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Abstract
Recent studies have sought epidemiological evidence of the effectiveness of energy transitions. Such
evidence often relies on so-called ‘natural experiments’, wherein environmental and/or health
outcomes are assessed before, during, and after the transition of interest. Often, these studies attribute
air pollution exposure changes—eithermodeled ormeasured—directly to the transition.We
formalize a framework for separating the fractions of a given exposure change attributable to
meteorological variability and emissions changes. Using this framework, we quantify relative impacts
of wind variability and emissions changes from coal-fired power plants on exposure to SO2 emissions
across theUnited States under three unique combinations of spatial-temporal and source scales.We
find that the large emissions reductions achieved byUnited States coal-fired power plants after 2005
dominated population exposure changes. In each of the three case studies, however, we identified
periods and regions inwhichmeteorology dampened or accentuated differences in total exposure
relative to exposure change expected from emissions reductions alone. The results evidence a need for
separatingmeteorology-induced variability in exposure when attributing health impacts to specific
energy transitions.

1. Introduction

Energy transitions in the United States utility sector
are the result of multiple influences, including envir-
onmental regulations, variable fuel prices, and chan-
ging demand [1]. Such transitions in regional
electricity generationmanifest themselves as actions—
e.g. shuttering, scaling output, and installing emissions
controls—taken at individual generating units [1].
Utility sector transitions influence emissions, air
quality, and health at temporal scales from immediate
(in the case of shutterings or emissions control
installations) to decadal and at spatial scales from local
to global.

A growing body of research—air pollution
accountability—has sought to quantify the

downstream air quality and health impacts of reg-
ulatory actions in particular [2], and many of the
methods developed for air pollution accountability
have the potential to extend to air quality and health
benefits of energy transitions in general.Whether con-
sidering energy transitions explicitly or other abrupt
changes in pollution derived from opportunistic
‘quasi’ or ‘natural’ experiments, accountability assess-
ment is made difficult by co-varying factors in time
and space [2, 3].

One such co-varying factor is the propensity of
emitted pollutants to transport through and react in
the atmosphere; downstream air quality relationships
with emissions changes are highly nonlinear [4]. Pre-
vious air pollution accountability studies have addres-
sed the potential for atmospheric conditions and
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transport patterns to confound the results in health
analyses of emissions-reducing events. In one of mul-
tiple studies linking health and social outcomes to air
quality changes concurrent with a 1980s strike at a
steel mill near Salt Lake City, Utah, Pope (1989) noted
that ‘One concern aboutmaking observations pertain-
ing to these time periods is that the winter when the
Geneva steel mill was closed may have had relatively
good weather conditions and limited conditions of
stagnant air [5].’

In fact, accounting (or not) for concurrent
meteorology in accountability studies has repeatedly
been documented as an explanation for confusing or
misinterpreted results [6]. Initial studies of the air
quality changes spanning the 1996 Summer Olympics
in Atlanta (and attendant interventions to reduce traf-
fic during the games) suggested subsequent declines in
ambient ozone and pediatric asthma acute care events
[7], but follow-up analyses that explicitly identified
concurrent regional patterns inmeteorology indicated
that the Olympics-related interventions were likely
not the dominant cause of the air quality improve-
ments [8]. Similarly, multiple studies identified
improved air quality [9–13] and health [14–17] fol-
lowing pollution reduction efforts during the Beijing
Olympics; however, Wang et al (2009) used back tra-
jectories during the period and identified that the
apparent improvements were not due solely to the
Olympics-related interventions, but cleaner air that
was transported into the Beijing area during the period
of the Games [18]. They concluded that 40% of the
variability in ambient particulate matter concentra-
tions was due to meteorology, while only 16% was
attributable to emissions reductions.

While not necessarily studies of energy transitions
per se, the above studies entail relevant examples in
which researchers sought epidemiological evidence of
the benefits to human health from emissions reduc-
tions, in much the same way one might investigate a
past intervention amounting to an explicit energy
transition. The common feature is a clear action (or
actions) taken to impact pollution emissions and
investigation of changes in air quality and health out-
comes spanning the intervention that must consider
concurrent changes in meteorology and pollution
transport in order to accurately reflect consequences
of the transition. In addition to their opportunistic
nature to generate quasi-experimental changes in pol-
lution exposure, such studies have potential to inform
future policies under the implicit assumption that the
observed results would generalize amid future deploy-
ment of a similar intervention in a new setting [19, 20].
Misattribution of pollution (and health) impacts fol-
lowing a transition to the transition itself, instead of to
concurrent meteorological or transport patterns, lim-
its the generalizability to future similar actions.

Previous studies have employed dynamical air
quality models to quantify meteorological and emis-
sions influences on air pollution concentrations

[21, 22] and source category sensitivities [23]. Others
have employed empirical statistical models (e.g.
meteorological detrending techniques) to quantify
meteorology-induced variability in observed ambient
pollutant concentrations [24–28]. Towards the goal of
formalizing these issues in the specific context of
energy transitions, we seek to extend the generalized
frameworks implied in these previous works for quan-
tifying emissions and meteorological influences on
changing exposures resulting from transitions at
groups of individual sources.

Specifically, we describe a framework under which
meteorological variability (specifically, wind field
variability) impacts accountability studies of energy
transitions. Using a recently developed exposure
model and a national database of coal power plant
emissions, we investigate the implications of arbitrary
before/after periods on three different spatial-tem-
poral scales. We conclude by addressing the implica-
tions of the results on the interpretation of past studies
and the potential for improved design of future
studies.

2. Theory

Population exposure (Exp) to emissions from sources
J in period t at location i can be formulated as a
function f of the meteorological conditions (including
atmospheric initial and boundary conditions) Mt and
pollutant emissions EJ t, , i.e. f M EExp ,tot i J t t J t, , ,= ( )∣ .
Similarly, changes in exposure Exptot J t, , between
periods t− and t+ depend on changing meteorology
and emissions across the same period (we drop the J
[source] notation because it is well-defined for each
scenario below, and we drop i [exposure location]
because we calculate exposure changes for each loca-
tion):

f M E f M EExp , , . 1tot t t t tD = -+ + - -( ) ( ) ( )

Exposure (Exp) in this case is defined broadly as the
source contribution of well-defined emissions sources
on air quality in a given area. Sulfate concentrations
attributable exclusively to SO2 emissions from coal
power plants provide an appropriate example of this
type of exposure. Importantly, variability in such
exposures are nonlinear with emissions. For example,
sulfate concentrations depend on many atmospheric
conditions, including concentrations of existing con-
stituents such as water vapor andOH [29, 30]. In addi-
tion, exposures to emissions of individual pollutants
are not independent of emissions of other pollutants.
These nonlinearities and interactions may be more or
less important in relating exposure changes to emis-
sions changes depending on the precise emissions
sources and exposure of interest. Wemaintain a broad
definition of exposure so as not to restrict the theor-
etical methods to the specific examples presented
below.

2

Environ. Res. Lett. 14 (2019) 115003



For illustration, consider a single source that
installs an emissions control device in period t0

between periods t− and t+, an action that might pro-
vide an opportunity for a ‘quasi-experimental’
accountability study. Figure 1 presents a schematic of
changing exposure attributable tometeorological con-
ditions Mt- and Mt+ over an arbitrary region near a
source. In an exposure model where
f m e m e, = *( ) , M 1t =+ , and M 1t =- under their
respective plumes and 0 outside, the change in expo-
sure ExptotD takes three discrete values for regions A,
B, and C. Population living in region A, which experi-
ences a decrease in exposure between periods t− and
t+, benefits only frommeteorological conditions (con-
ceptualized here as a change in wind direction). Popu-
lation living in region C, conversely, experiences an
increased exposure between the two periods due to
meteorology. Only the population living in region B,
which is covered by both Mt- and Mt+, experiences an
exposure reduction attributable to the emissions
control.

To extend this example to a more realistic case
with potentially many sources, we define two terms:
the change in exposure attributable to meteorological
variability ( ExpmetD ) and the change in exposure attri-
butable to emissions changes ( ExpemissD ) across peri-
ods t− and t+. ExpmetD is calculated as the difference
between exposure in t− and exposure in a hypothetical
scenario with meteorology in t+ and emissions in t−.
Conversely, ExpemissD is calculated as the difference in
exposure between two scenarios with meteorology
fixed at Mt+ and emissions varied between Et- and
Et+.

f M E f M EExp , , , 2met t t t tD = -- - + -( ) ( ) ( )

f M E f M EExp , , . 3emiss t t t tD = -+ - + +( ) ( ) ( )

The convention basing ExpmetD on the emissions
in t− and ExpemissD on the meteorology in t+ opposed
to vice versa was chosen for two reasons. First, varying
perspectives between t+ and t− ensures that ExpmetD

and ExpemissD sum to ExptotD for linear functions f.
Second, we base ExpmetD on emissions in t− to ensure
the magnitude of ExpmetD remains interpretable rela-
tive to Exptot in t

−. Three previous studies used varying
combinations of base and future years in chemical
transport models for meteorological and emissions
changes, and do not set a consistent precedent for
which combination ismost appropriate [21–23].

Knowledge of ExptotD for a given energy trans-
ition does not in and of itself reveal information about
the relative contributions of ExpmetD or ExpemissD .
Regimes separated according to relativemagnitudes of

ExpmetD and ExpemissD (figure 2) provide a convenient
interpretive framework of the relative influences of

ExpmetD and ExpemissD on ExptotD . For a given
observed positive ExptotD (i.e. increase in total expo-
sure), the only requirement is that the combined
impact ofmeteorological and emissions changes led to
an increase, as denoted in regimes a M E { },
b M E { }, c M E  { }, or d M E  { } (up and
down arrows denote positive and negative influence,
respectively; double arrows denote greater magnitude
influence of one factor relative to the other). Similarly,
for a negative ExptotD , it is possible to exist in any of
regimes e M E  { }, f M E  { }, g M E  { },
or h M E { }.

3.Methods

In this section, we describe the exposure model
employed to simulate pollutant transport emissions
from coal-fired power plants in the United States.
While the framework above could be applied with
models of varying complexity, we describe an
approach for calculating ExptotD , ExpmetD , and

ExptotD using the HYSPLIT average dispersionmodel,
HyADS, a recently developed model for estimating
population exposure to point source emissions [31].
Finally, we introduce three source, time, and distance
scale combinations for analysis.

3.1.Measuring exposure to coal power plant
emissions usingHyADS
HyADS employs HYSPLIT, an air parcel transport and
dispersion model [32, 33], to model 100 parcel
trajectories originating from each source every six
hours (i.e. beginning at 12:00 a.m., 6:00 a.m., 12:00 p.
m., and 6:00 p.m.)—100 was chosen to allow reason-
able plume dispersion while enabling computational
efficiency. The trajectories are tracked for 10 days.
Three-dimensional hourly parcel locations beginning
at hour 2 are trimmed if they are below 0 elevation or
above the planetary boundary layer and are then
assigned to a fine grid and aggregated by month.
Gridded monthly aggregated parcel totals are then
scaled by the source’s monthly SO2 emissions. HyADS
was described and evaluated in detail at annual [31]
and monthly [34] time scales and has been applied in
health analyses [35, 36].

Figure 1. Schematic showing changing exposure coverage in
time periods t− and t+ under atmospheric conditions Mt-

and Mt+. The orange circle at left represents a single point
emission source.
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Weusemonthly SO2 emissions, location data, and
SO2 emissions control type and installation dates from
over 1000 coal-fired power plants in the
U.S.Environmental Protection Agency’s Air Markets
Program Database [37]. Unit stack heights were
retrieved from the National Emissions Inventory [38];
the databases were merged on unit ID as previously
described byHenneman et al (2018) [31].

HyADS, a reduced complexity model, does not
capture all atmospheric processes important in deter-
mining emissions exposure. There are, however, two
important benefits that motivate its use here. First, its
reduced complexity nature allows for the multiple
actual and counterfactual runs needed for this analy-
sis; these would require orders of magnitude more
computational time in a traditional chemical trans-
port model. Second, HyADS includes two primary
inputs—wind fields and emissions—thereby allowing
us to isolate the influence of these inputs on exposure.

3.2. Emissions andmeteorology exposure variability
Since HyADS uses linear combinations of transported
air pollution coverage (i.e. unit-less HyADS parcel
density in period t; Mt) and emissions (Et [tons]), we
take f m e m e, = *( ) and simplify equations (1)–(3):

M E M EExp , 4tot t t t tD = -+ + - - ( )

M E M EExp , 5met t t t tD = -- - + - ( )

M E M EExp . 6emiss t t t tD = -+ - + + ( )

For each period, we calculate ExptotD , ExpmetD ,
and ExpemissD at each ZIP code for each coal unit and
sum across units to yield single values for each of the
three terms at each ZIP code. To improve interpret-
ability, we then calculate Expp totD , Expp metD , and

Expp emissD as the percent change from the base period,
i.e.

M E
Exp

Exp
100%, 7p tot

tot

t t

D =
D

´
- -

( )

M E
Exp

Exp
100%, 8p met

met

t t

D =
D

´
- -

( )

M E
Exp

Exp
100%. 9p emiss

emiss

t t

D =
D

´
- -

( )

We quantify these terms for energy transitions at
coal power plants on three combinations of source
groups and spatial-temporal scales. Two of the three
scale combinations were selected to mirror recent epi-
demiological accountability studies:

1.Annual, national exposure changes from all
units (figure SI-1 is available online at stacks.iop.
org/ERL/14/115003/mmedia) in 2005, 2006,
2011, and 2012; the scales mirror a recent study
relating coal emissions exposure changes to
changes in various health outcome rates in the
Medicare population [36].

2.Monthly, national exposure changes from 108
units at 49 facilities that installed SO2 emissions
controls in 2008–2009 (figure SI-1).

3.Quarterly, city-level exposure changes from 15
units at 4 facilities that contributed large frac-
tions of Lousiville, KY total exposure in 2012 and
installed SO2 emissions controls or shuttered
between 2012 and 2017; the scales mirror a recent
study investigating these transitions’ impacts on
asthma outcomes [35].

At each combination of source/receptor scales, we
calculate the percent change in total exposure and
exposure attributable to meteorology and emissions
changes ( Expp metD and Expp emissD to Expp totD ) from

Figure 2.Relative combinations of ExpmetD and ExpemissD to ExptotD , which is negative at lower left (cool colors) and positive at
upper right (warmcolors). Letters and arrow combinations denote the relative positive () and negative () contributions of ExpmetD
(M) and ExpemissD (E), with double arrows denoting larger relative contribution than single arrows. Lighter colors signifymore
positive ExpmetD than ExpemissD .
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a base period defined as the first period in each
analysis.

4. Results

4.1. Annual exposure changes fromall emissions
reductions
Relative to 2005, nationwide coal power plant SO2

emissions decreased by 18.4%, 51.9%, and 65.4%
across 2006, 2011, and 2012, respectively. Most
generating units decreased emissions, but not all—in
2012, for example, 201 out of 1152 operating units
increased their emissions relative to 2005 (figure SI-2).
Annual nationwide exposure to coal power plant SO2

emissions relative to 2005 ( Expp totD ) decreased
22.2%±19% (standard deviation), 65.0%±8%,
and 53.3%±17% in 2006, 2011, and 2012 (figure 3
and table SI-2). Spatially, the largest changes occurred
in the eastern-most third of the country (figure SI-3),
consistent with the location of the highest densities of
coal power plants (figure SI-1).

Emissions reductions from coal power plants
drove annual average nationwide ZIP code exposures
reductions ( Expp emissD ) of 8.6%±11% in 2006,
32.1%±16% in 2011, and 67.5%±26% in 2012
(figure SI-3 and table SI-2). In 2006 and 2011, meteor-
ological differences from 2005 led to average

Expp metD of−13.6%±16% and−32.9%±18%. In
2012, however, meteorological changes from 2005 led
to positive Expp metD of 14.2%±24%.

These results are further reflected in the differ-
ences in dominating change regimes between 2011
and 2012. In 2011, most of the country fell into
regimes f M E  { } (63.8%) and g M E  { }
(33.4%, primarily in the eastern third of the country),
which are characterized by emissions and meteorol-
ogy-attributable decreases in exposure (table SI-1). In
2012, most (72.9%) of the country was in regime
h M E { }, characterized by Expp metD and

Expp emissD of opposite signs, and 74.0% of the country
experienced positive influence of meteorology differ-
ences on their exposure. Therefore, wind variability
led to an annual average Expp totD in 2011 that was
more negative than Expp totD in 2012, even as emis-
sions reductions in 2012 were greater than those in
2011 (we investigate reasons for these differences in
the discussion section). Without accounting for
meteorological differences, total exposure changes
between 2005 and 2011 appear more effective than
they actually were, whereas exposure changes in 2012
appear less effective.

4.2.Monthly exposure changes from scrubber
installations
The 108 units that installed SO2 emissions controls in
2008 and 2009 represented many of the largest in the
country, and they were among the highest emitting
before installing controls. In 2005–06, these units
emitted 29% of all SO2 from coal power plants; in
2011–12, they emitted only 4%. Total SO2 emissions
from these units decreased 93% between 2005–6 and
2011–12.

Emissions reductions at the 108 units contributed
to average national Expp totD reductions relative to
January 2005 of between 87% and 95% in all months
in 2012 (figure 4). Expp emissD decreased substantially
between 2005–06 and 2011–12, averaging near 0% in
the earlier time period and near −100% in the latter.
Recall that Expp emissD can be below−100% because it
depends on the current month’s meteorology. Varia-
bility in Expp totD in 2005 and 2006 is primarily driven
by meteorological changes; Expp metD is more positive
in summer months and more positive overall in 2005
than 2006.

Monthly exposure variability is further reflected in
exposure change regimes (figure 4). In 2005 and 2006,
area throughout the country in most months is domi-
nated by regimes a M E { }, b M E { },
e M E  { }, and f M E  { }, which are all

Figure 3.Top: annual evolution ofmeteorology and emissions exposure changes in theU.S. relative toHyADS exposure in 2005.
Bottom: ZIP codes covered by each exposure regime.
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characterized by smaller magnitude Expp emissD than
Expp metD . Months in 2005 are slightly more domi-

nated by regimes a M E { } and b M E { } than
2006 (which is more represented by e M E  { } and
f M E  { }), suggesting meteorology contributed to
more exposure increases in 2005 and decreases in 2006
relative to January 2005.

In all months in 2011–12, nearly 100% of the
country is covered by regimes f M E  { },
g M E  { }, and h M E { }, showing the dominant
impact of emissions reductions on Expp totD (figures 4
and SI-4). In both years, the country was covered simi-
larly (between 16% and 40%) by regime g M E  { },
which is characterized by more negative Expp emissD
than Expp metD . In large portions of the country,
therefore, total exposure decreased more than would
be expected based on emissions changes alone.

The greater coverage of regime f M E  { } in
2011 and h M E { } in 2012 corroborates results of
the annual evaluation above (figure 4). Each month in
2012 saw more coverage of regime h M E { } com-
pared to the same month in 2011, suggesting lower
observed benefits than would be expected based on
emissions changes alone.

4.3.Quarterly exposure changes in Louisville, KY,
2011–2017
Through unit retirements and emission controls
installations, the 15 units at four facilities near Louis-
ville, KY reduced their annual SO2 emissions by 80%
between 2012 and 2017. Annual Expp totD from these
units in the 39 Louisville ZIP codes decreased by
76.2%±12%across the same period (figure 5).

In 2012, 2013, and 2014, quarterly variability in
Expp totD across Louisville was dominated by
Expp metD , as shown by the relatively small variability

in Expp emissD (figure 5). Exposure change regimes
a M E { }, b M E { }, e M E  { }, and
f M E  { }—each of which is characterized by a

larger meteorology-related influence than emissions-
related one—dominated the area in these years. Start-
ing in the fourth quarter of 2015, emissions reductions
overcame meteorological variability to reduce overall
exposure relative to quarter 1, 2012. Regime
h M E { } dominated the Louisville area beginning
in 2014, fourth quarter. Only in the first quarters of
2016 and 2017 did a marked difference occur—in
these quarters, meteorological differences from the
first quarter of 2012 increased the impact of emissions
reductions on Exptot .

The results show the potential for wind field varia-
bility on a local scale to affect the relationships
between emissions reductions and exposure changes.
Even while facilities nearby Louisville installed emis-
sions control devices and reduced their emissions
from 2012–2014, the reductions had little impact on
variability in total exposure because of meteorological
variability. Only with a large enough decrease in emis-
sions did Expp totD remain below zero consistently.
Even so,meteorological differences betweenmost per-
iods from 2015 to 2017 yielded smaller (closer to zero)

Expp totD ʼs than would be expected based on emis-
sions changes alone.

These results have implications on results of epide-
miological studies of such interventions, such as the
one undertaken by Casey et al (in review). It would be
unreasonable to assume, for instance, that emissions
reductions of similar magnitudes across periods with
vastly differing meteorology lead to similar exposure
reductions (and subsequent health improvements).
All interventions on the four facilities investigated by
Casey et al (in review), for example, occurred before
the end of 2016. Comparisons of quarterly Expp totD
after 2016, however, would lead to overestimates (first
quarter, 2017) or underestimates (second-fourth
quarters, 2017) of the change in exposure due exclu-
sively to emissions changes (and, therefore, impact
evaluations of the effectiveness of the controls).

Figure 4.Top:monthly evolution of emissions,meteorology, and total exposure changes in national ZIP codes relative toHyADS
exposure in January 2005.Outliers have been removed in the plot. Bottom: percent of total area in the lower 48 states covered by each
regime.

6

Environ. Res. Lett. 14 (2019) 115003



One potential approach to address large intra-
annual meteorological variability would be to com-
pare the same quarters across years instead of employ-
ing the first quarter of 2012 as the base period. This
solution is imperfect, however, because of the pre-
sence of inter-annual variability in Expp metD
(figure 5). The variability is greatest in the summer-
time—3rd-quarter Expp metD ranges from 115% in
2014% to 215% in 2016.

5.Discussion

5.1. Limitations
HyADSmeasures exposure to emissions using a linear
combination of spatial impacts and SO2 emissions,
not exposure to atmospheric pollutants such as PM2.5

and its precursors, SO2, NOx, or other atmospheric
constituents previously linked to adverse health
effects. Previously, we have shown that national and
individual unit exposures measured by HyADS corre-
late well with chemical transport model simulated
PM2.5 in both direct sensitivity [31] and adjoint
sensitivity [39] frameworks. In addition, Foley et al
(2015) found that atmospheric nonlinearities led to
smaller, more homogeneous changes in annual ozone
concentrations across the country between 2002 and
2005 relative to changes attributable to meteorology
and emissions changes. Based on these previous
results, the linearity assumption employed by HyADS
(i.e. f m e m e, = *( ) ) is sufficient for quantifying
exposure variability on the spatial and temporal scales
investigated here, but future studies may employ
chemical transport models within the proposed fra-
mework to investigate the importance of nonlinea-
rities in energy transitions impacts on exposure.

A wide body of research has sought to quantify
effects of meteorological variability on ambient pri-
mary and secondary pollutant concentrations using
model [40, 41] and observation-based approaches

[24, 30]. These studies have highlighted the impor-
tance of a range of atmospheric conditions, such as
temperature, relative humidity, precipitation, and
concentrations of other pollutants in determining
observed ambient concentrations (which are related,
but distinct from the exposures we seek to measure
here). While surface winds can both transport pollu-
tion away from polluted areas and transport emissions
toward otherwise cleaner areas [24, 30, 40], variability
in wind speed and direction does not capture all of the
processes important in determining exposure varia-
bility. This point is developed further in the sub-
sequent section.

As discussed in the theory section above, the rela-
tive contributions of ExpmetD and ExpemissD to

ExptotD (and congruently Expp metD , Expp emissD , and
Expp totD ) are dependent on the base and future years

selected for calculation of each. We calculated
ExpmetD based on the base year’s emissions (Et-) to

maintain a consistentmagnitude. Therefore, to ensure
ExpmetD + ExpemissD = ExptotD , ExpemissD is required

to be based on future year meteorology (Mt+). This
convention results in meteorological and emissions
impacts that are somewhat more difficult to interpret
individually (e.g. ExpemissD represents reductions of
more than 100%); taken together, however, ExpmetD
and ExpemissD gain interpretability with the introduc-
tion of concentrations regimes (figure 2).

5.2.Meteorology and exposure variability
In this section, we contextualize the annual, national
results with published literature addressing the pro-
pensity of meteorology to impact sulfate concentra-
tions (SO2 emissions readily convert to sulfate in the
atmosphere). We discuss the results above in the
context of annual NCEP/NCARReanalysis 10 mwind
fields across theUnited States [42, 43].

Tai et al (2010) showed that nationwide sulfate
concentrations were enhanced in stagnant conditions
and with increased temperature, relative humidity,

Figure 5.Top: quarterly evolution of emissions,meteorology, and total exposure changes in Louisville, KY relative toHyADS exposure
in 2012, quarter 1.Outliers have been removed. Bottom: percent of total area in the Louisville, KY covered by each regime.
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and—importantly for the present study—wind ema-
nating from the Ohio River Valley area, which con-
tains the greatest concentration of coal emissions in
the country (figure SI-1). Similarly, others have found
that sulfate (and other PM2.5 constituents) are nega-
tively correlated with wind speed [44–46]. In relation
to the present study, these previous results suggest
that, in periodswith relatively greater wind speed ema-
nating from areas other than theOhio River Valley, we
would expect a negative ExpmetD , and vice versa.

Nationwide, average annual 10 m wind speeds
increased slightly from 0.94 m s 1- in 2005 to 1.02,
1.19, and 1.25 m s 1- in 2006, 2011, and 2012, respec-
tively (figure SI-6). Wind field anomalies in both 2011
and 2012 show increased flux of marine air from the
Gulf ofMexico, implying greater ventilation, at least in
theGulf States. However, 2012 saw greater increases in
southerly winds in the Midwest and smaller increases
in southerly winds along the East coast compared to
2011 (figure SI-7). The wind changes in 2012 imply
greater recirculation of air from the East toward the
US interior, less ventilation of continental air, and thus
increased exposure to power plant emissions. These
anomalies in the 2012wind pattern are consistent with
the anticyclonic conditions and severe heat observed
over the central and eastern U.S. that spring and sum-
mer [44].

While this evaluation implies multiple simplifica-
tions—e.g. including only annual 10 mwind fields—it
does confirm differences in meteorologies of the years
under investigation, particularly in 2011 and 2012.
Our results show the importance of only wind in
determining exposure, without accounting for other
meteorological differences that have been shown to be
important to determining ambient air pollution.
These factors warrant further investigation under the
present framework requiring more complex atmo-
spheric models; however, such models should be
interpreted in acknowledgement of their limited capa-
cities to fully capture observed sensitivities of air pollu-
tion tometeorological variability [47–49].

5.3. Recommendations
In three scenarios (two that mirrored epidemiological
studies), we investigated how energy transitions’
impacts on exposure to coal emissions were impacted
by wind field and emissions variability. Results show
that, with large enough emissions reductions,

Expp emissD decreased in all spatial and temporal scales
to a magnitude greater than any observed positive

Expp metD .Meteorology, however, still plays a substan-
tial role in determining the effectiveness of emissions
reductions on reducing exposure, with increasing
importance at finer temporal and spatial scales.

Despite relying on HyADS’s linear exposure
model ( M EExp= * ), the results we present agree in
principle with a wide body of work describing meteor-
ological influences on ambient air quality. Complex
air quality models (e.g. chemical transport models) are

able to more fully resolve relationships between
meteorology, emissions, and exposure, but are limited
by their increased computational cost. Quantifying
these relationships remains an active area of research,
and future studies of energy transitions should weigh
the application of a variety of models to their exposure
and time and distance scales of interest.

Variability in ExpmetD is greater with increasing
spatial and temporal resolution, suggesting that an
approach for mitigating the influence of meteorology
in a future study is to use annually aggregated expo-
sures or compare the same periods across years. Win-
ter wind fields tend to decrease exposure, whereas
summer fields tend to increase exposure. However,
differences between years remain (notably, between
2011 and 2012). Exposure change regime coverage
becomes more homogeneous with large emissions
decreases and atfiner spatial scales (e.g. in Louisville).

Air pollution accountability studies often employ a
potential outcomes framework, wherein implications
of interventions on exposure/health outcomes are
inferred by estimating a counterfactual—i.e. the out-
come assuming no intervention. In such a framework,
the outcome assumes that everything else except the
intervention (e.g. meteorology) is constant between
the actual and counterfactual. While this approach
would seem to preclude the relevance of varying
meteorological influence, it remains important to
consider because meteorology-independent estimates
of intervention impacts are more relevant for inform-
ing future policies, particularly as a changing climate
increases uncertainty surrounding future meteor-
ological conditions and their impacts on ambient air
quality [47–49].

Our approach has utility for other studies focused
on exposure. For example, our use of percent change
and our definition of the change regimes a-h allow for
easy comparison with results from other studies that
may use different techniques to characterize exposure.
Our description of exposure in terms of area coverage
permits the extension of our results to other spatial
scales.

Importantly, our results do not imply that pre-
viously calculated associations between observed or
modeled ExptotD and health outcomes are invalid (for
instance, two that motivated the present manuscript
[35, 36]). Evaluating impacts of changes in total expo-
sure following an energy transition is a valid approach
when interpreted cautiously. Most work in this
domain, however, implicitly assumes that

ExptotD == ExpemissD , i.e. the observed exposure
change is caused entirely by a change in emissions.
Analyses that do seek to attribute exposure changes to
emissions (versus total exposure) must confront the
potential entanglement withmeteorology.
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