2017)—presents only a partial solution, as it is
the downscaling method itself that generates a sig-
nificant portion of the uncertainty. What is most evi-
dent from our analysis is that careful, regionalized bias
correction is essential prior to evaluating coastal mod-
eration of extreme heat. Such analysis greatly
improves confidence inmodel projections, and is con-
sistent with the practice of retaining the signal asso-
ciatedwithmodel products (Hall 2014).

It should not be overlooked that PRISM also has
certain biases and uncertainties relative to station data,
reported here as well as in the dataset description (Daly
et al 2008). These biases derive from the incomplete
spatial coverage of the station data which PRISM
ingests, causing it to miss some coastal microclimates
and weather systems, as well as possibly affecting the
accuracy of its regional-scale coastal-proximity inter-
polation coefficients. Additional refinements in grid-
ded observational products and interpolation
methodologies, focusing on carefully evaluating coast-
lines and their environs, would aid in reducing these
issues.

We find that historical coastal cooling reduces
instances of dailymaxima above 35 °Cby an average of
nearly 60%within 30 kmof the coast, and by 35%with
60 km of the coast, infiltrating far enough inland to
affect major portions of the metropolitan areas of
Houston, Tampa,Miami, New York City, and Boston.
These reductions of 1 °C–4 °C are critical for human
health, as mortality rises nonlinearly for daily-max-
imum temperatures above 35 °C (Gosling et al 2007,
Wu et al 2014). Applying temperature-mortality rela-
tionships from Petkova et al (2014) for New York City
(assuming equivalent dose responses for all regions)
yields a rough estimate that observed eastern-US
coastal cooling reduces mortality by ∼20%, amount-
ing to around 1000 fewer deaths per year for the his-
torical total annual exposure of 200 million person-
days. This calculation omits additional economic sav-
ings (such as reduced need for air conditioning). Such
coastal-cooling-based reductions in population expo-
sure are much larger than those obtained from down-
scaled simulations like those we evaluate here,
suggesting an important shortcoming of current cli-
mate projections along coasts. Our geophysical results
are likely invariant to changes in coastlines due to sea-
level rise; however, these exposure numbers would
almost certainly vary based on future spatial popula-
tion redistributions, whichwe do not consider.
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The projected intensification in future coastal
cooling of ∼0.5 °C (figure 3) gives the coastal-cooling
effect a continuing importance in mitigating popula-
tion exposure to extreme heat in a world that is rapidly
warming (Jones et al 2018). It is also consistent with
strong correlations between coastal cooling and land-
sea temperature contrast (figure 2) andwith the expec-
ted circulation response to increases in warm-season
land-sea temperature contrast (Dong et al 2009, Joshi
et al 2008). However, such changes derive from a com-
bination of offsetting atmospheric and oceanic
responses (Kamae et al 2014), meaning that connect-
ing them directly to coastal cooling would require tar-
getedmodeling experiments in follow-up work. High-
resolution coupled atmosphere-ocean modeling,
focusing on coastal atmospheric boundary layers,
would be essential to verify and better understand
regional differences in present and future coastal cool-
ing. However, the dominant factor for extreme-heat
projections along the coast, as elsewhere, is the 3 °C–
6 °C average eastern-US summer warming by the late
21st century under RCP8.5 (figure 4(a)) (Lynch et al
2016, Vose et al 2017). Intermodel agreement about
the sign and relative magnitude of these future chan-
ges, despite considerable differences over the historical
period, is likely due to the downscaling method’s pre-
servation of the forced response to global-mean
warming (Hall 2014).

We find here that future extreme heat will vary
widely over distances that are too small for state-of-
the-art global models to properly simulate, even when
downscaled. Understanding this variation is valuable
in evaluating adaptation strategies and allocating
resources for mitigation of impacts, particularly in
polities that include both coastal and inland areas.
Local fine-scale processes must therefore be con-
sidered carefully in order to ensure an accurate assess-
ment of the present and future risks posed by extreme
heat along the coastline of the easternUS.
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